
Preface

The importance of computational modeling as a research approach in neuroscience
is recognized today by most researchers in the field. Computational neuroscience is
generally associated with simulations in electrophysiology and neural dynamics.
Recently, an increasing number of  neuroscientists have begun to use computer models
to study and describe neuroanatomy, its subcellular bases, and its relationship with
neuronal activity and function. Other researchers began importing accurate and quanti-
tative descriptions of neuronal structure and connectivity into computer simulations of
neuronal and network physiology. Perhaps owing to the broad range of scales spanned
by these studies, from subcellular structures to very large assemblies of interconnected
neurons, computational neuroanatomy literature is sparse and distributed among the
many technical journals in neuroscience. Nevertheless, a common theme is easily rec-
ognized in all these research projects: the use of computer models, simulations, and
visualizations to gain a deeper understanding of the complexity of nervous system struc-
tures. Neuroanatomy constitutes a central aspect of neuroscience, and the continuous
growth of affordable computer power makes it possible to model and integrate the
enormous complexity of neuroanatomy. It is not surprising that computational neu-
roanatomy research projects are stirring considerable interest in the scientific commu-
nity. Computational Neuroanatomy: Principles and Methods is the first comprehensive
volume discussing the principles and describing the methods of computational
approaches to neuroanatomy.

Computational neuroanatomy is potentially as vast and diverse a field as neuro-
anatomy itself. In an attempt to capture this diversity, each chapter of this book is
contributed by different authors. Each subject is presented and discussed by the experts
who first defined the problems, implemented the methods to solve them, and formu-
lated the principles underlying the solutions (brief biographies of the book’s authors
are provided at the end of the book). Principles and methods of computational neu-
roanatomy are explained through direct examples of recent or ongoing research. All
chapters were peer-reviewed by the editor, by contributors of other chapters, and by
“external” reviewers (who are acknowledged at the end of this Preface).

Most chapters are enhanced by electronic material included in the companion CD-
ROM. Such material includes software packages used in computational neuroanatomy,
step-by-step explanation of the algorithms implemented in such programs, and
examples of data files. In addition, given the important contribution of computer graph-
ics to neuroanatomical models, results reported in the book are further illustrated by
animations and movies in the CD-ROM. While only black and white figures are repro-
duced in print, high-resolution color images are contained in the disk. Finally, the CD
provides links to web sites containing updates and additional information.

Computational Neuroanatomy: Principles and Methods may be used as a back-to-
back text by readers interested in learning the basic strategies, results, and language of
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computational neuroanatomy, or as a unique reference to consult for key material (both
conceptual and technical) in these new areas of investigation. Active researchers and
graduate students should be able to read the chapters as if they were published in a
high-quality scientific journal. Advanced undergraduate students and interested non-
academic thinkers with a background in neuroscience or computer science will also
find this volume highly accessible.

The book was edited with particular attention to the expected diversity in back-
ground of the readership. A natural audience for this publication consists of all neu-
roanatomists interested in novel technology. The use of computers can aid
neuroanatomical investigation and understanding, and the material of this book can be
an inspiring source of research ideas as well as a basic guide to keep up to date with
computational developments. As a rapidly growing field, computational neuroanatomy
is of interest for the neuroscience community in general, and this book provides a
review of many leading research paths. On the other hand, computer scientists and
engineers are turning with ever deeper interest to biological architectures. Nervous
systems are still remarkably superior to digital computers and artificial neural networks
in a variety of computational and cognitive tasks, and a crucial reason is their structure.
This book constitutes an intellectual bridge between information technology and neu-
roanatomy. Finally, the tremendous impact that computer graphics has had and will
continue to have in education makes this material also useful for academic instructors
involved with brain science, including neurologists, psychologists, biologists, and
physicists.

Structural and functional human brain imaging and mapping is contributing enor-
mously to the advancement of neuroscience. Neuroimaging is obviously anatomical in
nature, and it involves a great deal of computational analysis and processing. However,
most of the aspects of computational neuroanatomy described in this book revolve
around the neuron as a fundamental brick of brain structure and function. Readers
interested in the issues of computational neuroanatomy related to brain mapping should
refer to the excellent recent publications specifically dedicated to neuroimaging.

Naturally, different research groups focus on different scales. Consequently, this
book is organized in three main parts. Part One deals with single neurons and their
internal structures, particularly dendritic morphology and its interaction with single-
cell electrophysiology. Part Two discusses neuronal assemblies, axonal connectivity,
and large-scale, anatomically accurate networks. Finally, Part Three tackles the major
issues of integration of the massive knowledge necessary to describe (and generate)
completely accurate neuroanatomical models at the system level. A detailed descrip-
tion of each chapter is beyond the scope of this preface. However, the first introductory
chapter provides a review of several recent developments in computational neu-
roanatomy and introduces the subsequent chapters in this context. In addition, a sum-
mary of the contents is provided by the abstracts of each chapter.
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2
Some Approaches to Quantitative

Dendritic Morphology

Robert E. Burke and William B. Marks

“If ye canna mak a model, then ye dinna understand it.”
(Attributed to Lord Kelvin)

ABSTRACT

The availability of powerful desktop computers and of a large amount of detailed
data about the morphology of a wide variety of neurons has led to the development of
computational approaches that are designed to synthesize such data into biologically
meaningful patterns. The hope is, of course, that the emerging patterns will provide
clues to the factors that control the formation of neuronal dendrites during develop-
ment, as well as their maintenance in the adult animal. One class of approaches to this
problem is to develop quantitative computational models that can reproduce as many
aspects of the original data as possible. The development of such simulations requires
analysis of the original data that is directed by the model requirements, and their rela-
tive success depends on detailed comparisons between model outputs and the original
data sets. Refinement of the models may require not only new experiments, as in other
scientific disciplines, but also new ways of looking at the data already in hand. This
chapter discusses some examples of this process, with emphasis on spinal motoneu-
rons.

2.1. INTRODUCTION

Dendrites are critical to the processing of synaptic information in central nervous
system neurons. Accordingly, there is considerable interest in their structure and func-
tion (1). Striking differences in neuron morphologies have been known for over a cen-
tury (2,3). Such differences must be related to factors that govern the development and
maintenance of their dendritic architectures. Over the past two decades, the develop-
ment of intracellular labeling techniques using horseradish peroxidase (HRP) and bio-
cytin (4,5), combined with computer-assisted methods for quantitative reconstruction
of labeled neurons (6,7), have led to a large output of quantitative data about the mor-
phology of dendrites. We now face the problem of how to reduce the mass of informa-
tion, usually contained in multiple graphs and tables, into patterns that reveal their
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underlying meaning, without losing essential information. Hillman (8) called these
patterns “fundamental parameters of form”, but the underlying factors that produce
them are not obvious upon inspection of the raw data. This chapter considers some
approaches to this problem.

Two issues require some comment before proceeding. First, it has become clear in
recent years that neuronal dendrites are not static structures; rather they can exhibit
dynamic changes that presumably reflect functional changes in the nervous system (9).
Thus, the data about dendritic structure that are obtained by conventional neuroana-
tomical methods represent snapshots that may not be entirely representative. Second,
there are a large number of practical difficulties inherent in gathering quantitative mea-
surements of neuronal dendrites using conventional light microscopy (see [10]). These
include factors such as tissue shrinkage, operator error, and the limited resolution of
the light microscope, which is the only practical approach to reconstructing large neu-
rons from serial sections. These sources of potential error must be kept firmly in mind
when evaluating existing data, particularly when data from different sources are com-
bined. Other options such as confocal microscopy of neurons filled with fluorescent
tracers could, in principle, be more accurate and might even contribute an element of
automation to the reconstruction process. However, technical problems, such as tracer
bleaching, have confined most reconstruction efforts to more permanent forms of trac-
ers, like HRP or biocytin, to be examined with conventional light microscopy.

With regard to data analysis, it is also important to remember that the process of
quantitative reconstruction splits the continuous structure of the dendrite into discrete
pieces, here referred to as “segments”, each with a specified diameter and length. These
discrete cylinders, plus information that identifies their positions within the dendritic
tree, make up the usual computer data files. The position coding systems often vary
between data sources, as does the presence or absence of information about the 3D
location of each cylinder.

2.2. TWO-DIMENSIONAL ANALYSIS OF DENDRITES IN ISOLATED
NEURONS

Quantitative analysis of neuronal dendrites began before the age of computers with
the work of Sholl (11), who plotted dendritic branching patterns of Golgi-stained cor-
tical neurons in terms of distance from the soma. This straightforward approach guided
many subsequent studies that used improved methods for intracellular staining of iden-
tified neurons, resulting in ever larger volumes of quantitative data about branch diam-
eters and lengths, branching orders, and the locations of branching points and
terminations, all considered as functions of distance from the soma (e.g., Fig. 1; see
also [12,13]). An alternative approach, focused on dendritic branching patterns per se,
concentrates on the topological complexity of trees from different types of neurons
(14–16) (see Chapter 11). Neither approach takes account of the 3D tree structures.

Hillman (8,17) proposed that dendritic architecture can provide clues to the biologi-
cal factors that control the multiplicity of neuronal shapes. Hillman’s seven fundamen-
tal parameters that describe the morphology of a dendritic tree are: (i) stem diameter;
(ii) terminal branch diameters; (iii) branch taper; (iv) branch lengths; (v) branch power
(the relation between diameters of the parent branch with those of its two daughters);
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(vi) the ratio of the two daughter branch diameters at each branch point; and (vii) the
spatial orientation of branches. Hillman suggested that the cytoskeleton, particularly
microtubule arrays, is critical to the control of dendritic architecture (17) (but cf [18]).
The interrelations that he described implied that some combination of intrinsic factors
could be used to simulate virtual dendrites that could be compared with real ones. It
seemed possible that some correlation, which may be found among the descriptors,
may arise as epiphenomena that depend on underlying mechanisms (see also [19]).

Building on this idea, we proposed an approach to this problem that began by ana-
lyzing correlations in quantitative data about completely reconstructed dendritic trees
of a sample of cat α-motoneurons, in order to develop algorithms and appropriate data
sets that might be used to construct virtual dendrite simulations (20). We reasoned that
a computational machine (algorithms plus parameters), which can construct virtual
dendrites that reproduce not only the averages but also the variances of data from actual
neurons, must contain all of the essential information inherent in that data set (see also
[21]). There are a large number of correlations to choose from, and several different
approaches were explored. All used a Monte Carlo simulation in order to generate the
stochastic variations found in the observations.

The most successful algorithm was based on the relationship between the starting
diameter and the length of dendritic branches, which are defined as beginning with the

Fig. 1. Some features of cat α-motoneuron dendrites plotted as functions of the somatofugal
distance along dendritic paths (abscissa). The solid and dashed lines show the locations of
branching points and terminations, respectively, as cumulative fractions. The symbols indicate
the average diameters (± one SD) of all branches that end in branching points (parent branches;
solid squares) or terminations (solid triangles) within 100 µm bins of path distance. Data from
6 cat lumbosacral motoneurons reported in (12).
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soma or a branch point and ending either at another branch point or at a termination
(Fig. 2; see also Fig. 5 in [8]). As in most reconstructed neurons, the branches con-
sisted of a sequence of segments, often with different diameters due to dendritic taper.
Despite a great deal of scatter, the lengths of branches that ended at a branching point
(called “parent” branches) varied inversely with their starting diameters, while the
relation was direct in the case of terminating branches. It was also clear that the diam-

Fig. 2. Scatter plots of the lengths (ordinates) of terminating (A) and parent branches (B) in
relation to their starting diameters (abscissae). The correlation between branch length and start-
ing diameter was positive for terminating branches and negative for parents. The inset in panel
A shows a histogram of branch taper, which had a mean of –0.0007 ± 0.0027 µm/µm. Adapted
with permission from Figure 1 in (20).



Quantitative Dendritic Morphology 31

eters of most individual branches became smaller in the somatofugal direction (i.e.,
they exhibited negative taper).

In order to simulate the wide scatter in branch lengths, which was as large for indi-
vidual motoneurons as for the pooled data (Fig. 2), we used a stochastic (Monte Carlo)
growth algorithm in which each increment in branch length, ∆l, was controlled by the
probability that it ended in a branching point or in a termination (pbr or ptrm, respec-

Fig. 3. Calculation of the probabilities of branching or termination as functions of local
branch diameter [pbr(d) and ptrm(d), respectively]. (A) Log-log plot of the total length of den-
dritic material [∑l(d); solid line, referred to the right ordinate] and the numbers of branch seg-
ments giving rise to branching points [Nbr(d)] or terminations [Ntrm(d)], as functions of local
diameter (d), binned by 0.25 µm for d ≤ 2.0 µm, 0.5 µm for d > 2.0 to ≤ 4.0 µm, and 1.0 for d >
4.0 µm. Segments with diameters between 0. 8 and 2.2 µm (overlap region) could either branch
or terminate. (B) Semilog plot of the ratios of the numbers of branch points or termination,
divided by ∑l(d), to give pbr(d) and ptrm(d), respectively. In this graph, pbr(d) and ptrm(d) are
multiplied by ∆l of 25 µm, which was the value of ∆l used for simulations. Adapted with
permission from Figure 2 in (20).
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tively). If neither was true, the branch continued to lengthen by ∆l. The observations
suggested that both pbr and ptrm depend in some way on branch diameter. In order to
explore this possibility, we binned all of the branch segments by increments of diam-
eter, d, and summed the total length ∑l(d) in each diameter bin (Fig. 3A). The numbers
of segments in each diameter bin that ended in either a branch point, Nbr(d) or a termi-
nation, Ntr(d), were then divided by ∑l(d) to give pbr(d) and ptrm(d) per unit length as
functions of local segment diameter bins:
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As shown in Fig. 3B, the resulting probabilities [pbr(d) ∆l and ptrm(d) ∆l with ∆l = 25
µm] were well fitted by exponential functions of local diameter, d, with positive expo-
nents for pbr(d) and negative for ptrm(d). Within the range of d where branches either
branched again or terminated (overlap region; d = 0.7 to 2), the slope for pbr(d) was
much steeper and approx the inverse of the slope for ptrm(d) (2.2 vs –2.9, respectively;
see Table 1 in [30]).

To start the simulation process, the diameter of the first segment in the branch and a
step length (∆l) are specified, and the computer compared pbr or ptrm, (multiplied by ∆l
and randomized as to which was tested first in order to eliminate bias) with a uniformly
distributed random number, rnd between zero and 1. If this px < rnd, the branch ended
appropriately. If neither event occurred, the branch extended by ∆l, di+1 changed by a
selected value for taper (∆d/∆l), and the process was iterated until the branch either
terminated or produced a branching point. The value of taper used was the only free
parameter in the system, because it was difficult to specify a single value from the wide
observed distribution (Fig. 2, inset). The algorithm produced parent and terminating
branches with the observed length distributions (Fig. 2) with reasonable fidelity, given
that a single value of taper was used for all branches. The value of taper that produced
the least error in this simulation was –0.00125 µm/µm (Fig. 5 in [20]), which was
comparable with the observed value (Fig. 2A, inset), given that taper is extremely dif-
ficult to measure with any accuracy.

Of course, this was only half of the process required to produce virtual trees; one
must also specify the diameters for the daughter branches that are generated when a
parent branch gives rise to a branching point. In real motoneurons, the average ratio
between the sum of the daughter branch diameters (d1 and d2), raised to the 3/2 power,
divided by the 3/2 power of the parent diameter (dpar), is slightly larger than 1.0 (actu-
ally 1.1), but shows wide variations (see Fig. 7 in [12]). Like most neurons, branch
points in motoneuron dendrites give rise to only two daughter branches, and their
diameters are negatively correlated (Fig. 4A). This relation was independent of both
position in the tree and the end diameter, dpar, of the parent branch.

The distributions of d1 and d2 were Gaussian and exhibited similar means and stan-
dard deviations (SD). One of us (W.B.M.) devised a way to combine their values, using
their observed correlation coefficient β = –0.4, into a single distribution, r, which was
well approximated by a Gaussian with the same mean and SD (Fig. 4B). Drawing two
numbers independently from r, multiplying this pair by the matrix {{1, –.2087},
{–.2087, 1}}, and then by dpar, produced a pair of daughter branch diameters that,
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when repeated, had the same means, SDs, and correlation coefficient as the observed
daughter branch diameters.

A program was written that combined the branch growth algorithm discussed above
with the algorithm for determining daughter branch diameters in order to construct
virtual dendrites with a selected starting diameter, dstem, that matched diameters of
observed dendrites. The experimental database included 64 fully reconstructed den-
drites from 6 α-motoneurons, with dstem ranging from 2 to 18 µm. Each run of the
program generated 64 virtual dendrites, using parameters based on the probabilities
shown in Figure 3B and the algorithm for selecting daughter branch diameters (Fig.
4B). The program automatically calculated a wide variety of statistics about virtual
dendrites that could be compared to their actual counterparts (e.g., Figs. 5 and 6).

Twenty simulations were run for several values of taper and each produced dendrite
sets with different total numbers of terminations, indicative of the overall size of the
simulated trees. There was a direct relation between taper and total termination num-
bers, in that more negative values of taper produced smaller trees. The value of taper
used was adjusted empirically to produce dendrite sets with total termination numbers
near that observed for the real motoneurons (n = 1974). A taper value of –0.0015 pro-
duced the closest approach to this number but individual runs varied rather widely.

This model system, referred to as “Model 1”, produced virtual dendrites that matched
many of the relations found in the actual database, including the distributions of total
surface area and numbers of terminations in relation to dstem for individual trees (see
Fig. 7 in [20]) and the distributions of branch orders and diameters of parent and termi-
nating branches as functions of distance from the soma (Fig. 5A, B, and D). None of

Fig. 4. Database for choosing diameters of daughter branches at simulated branch points.
(A) Scatter plot showing the negative correlation between the diameters, d1 and d2, of the two
daughter branches at 955 branching points, each normalized by the end diameter of the parent
branch. The slope of the linear correlation, β = 0.40, was used to construct a distribution, r, that
preserved the statistical relations between d1 and d2 (see [20]). The value of β was the same
whether or not the data were shuffled. (B) The calculated r distribution (bars) were fit to a
Gaussian function (solid curve) with the same mean and SD. The continuous function was used
for generating virtual dendrites (see [20]). Adapted with permission from Figure 6 in (20).
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these relations were built into the simulation algorithm; rather they are emergent prop-
erties that can serve as features for determination of goodness of fit. Although the path
distance distributions of branch points and terminations were less satisfactory (Fig.
5C), this might be deemed good enough given the relative simplicity of the model.

This model result must be interpreted with caution. Although a growth model was
used for these simulations in order to simulate the statistical variances in real dendrites,
the results are a simulation of existing dendritic structures rather than of the dynamic
processes that may have formed them. The computational machine and the parameters
shown in Figures 3 and 4 should be thought of as a parsimonious description of the
complex morphology of cat motoneuron dendrites that eliminates redundant informa-
tion, rather than a model of how dendrites actually grow. Given this important distinc-
tion, the Model 1 results suggests that local branch diameter is a key factor that
determines whether a given branch can or cannot maintain a branching point rather
than terminating. This is consistent with the idea that the cytoskeleton, specifically the
number of available microtubules (17), controls whether or not a given branch can give
rise to a branching point, as well as how long parent and terminating branches can be.

Fig. 5. Comparison of averaged data extracted from 64 simulated (symbols) and actual (lines)
dendrites with the same set of stem diameters, using Model 1 simulations (see text). Note
branches of order >10 in the simulations (A and B) and major discrepancies in the path distance
locations of branch points and dendritic terminations (C). Adapted with permission from Fig-
ure 8 in (20).
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An alternative model, in which pbr and ptrm were functions of branch order alone rather
than local diameter, produced poor fits to the actual data. Thus, observed correlations
between branch order and dendritic architecture are probably epiphenomena.

2.3. HOW GOOD IS GOOD ENOUGH?

One of the more difficult questions in any computational model study is when to
quit. The failure of Model 1 to completely reproduce the spatial distributions of branch
points and terminations (Fig. 5C) suggested that it lacked some important factor. In
addition, some runs of this model produced trees that were either much smaller or
much larger than expected for the selected value of dstem. The existence of “runaway”
dendrites is evident in Figure 5B, which shows diameters of parent and terminating
branches with branch orders >10 that are not found in real motoneurons. The richness
of the database prompted us to explore other factors that might have accounted for
these discrepancies.

The problem of trees that were too small or too large appeared to be caused by
sequences of daughter branch diameters that, in rare instances, were either very small

Fig. 6. As in Figure 5 but using Model 2 for simulations. Note lack of simulated dendrites
with branch orders >11 (A and B) and much closer agreement between simulated and observed
locations of branching points and terminations as functions of path distance from the soma (C).
Adapted with permission from Figure 12 in (20).
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Fig. 7. Two simple approaches to quantitate the 3D morphology of a motoneuron. (A) Ste-
reoscopic pair representation of the vectors of eight dendrites (labeled A through H) in terms of
the centers of mass (open circles) of the membrane area in each dendrite, illustrating the projec-
tion of each dendrite away from the soma (small filled circles). The large filled circle repre-
sents the membrane area center of mass for the entire neuron. This was the most asymmetrical
motoneuron of six similarly studied cells (26). (B) 2D projection of the locations at which
dendritic branches of the same cell as in panel A penetrate a spherical shell with radius 750 µm,
centered on the soma, Individual branches of the different dendrites are labeled with the den-
drite identification letter. The lines indicate the boundaries of six directional hexants, with the
caudal hexant split in two. The mapping projection assigns approximately equal areas to each
hexant region. Both panels adapted from Figure 6 in (26).
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or very large at successive branch points. This could occur by chance because the model
had no memory of the preceding selections of d1 and d2. When we reexamined the
experimental data, we found a small but significant dependence between the sum of d1

and d2 at a given branch point, normalized by the parent end diameter, dpar, and the
starting diameter of the parent branch, normalized by the end diameter of its parent
branch (i.e., the “grandparent” branch). This suggested the existence of a cytoskeletal
or metabolic constraint on the size of the downstream subtrees. We implemented a
“grandparent correction” based on the observed dependence, and this greatly reduced
the occurrence of runaway trees, but neither this nor several other manipulations
improved the discrepancy noted in Figure 5C (see [20] for details).

Another reexamination of the original data suggested that the values of pbr(d) and/or
ptrm(d) might not be constant throughout the tree. Indeed, we found that both probabili-
ties depended on the path distance, D, from the soma as well as on local diameter. Such
a dependence could represent the metabolic cost of maintaining cytoskeleton at
increasing distances away from the soma where the constituent proteins are generated.
Estimation of this dependence was complicated by the problem of fitting smooth func-
tions to the 3D surface described by the data points, now binned by both local diameter
and path distance (see Fig. 10 in [20]). However, when equations for pbr(d,D) and
ptrm(d,D) that fit the data were incorporated into the model, it produced trees that fit the
observed data very well indeed (Fig. 6). It was necessary to analyze the data for depen-
dence on d and D separately, because local diameters in individual branches were not
strongly correlated with path distance, especially in the more distal parts of the trees
(Fig. 1). These virtual dendrites also had branch topologies that fit those of actual
motoneuron (Burke, Marks, and Ulfhake, unpublished). In this instance, all of the
required parameters were intrinsic to the neuron itself. This may not always be true; in
some cases external factors could be required in order to generate acceptable simula-
tions (e.g., [22]).

The lesson for us in this work was that it is sometimes useful to extend a model that
is reasonably good to one that is better, provided that the additions accurately reflect
features that are in fact present in the original data. Each elaboration of the present
model revealed factors that appear to be biologically relevant. The additional features
were not at all obvious and emerged only after specifically tailored data extraction
methods were employed. Indeed, the utility of quantitative biological models lies pre-
cisely in the fact that they force the investigator to search for relations that are hidden
within the existing data or to guide the experiments that can generate the necessary
new information.

2.4. NEURONS IN THREE DIMENSIONS

2D morphological data are relatively tractable for computational modeling, as exem-
plified by the discussion so far. However, it is considerably more difficult to extend
such approaches to neurons as 3D entities (17). The overall shape of neuronal dendritic
trees have been analyzed by statistical methods, such as principle components (23,24),
and by a Fourier transform technique that can give concise information about the den-
sity of branches distributed in 3D space (25). Cullheim and colleagues (26) introduced
a simpler approach that tabulated the spatial distribution of the dendritic membrane
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area or branch volume within six “hexants”, or subdivisions thereof, within an external
coordinate system centered on the neuron soma and oriented by anatomical axes. These
authors also used a variation of principle component approach to calculate the spatial
locations of the centers of mass (COM) for membrane area or branch volume for indi-
vidual dendrites, as well as for the neuron as a whole (Fig. 7A). On average, cat triceps
surae motoneurons were found to be more or less radially symmetrical, although the
dendrites projecting dorsally and ventrally tended to be slightly smaller than those that
projected in the other directions. All of these methods provide ways to document the
degree to which neuronal trees are polarized, either because of proximity to natural
boundaries or, perhaps, to concentrated sources of synaptic input.

Another approach to the problem of analyzing the 3D spatial organization of den-
drites is to map the spatial positions of their branches as they penetrate 2D spherical
surfaces (“shells”) located at different distances from the soma (Fig. 7B; [26]).
Although such shell maps are on spherical surfaces, they are tractable for quantitation
by spherical trigonometry. Questions such as the size of dendritic territories and how
much they overlap can be approached by conventional nearest-neighbor or tessellation
analyses to examine spatial clustering. Convex hulls (polygons with no internal angle
<180° that encloses the target set of points) are computationally convenient, although
they often include empty regions that properly belong to other dendrites. The disadvan-
tage of such maps is that they do not lead to simplification of the data set or to identifi-
cation of general principles that might be at work.

2.4.1. Building Three-Dimensional Dendrites

 Renewed interest in computational neuroanatomy (21), as well as the appearance of
relevant software tools (27,28), has stimulated the development of new approaches to
quantitate neuronal morphology in 3D space that involve simulation. In an earlier sec-
tion, we adopted the view that the simplest computational machine that can accurately
reproduce a set of complex objects constitutes the most concise description of those
objects. This philosophy predicts that new information may emerge if we can construct
algorithms that can convert 2D dendrograms into statistically accurate 3D trees. At
minimum, such a simulation requires extraction of two sets of data from the original
morphological files: (i) the distributions of angles at which daughter branches emerge
from branching points; and (ii) measurement of the degree to which individual branches
meander (i.e., change in vectorial orientation) in space (8). In principle, these data can
be estimated from cells that have been digitized with sufficient spatial resolution.

As an example, we will consider here some possible approaches to measurement of
daughter branch angles. The first decision is how to define the vectorial directions of
daughter branches away a given branching point. There are at least three possibilities:
(i) use the coordinates of the first digitized segment of each daughter branch (initial
branch direction); (ii) use the coordinates of the point at which the branch ends (final
branch direction); or (iii) use the least-squares fit to each meandering branch, perhaps
weighted by local membrane area or segment volume (average branch direction).
Because we were interested in the global shape of trees, we initially used the final
branch directions.

The next issue is to define the frame of reference for measuring branch angles. An
obvious choice is to calculate angular deviations from the parent branch direction.
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However, a 3D simulation algorithm, based on parent branch vectors, produced simu-
lated trees that often had much larger lateral spread than natural cat motoneuron den-
drites (Burke and Marks, unpublished), because such data has no relation to the shape
of the tree as a whole. In fact, it can be shown that using only the parent branch direc-
tion leads to a 3D random walk. As discussed in the chapter by Ascoli (see also [27,28]),
this can be overcome by introducing a spatial bias, or “tropism”, to constrain tree
growth in specified directions, but the underlying factors that produce such effects are
unclear. We attempted to determine whether such biases are inherent in the statistics of
the spatial disposition of branch points and path terminations in relation to a global
frame of reference for a given tree.

In order to define a central axis for each individual dendrite, we chose to use the
vector from the center of the soma to the COM for membrane area (Fig. 8A; [26]).
The somatofugal COM axis was aligned with vertical (Z) axis of a Cartesian coordinate
system, just as botanical trees are oriented with respect to gravity (29,30). The location
of each branch point (BP) in the tree was then specified by its angular deviation (dBPax)

Fig. 8. Diagram to illustrate possible methods to calculate dendritic branching angles. (A) A
motoneuron dendrite is shown after rotation into a Cartesian coordinate space, aligned in the Z
(vertical) axis by the vector from the soma center to the COM for dendritic membrane area
(filled circle). The direction of each branch point with respect to the COM axis can be specified
by its dBPax away from the COM axis. Its horizontal position is described by an azimuth angle
in the XY plane with respect to a reference direction (e.g., rostral). (B) The orientation of
daughter branches at each branch point can be described by the angle between them
(Interdaughter angle) and the vector midway between them (Sib direction). The Sib vector can
be viewed as the axis of a cone around which the daughter branches can rotate in the perpen-
dicular (azimuth) plane. (C) The direction of the individual daughter branches can be defined
as the angle of deviation away from the branch point direction (dBP) or the direction of the
parent branch (dPar). The most successful 3D simulations were obtained when daughter branch
deviation angles (dV*) were referenced to a vector representing a linear combination of the
branch point and parent directions (Hybrid V*; see text).
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away from the COM axis and its azimuth angle in the XY plane (Fig. 8A). The distribu-
tion of dBPax angles provides a concise measure of the lateral dispersion of the
dendrite’s territory (see Fig. 9B).

We then needed a scheme for specifying the angular deviations of daughter branches
at BPs that could serve as the basis for a simulation algorithm for 3D trees. Such a
system should make maximum use of local frames of reference, as in the 2D models
described above. We found it initially useful to define the direction of branching by
calculating a “Sib” vector midway between the two daughter branches that represents
the axis of a cone around which daughter branches, with any given interdaughter angle,
can rotate into any azimuthal orientation (Fig. 8B). As with the azimuth angles of BPs,
these orientations showed no rotational bias in motoneuron dendrites, so they can be
evenly distributed in simulations. Still open is the question of what vector to use in
measuring the Sib deviation. Using the parent branch direction alone again leads to a
spatial random walk. However, using the direction of the branch point vector (vBP)
defined in relation to the COM axis (Fig. 8A) preserves information about global tree
structure. The azimuth of the Sib about this direction also turned out to be unbiassed.
Thus, two distributions, one for the Sib deviation and the other for interdaughter angle,
provided the basis for a 3D simulation algorithm. Both distributions were well fitted by
∆ functions, each specified by two parameters, that are easily adapted for Monte Carlo
simulations. Of course, the eventual COM axis of a simulated tree is unknown at the
outset of 3D simulation, so we used the Z axis of the Cartesian frame as the reference
vector.

We also explored a simpler algorithm that used only the distribution of deviations of
the individual daughter branch directions (vDau) at each branching point as the basis
for building complete trees. This approach was complicated by the fact that vDau was
correlated with both vBP as well as with the direction of the parent branch (vPar) (Fig.
8C). The distributions of angular deviation between vDau and either vBP or vPar (dBP
and dPar, respectively, in Fig. 8C) were both well-fitted by ∆ distributions. As ex-
pected from the Sib data discussed above, neither vector exhibited any bias in azimuth
orientation. Complete trees for 60 individual dendrites were simulated using either the
dBP or the dPar distributions, based on length and diameter data from 60 real motoneu-
rons. The total root mean square (RMS) error between a variety of angular measures

Fig. 9. (facing page)  Results of simulating the 3D structure of 60 motoneuron dendrites. (A)
Plot of RMS errors in 3D simulations based on using different proportions (P) of the branch
point and parent directions [V* = (1 – P) vBP + P vPar] to calculate dV*. Simulations based
entirely on the observed distribution of dBP (P = 0) produced less error than those based en-
tirely on dPar (P = 1), but minimum error was found with P ~ 0.4. See text for details. (B)
Comparison of the distributions of the angular deviation of branch points away from the COM
axis (dBPax; see Fig. 8A) in 60 actual dendrites (filled circles) and averaged values from 10
repetitions of 3D simulation of the same 60 trees (open squares). Simulations used the distribu-
tion of daughter branch deviations, dV*, from the Hybrid vector, V*, with P = 0.4. The fit
between the two distributions of the emergent property dBPax indicates that the real and simu-
lated dendrites have the same (statistical) lateral spread. (C) As in panel B, but showing the
comparison of real and simulated interdaughter angles. Interdaughter angle is also an emergent
property, because the daughter branch directions are simulated separately and independently.
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for simulated and real trees was smaller in the set of trees constructed using the dBP
distribution (Fig. 9A; error = 3.4% with P = 0) as compared to the set simulated using
the dPar distribution (Fig. 9A; error = 9.9% with P = 1). We then explored using a
hybrid vector (V*) calculated as a linear combination of the branch point and parent
directions (vBP and vPar, respectively)

V* = (1 – P) vBP + P vPar

as the reference vector to calculate the deviation (dV*) for each daughter branch (Fig.
8C.). As with the Sib vector approach above, V* can be viewed as the axis of a cone
that describes the locus of the distribution of daughter branch directions.

With simulations based on the dV* distribution, the overall RMS error for the 3D
tree statistics were minimal with P ~ 0.4 (Fig. 9A). Furthermore, the distribution of
angular deviations of branch points away from the COM axis (dBPax; Fig. 8A), as well
as the interdaughter angles, for the simulated trees matched the observed data quite
well (Fig. 9B and C). The azimuthal angles for daughter branch directions in the XY
plane also matched those of real trees (not shown). These 3D statistical measures are
emergent properties that are not specified by the simulation algorithm, so that the fits
indicate that the simulation accurately reproduced the overall 3D structure of motoneu-
ron dendrites with straight branches. The simulated trees exhibited the same range of
constraint in lateral spread as real dendrites (estimated by dBP; Fig. 9B), and their
overall shapes appeared appropriate to visual inspection. The final 3D algorithm used
only three parameters, two to specify the ∆ function that fits the daughter deviations
from V*, plus the minimum error value of P = 0.4. This result suggests that the spatial
distribution of daughter branches in motoneuron dendrites can be described by factors
related to the central axis of the tree, which could reflect environmental constraints,
and, to a lesser extent, on purely local factors related to the direction of the parent
branch. We are investigating an analogous approach to simulation of the natural mean-
der of individual branches.

A more difficult problem for simulation of dendritic trees in 3D is that multiple
objects cannot occupy the same point in space. There may even be some active avoid-
ance among branches from the same neuron (31). Adjustment of the 3D positions of
simulated dendrite branches would probably best be accomplished after the complete
structure has been constructed. Ideally, such adjustments should be based on data from
real dendrites that give information on the spacing between their components. To our
knowledge, such analyses have not been made with in situ neuronal dendrite data,
although some basic theoretical solutions to the problem have been suggested (32).

In the same vein, simulation of the complete dendritic tree of a single multipolar
neuron will require regional analysis of the positions of all elements, beginning near
the soma. Although it is simple to arrange the COM vectors of simulated trees to project
away from each other, the possibility of unnatural collisions exists after the first branch
points. Any spatial adjustments to a given element made near the soma would propa-
gate outward, presenting a potentially massive computational problem. It is tempting
to sidestep this problem by simply accepting 3D virtual neuron simulations that subjec-
tively appear “natural.” However, it seems important for the field to develop objective
assessments that could reveal important constraints that remain unresolved at present.
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2.4.2. The Problem of Neuronal Packing

Clearly, accurate simulation of the 3D structure of individual neurons is a formi-
dable problem. It is at least as difficult to devise quantitative approaches that can be
used to measure how multiple neurons with overlapping dendritic territories are packed
into the neuropil. The neuropil must provide space not only for somata, dendrites, and
the synaptic boutons associated with them, but also for axons with and without myelin
sheaths, glia, blood vessels, and extracellular space. Stereological methods can provide
estimates of numbers of neurons (33) and the volume fraction occupied by these ele-
ments (34). However, such data do not provide a clear picture of how individual neu-
rons with extensive dendritic trees can share a given volume of neuropil. The
complexity of this problem is illustrated in Figure 10, which shows the intermingled
dendritic trees of just 5 HRP-labeled α-motoneurons that undoubtedly share this vol-
ume with many unlabeled cells.

We have looked at one approach to this problem using existing data to get estimates
of the 3D volume fractions occupied by the dendritic trees of cat motoneurons, plus the
synaptic boutons on them, as functions of radial distance from the soma. These esti-
mates were used to explore the consequences of motoneuron packing density on the
composition of the neuropil between the cells. Lumbosacral motoneurons in the central
part of the ventral horn are, on average, radially symmetrical (3,26), so that the same
volume fraction function can be used for all directions. The average surface area and
volume (expressed as percent) of the dendrites of 7 α- and 11 γ-motoneurons (12,26,35)
were calculated within successive 100-µm-thick spherical shells centered on the soma

Fig. 10. Photomontage from three serial sagittal sections showing the somata and portions
of the proximal dendritic trees of 5 filled α-motoneurons from a cat spinal cord. Note the com-
plex interweaving of the trees from different cells. The somata are about 50 µm in diameter.
Adapted from Figure 18 in (41).
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(Fig. 11). Similarly, we estimated the volume of the associated synaptic boutons in
each shell, based on postsynaptic surface area distributions plus data about synaptic
covering and bouton size data for cat α- (36) and γ-motoneurons (37). The sum of
dendritic and bouton volume, when divided by the total volume in each concentric
shell, gave estimates of the average volume fraction within each radial shell that is
occupied by each type of neuron plus its synaptic boutons (expressed as percent; sym-
bols in Fig. 12A). The solid lines are fits to these data using the following equation:

V
dfr = −





γ β α

1

where α, β, and γ are fitting parameters and d is radial distance from the center of the
soma.

Assuming that a motor nucleus in the ventral horn includes 65% α- and 35%
γ-motoneurons (38), the fitted functions in Figure 12A were combined in those propor-
tions to give the average volume fraction occupied by both types of motoneuron in the
cat ventral horn. Because motoneuron dendrites are so extensive (up to 2000 µm from
the soma), cells located at considerable distances from any given motoneuron can con-
tribute to the neuropil in the center of the ventral horn. In order to evaluate the total
volume fraction contributed by such overlapping dendrites and synaptic boutons, we
assumed (for computational simplicity) that motoneurons are arranged in a cubic matrix
with the separation (S) between somata as a free variable. A program was written in

Fig. 11. 2D drawing of a completely reconstructed cat α-motoneuron superimposed on two
spheres that represent different radial distances from the center of the soma. The volume
between the spheres (“shell volume”) contains elements of the dendritic tree, permitting calcu-
lation of the volume fraction occupied by elements of the neuron. The direction arrows are 500
µm long.
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MatLab® to calculate the average local volume fraction (Vfr) of dendrites plus boutons
within the open cube at the center of the cell matrix. This was done by randomly sam-
pling 100 locations within the central cube for various values of S. The log-log graph in
Figure 12B illustrates how Vfr depends on S, as well as on the size (Dim) of the cell
matrix, where Dim is the number of somata along each side of the cubic matrix.

When Dim was large enough so that the dendrites of cells along the edges could
reach the central cube even with relatively small S (Dim = 26), Vfr (in percent) varied as

Fig. 12. Estimation of volume fraction occupied by motoneurons and associated synaptic
boutons in the cat ventral horn. (A) Semilog graph of the estimated volume fractions (symbols)
occupied by the dendrites and associated synaptic boutons of average α- (filled squares) and
γ-motoneurons (open diamonds), calculated as described in the text. The calculated data were
fitted with the equation given in the text. (B) Log-log graph showing the total volume fraction
(ordinate, in percent) occupied by dendrites and boutons within the open central cube of a cubic
array of ventral horn neurons with a uniform separation distance, S (abscissa), when calculated
with different numbers of cells along each matrix edge (Dim). See text for further explanation.
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S3. With smaller matrix dimensions (Dim = 10), Vfr departed from this power relation
as S decreased, because the array limits were smaller than the dendrite extensions from
the most peripheral cells. Although estimates of Vfr occupied by dendrites and boutons
are not available for the cat ventral horn, such estimates from medial lamina VI in the
rat spinal cord (34) suggest that dendrites and synaptic boutons occupy about 16 – 20%
of the neuropil volume in lamina VI. The dimensions in the actual cat ventral horn are
compatible with Dim between 10 and 26 , so that this analysis suggests that Vfr would
be between 11 and 18% for S = 125 µm (Fig. 12B). From the numbers and positions of
motoneuron somata found in the lumbosacral ventral horn of the cat (Fig. 2 in [38]),
we estimate that their average separation is about 125 µm (see also [39]). The fairly
good agreement from these independent estimates suggests that this approach may be a
valid way to get quantitative estimates of neuropil sharing when the required data are
available. Of course, this calculation assumed an isotropic neuropil and other geom-
etries would require more complex algorithms.

2.5. CONCLUDING COMMENTS

This chapter has dealt with some approaches to the problem of quantifying the mor-
phology of individual neurons and of ensembles of neurons, using data from cat ventral
horn motoneurons. The ability to mimic the statistical properties of cat motoneuron
dendrites, viewed in terms of their 2D dendrograms, using a relatively simple growth
model based on data extracted from the same data set, provides a parsimonious descrip-
tion of the original data, which separates factors that are determinative from those that
are epiphenomena. The result suggests that local branch diameter, which in large mea-
sure depends on cytoskeleton (8,17), is a key factor that maintains the architecture of
mature dendrites. On the other hand, it is much more difficult to design computational
engines that can reproduce the morphology of neuronal dendrites as 3D entities in
ways that can be quantitatively verified. This is largely due to the difficulty of design-
ing analytical tools that can adequately measure how these complex structures occupy
space. One future direction for computational neuroanatomy is to solve this problem
for individual neurons and then to apply the solution to multiple neurons that occupy
the same region. This quest is more than an intellectual exercise, because the ability to
simulate complex systems and to check the results of such simulation against the real
thing has always led to deeper understanding of the biological world (40).
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