An Introduction to Polymer Physics

No previous knowledge of polymers is assumed in this book which provides a general introduction to the physics of solid polymers.

The book covers a wide range of topics within the field of polymer physics, beginning with a brief history of the development of synthetic polymers and an overview of the methods of polymerisation and processing. In the following chapter, David Bower describes important experimental techniques used in the study of polymers. The main part of the book, however, is devoted to the structure and properties of solid polymers, including blends, copolymers and liquid-crystal polymers.

With an approach appropriate for advanced undergraduate and graduate students of physics, materials science and chemistry, the book includes many worked examples and problems with solutions. It will provide a firm foundation for the study of the physics of solid polymers.

David Bower received his D.Phil. from the University of Oxford in 1964. In 1990 he became a reader in the Department of Physics at the University of Leeds, retiring from this position in 1995. He was a founder member of the management committee of the IRC in Polymer Science and Technology (Universities of Leeds, Durham and Bradford), and co-authored The Vibrational Spectroscopy of Polymers with W. F. Maddams (CUP, 1989). His contribution to the primary literature has included work on polymers, solid-state physics and magnetism.
An Introduction to Polymer Physics

David I. Bower
Formerly at the University of Leeds
Contents

Preface
Acknowledgements

1 Introduction 1
1.1 Polymers and the scope of the book 1
1.2 A brief history of the development of synthetic polymers 2
1.3 The chemical nature of polymers 8
1.3.1 Introduction 8
1.3.2 The classification of polymers 9
1.3.3 ‘Classical’ polymerisation processes 12
1.3.4 Newer polymers and polymerisation processes 17
1.4 Properties and applications 18
1.5 Polymer processing 21
1.5.1 Introduction 21
1.5.2 Additives and composites 22
1.5.3 Processing methods 23
1.6 Further reading 25
1.6.1 Some general polymer texts 25
1.6.2 Further reading specifically for chapter 1 26

2 Some physical techniques for studying polymers 27
2.1 Introduction 27
2.2 Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) 27
2.3 Density measurement 31
2.4 Light scattering 32
2.5 X-ray scattering 33
2.5.1 Wide-angle scattering (WAXS) 33
2.5.2 Small-angle scattering (SAXS) 38
2.6 Infrared and Raman spectroscopy 38
2.6.1 The principles of infrared and Raman spectroscopy 38
2.6.2 Spectrometers for infrared and Raman spectroscopy 41
2.6.3 The infrared and Raman spectra of polymers 42
2.6.4 Quantitative infrared spectroscopy – the Lambert–Beer law 43
vi

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 Nuclear magnetic resonance spectroscopy (NMR)</td>
<td>44</td>
</tr>
<tr>
<td>2.7.1 Introduction</td>
<td>44</td>
</tr>
<tr>
<td>2.7.2 NMR spectrometers and experiments</td>
<td>46</td>
</tr>
<tr>
<td>2.7.3 Chemical shifts and spin–spin interactions</td>
<td>49</td>
</tr>
<tr>
<td>2.7.4 Magic-angle spinning, dipolar decoupling and cross polarisation</td>
<td>50</td>
</tr>
<tr>
<td>2.7.5 Spin diffusion</td>
<td>52</td>
</tr>
<tr>
<td>2.7.6 Multi-dimensional NMR</td>
<td>52</td>
</tr>
<tr>
<td>2.7.7 Quadrupolar coupling and 2H spectra</td>
<td>54</td>
</tr>
<tr>
<td>2.8 Optical and electron microscopy</td>
<td>55</td>
</tr>
<tr>
<td>2.8.1 Optical microscopy</td>
<td>55</td>
</tr>
<tr>
<td>2.8.2 Electron microscopy</td>
<td>58</td>
</tr>
<tr>
<td>2.9 Further reading</td>
<td>62</td>
</tr>
<tr>
<td>3 Molecular sizes and shapes and ordered structures</td>
<td>63</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>3.2 Distributions of molar mass and their determination</td>
<td>63</td>
</tr>
<tr>
<td>3.2.1 Number-average and weight-average molar masses</td>
<td>63</td>
</tr>
<tr>
<td>3.2.2 Determination of molar masses and distributions</td>
<td>65</td>
</tr>
<tr>
<td>3.3 The shapes of polymer molecules</td>
<td>66</td>
</tr>
<tr>
<td>3.3.1 Bonding and the shapes of molecules</td>
<td>66</td>
</tr>
<tr>
<td>3.3.2 Conformations and chain statistics</td>
<td>72</td>
</tr>
<tr>
<td>3.3.3 The single freely jointed chain</td>
<td>72</td>
</tr>
<tr>
<td>3.3.4 More realistic chains – the excluded-volume effect</td>
<td>76</td>
</tr>
<tr>
<td>3.3.5 Chain flexibility and the persistence length</td>
<td>80</td>
</tr>
<tr>
<td>3.4 Evidence for ordered structures in solid polymers</td>
<td>81</td>
</tr>
<tr>
<td>3.4.1 Wide-angle X-ray scattering – WAXS</td>
<td>81</td>
</tr>
<tr>
<td>3.4.2 Small-angle X-ray scattering – SAXS</td>
<td>82</td>
</tr>
<tr>
<td>3.4.3 Light scattering</td>
<td>83</td>
</tr>
<tr>
<td>3.4.4 Optical microscopy</td>
<td>84</td>
</tr>
<tr>
<td>3.5 Further reading</td>
<td>85</td>
</tr>
<tr>
<td>3.6 Problems</td>
<td>85</td>
</tr>
<tr>
<td>4 Regular chains and crystallinity</td>
<td>87</td>
</tr>
<tr>
<td>4.1 Regular and irregular chains</td>
<td>87</td>
</tr>
<tr>
<td>4.1.1 Introduction</td>
<td>87</td>
</tr>
<tr>
<td>4.1.2 Polymers with ‘automatic’ regularity</td>
<td>89</td>
</tr>
<tr>
<td>4.1.3 Vinyl polymers and tacticity</td>
<td>90</td>
</tr>
<tr>
<td>4.1.4 Polydiene</td>
<td>96</td>
</tr>
<tr>
<td>4.1.5 Helical molecules</td>
<td>96</td>
</tr>
<tr>
<td>4.2 The determination of crystal structures by X-ray diffraction</td>
<td>98</td>
</tr>
</tbody>
</table>
vi Contents

5.8 Further reading
5.9 Problems

6 Mechanical properties I – time-independent elasticity
6.1 Introduction to the mechanical properties of polymers
6.2 Elastic properties of isotropic polymers at small strains
 6.2.1 The elastic constants of isotropic media at small strains
 6.2.2 The small-strain properties of isotropic polymers
6.3 The phenomenology of rubber elasticity
 6.3.1 Introduction
 6.3.2 The transition to large-strain elasticity
 6.3.3 Strain–energy functions
 6.3.4 The neo-Hookean solid
6.4 The statistical theory of rubber elasticity
 6.4.1 Introduction
 6.4.2 The fundamental mechanism of rubber elasticity
 6.4.3 The thermodynamics of rubber elasticity
 6.4.4 Development of the statistical theory
6.5 Modifications of the simple molecular and phenomenological
 theories
6.6 Further reading
6.7 Problems

7 Mechanical properties II – linear viscoelasticity
7.1 Introduction and definitions
 7.1.1 Introduction
 7.1.2 Creep
 7.1.3 Stress-relaxation
 7.1.4 The Boltzmann superposition principle (BSP)
7.2 Mechanical models
 7.2.1 Introduction
 7.2.2 The Maxwell model
 7.2.3 The Kelvin or Voigt model
 7.2.4 The standard linear solid
 7.2.5 Real materials – relaxation-time and retardation-time
 spectra
7.3 Experimental methods for studying viscoelastic behaviour
 7.3.1 Transient measurements
 7.3.2 Dynamic measurements – the complex modulus and
 compliance
 7.3.3 Dynamic measurements; examples
7.4 Time–temperature equivalence and superposition
7.5 The glass transition in amorphous polymers | 206
 7.5.1 The determination of the glass-transition temperature | 206
 7.5.2 The temperature dependence of the shift factor: the VFT and WLF equations | 208
 7.5.3 Theories of the glass transition | 209
 7.5.4 Factors that affect the value of \(T_g \) | 211
7.6 Relaxations for amorphous and crystalline polymers | 212
 7.6.1 Introduction | 212
 7.6.2 Amorphous polymers | 213
 7.6.3 Crystalline polymers | 213
 7.6.4 Final remarks | 217
7.7 Further reading | 217
7.8 Problems | 217

8 Yield and fracture of polymers | 220
 8.1 Introduction | 220
 8.2 Yield | 223
 8.2.1 Introduction | 223
 8.2.2 The mechanism of yielding – cold drawing and the Considère construction | 223
 8.2.3 Yield criteria | 226
 8.2.4 The pressure dependence of yield | 231
 8.2.5 Temperature and strain-rate dependences of yield | 232
 8.3 Fracture | 234
 8.3.1 Introduction | 234
 8.3.2 Theories of fracture; toughness parameters | 235
 8.3.3 Experimental determination of fracture toughness | 239
 8.3.4 Crazing | 240
 8.3.5 Impact testing of polymers | 243
 8.4 Further reading | 246
 8.5 Problems | 246

9 Electrical and optical properties | 248
 9.1 Introduction | 248
 9.2 Electrical polarisation | 249
 9.2.1 The dielectric constant and the refractive index | 249
 9.2.2 Molecular polarisability and the low-frequency dielectric constant | 252
 9.2.3 Bond polarisabilities and group dipole moments | 254
 9.2.4 Dielectric relaxation | 256
 9.2.5 The dielectric constants and relaxations of polymers | 260
 9.3 Conducting polymers | 267
9.3.1 Introduction
9.3.2 Ionic conduction
9.3.3 Electrical conduction in metals and semiconductors
9.3.4 Electronic conduction in polymers
9.4 Optical properties of polymers
9.4.1 Introduction
9.4.2 Transparency and colourlessness
9.4.3 The refractive index
9.5 Further reading
9.6 Problems

10 Oriented polymers I – production and characterisation
10.1 Introduction – the meaning and importance of orientation
10.2 The production of orientation in synthetic polymers
10.2.1 Undesirable or incidental orientation
10.2.2 Deliberate orientation by processing in the solid state
10.2.3 Deliberate orientation by processing in the fluid state
10.2.4 Cold drawing and the natural draw ratio
10.3 The mathematical description of molecular orientation
10.4 Experimental methods for investigating the degree of orientation
10.4.1 Measurement of optical refractive indices or birefringence
10.4.2 Measurement of infrared dichroism
10.4.3 Polarised fluorescence
10.4.4 Raman spectroscopy
10.4.5 Wide-angle X-ray scattering
10.5 The combination of methods for two-phase systems
10.6 Methods of representing types of orientation
10.6.1 Triangle diagrams
10.6.2 Pole figures
10.6.3 Limitations of the representations
10.7 Further reading
10.8 Problems

11 Oriented polymers II – models and properties
11.1 Introduction
11.2 Models for molecular orientation
11.2.1 The affine rubber deformation scheme
11.2.2 The aggregate or pseudo-affine deformation scheme
11.3 Comparison between theory and experiment
11.3.1 Introduction
11.3.2 The affine rubber model and ‘frozen-in’ orientation 328
11.3.3 The affine rubber model and the stress-optical coefficient 329
11.3.4 The pseudo-affine aggregate model 332
11.4 Comparison between predicted and observed elastic properties 332
 11.4.1 Introduction 332
 11.4.2 The elastic constants and the Ward aggregate model 333
11.5 Takayanagi composite models 335
11.6 Highly oriented polymers and ultimate moduli 338
 11.6.1 Ultimate moduli 338
 11.6.2 Models for highly oriented polyethylene 340
11.7 Further reading 341
11.8 Problems 341

12 Polymer blends, copolymers and liquid-crystal polymers 343
12.1 Introduction 343
12.2 Polymer blends 344
 12.2.1 Introduction 344
 12.2.2 Conditions for polymer–polymer miscibility 344
 12.2.3 Experimental detection of miscibility 350
 12.2.4 Compatibilisation and examples of polymer blends 354
 12.2.5 Morphology 356
 12.2.6 Properties and applications 358
12.3 Copolymers 360
 12.3.1 Introduction and nomenclature 360
 12.3.2 Linear copolymers: segregation and melt morphology 362
 12.3.3 Copolymers combining elastomeric and rigid components 367
 12.3.4 Semicrystalline block copolymers 368
12.4 Liquid-crystal polymers 370
 12.4.1 Introduction 370
 12.4.2 Types of mesophases for small molecules 371
 12.4.3 Types of liquid-crystal polymers 373
 12.4.4 The theory of liquid-crystal alignment 375
 12.4.5 The processing of liquid-crystal polymers 382
 12.4.6 The physical structure of solids from liquid-crystal polymers 383
 12.4.7 The properties and applications of liquid-crystal polymers 386
12.5 Further reading 391
12.6 Problems 391

Appendix: Cartesian tensors 393
Solutions to problems 397
Index 425
Preface

There are already a fairly large number of textbooks on various aspects of polymers and, more specifically, on polymer physics, so why another? While presenting a short series of undergraduate lectures on polymer physics at the University of Leeds over a number of years I found it difficult to recommend a suitable textbook. There were books that had chapters appropriate to some of the topics being covered, but it was difficult to find suitable material at the right level for others. In fact most of the textbooks available both then and now seem to me more suitable for postgraduate students than for undergraduates. This book is definitely for undergraduates, though some students will still find parts of it quite demanding.

In writing any book it is, of course, necessary to be selective. The criteria for inclusion of material in an undergraduate text are, I believe, its importance within the overall field covered, its generally non-controversial nature and, as already indicated, its difficulty. All of these are somewhat subjective, because assessing the importance of material tends to be tainted by the author's own interests and opinions. I have simply tried to cover the field of solid polymers widely in a book of reasonable length, but some topics that others would have included are inevitably omitted. As for material being non-controversial, I have given only rather brief mentions of ideas and theoretical models that have not gained general acceptance or regarding which there is still much debate. Students must, of course, understand that all of science involves uncertainties and judgements, but such matters are better left mainly for discussion in seminars or to be set as short research tasks or essays; inclusion of too much doubt in a textbook only confuses.

Difficulty is particularly subjective, so one must judge partly from one's own experiences with students and partly from comments of colleagues who read the text. There is, however, no place in the modern undergraduate text for long, very complicated, particularly mathematically complicated, discussions of difficult topics. Nevertheless, these topics cannot be avoided altogether if they are important either practically or for the general development of the subject, so an appropriate simplified treatment must be given. Comments from readers have ranged from ‘too
difficult’ to ‘too easy’ for various parts of the text as it now stands, with a large part ‘about right’. This seems to me a good mix, offering both comfort and challenge, and I have not, therefore, aimed at greater homogeneity.

It is my experience that students are put off by unfamiliar symbols or symbols with a large number of superscripts or subscripts, so I have attempted where possible to use standard symbols for all quantities. This means that, because the book covers a wide range of areas of physics, the same symbols sometimes have different meanings in different places. I have therefore, for instance, used θ to stand for a wide range of different angles in different parts of the book and only used subscripts on it where absolutely necessary for clarity. Within a given chapter I have, however, tried to avoid using the same symbol to mean different things, but where this was unavoidable without excess complication I have drawn attention to the fact.

It is sometimes said that an author has simply compiled his book by taking the best bits out of a number of other books. I have certainly used what I consider to be some of the best or most relevant bits from many more specialised books, in the sense that these books have often provided me with general guidance as to what is important in a particular area in which my experience is limited and have also provided many specific examples of properties or behaviour; it is clearly not sensible to use poor examples because somebody else has used the best ones! I hope, however, that my choice of material, the way that I have reworked it and added explanatory material, and the way that I have cross-referenced different areas of the text has allowed me to construct a coherent whole, spanning a wider range of topics at a simpler level than that of many of the books that I have consulted and made use of. I therefore hope that this book will provide a useful introduction to them.

Chapters 7 and 8 and parts of chapter 11, in particular, have been influenced strongly by the two more-advanced textbooks on the mechanical properties of solid polymers by Professor I. M. Ward, and the section of chapter 12 on liquid-crystal polymers has drawn heavily on the more-advanced textbook by Professors A. Donald and A. H. Windle. These books are referred to in the sections on further reading in those chapters and I wish to acknowledge my debt to them, as to all the books referred to there and in the corresponding sections of other chapters.

In addition, I should like to thank the following for reading various sections of the book and providing critical comments in writing and sometimes also in discussion: Professors D. Bloor, G. R. Davies, W. J. Feast, T. C. B. McLeish and I. M. Ward and Drs P. Barham, R. A. Duckett, P. G. Klein and D. J. Read. In addition, Drs P. Hine and A.
P. Unwin read the whole book between them and checked the solutions to all the examples and problems. Without the efforts of all these people many obscurities and errors would not have been removed. For any that remain and for sometimes not taking the advice offered, I am, of course, responsible.

Dr W. F. Maddams, my co-author for an earlier book, *The Vibrational Spectroscopy of Polymers* (CUP 1989), kindly permitted me to use or adapt materials from that book, for which I thank him. I have spent considerable time trying to track down the copyright holders and originators of the other figures and tables not drawn or compiled by me and I am grateful to those who have given permission to use or adapt material. If I have inadvertently not given due credit for any material used I apologise. I have generally requested permission to use material from only one of a set of co-authors and I hope that I shall be excused for using material without their explicit permission by those authors that I have not contacted and authors that I have not been able to trace. Brief acknowledgements are given in the figure captions and fuller versions are listed on p. xv. This list may provide useful additional references to supplement the books cited in the further reading sections of each chapter. I am grateful to The University of Leeds for permission to use or adapt some past examination questions as problems.

Finally, I should like to thank my wife for her support during the writing of this book.

D. I. B., Leeds, November 2001
Full acknowledgements for use of figures are given here. Brief acknowledgements are given in figure captions.

1.5, 1.6, 2.11, 3.3, 4.2, 4.7(a), 4.16 and 5.8 Reproduced from The Vibrational Spectroscopy of Polymers by D. I. Bower and W. F. Maddams © Cambridge University Press 1989.

New topologies, 1(a) Adapted by permission from Tomalia, D. A. et al., Macromolecules 19, 2466, Copyright 1986 American Chemical Society; 1(b) reproduced by permission of the Polymer Division of the American Chemical Society from Gibson, H. W. et al., Polymer Preprints, 33(1), 235 (1992).

1.8 (a) Reprinted by permission of Butterworth Heinemann from Handbook for Plastics Processors by J. A. Brydson; Heineman Newnes, Oxford, 1990; (b) courtesy of ICI.

2.2 Reproduced by permission of PerkinElmer Incorporated from Thermal Analysis Newsletter 9 (1970).

Adapted from Principles of Polymer Morphology by D. C. Bassett. © Cambridge University Press 1981.

5.9 Reproduced by permission of the Society of Polymer Science, Japan, from Miyamoto, Y., Nakafuku, C. and Takeamura, T., Polymer Journal 3, 122 (1972).

5.16 (b) reproduced by permission of the American Institute of Physics from Stein, R. S. and Rhodes, M. B, J. Appl. Phys 31, 1873 (1960).

5.6 and 5.8 Reproduced by permission of the Royal Society of Chemistry from Treloar, L. R. G., Trans Faraday Soc. 40, 59 (1944).

8.13 (a) reprinted (b) adapted, with permission, from the *Annual Book of ASTM Standards*, copyright American Society for Testing and Materials, 100 Barr Harbour Drive, West Conshohocken, PA 19428.

9.3 Adapted by permission of Carl Hanser Verlag from *Dielectric and Mechanical Relaxation in Materials*, by S. Havriliak Jr and S. J. Havriliak, Carl Hanser Verlag, Munich, 1997.

9.4 Adapted by permission from *Dielectric Spectroscopy of Polymers* by P. Hedvig, Adam Hilger Ltd, Bristol. © Akadémiai Kiadó, Budapest 1977.

Acknowledgements xix

xx Acknowledgements

12.17(b), 12.25, and 12.26(a) and (b) reproduced and 12.22 adapted from Liquid Crystal Polymers by A. M. Donald and A. H. Windle. © Cambridge University Press 1992.

