

Infections, Infertility, and Assisted Reproduction

Assisted reproductive technology (ART) treatment is vulnerable to the hazard of potential infection from many different sources: patients, samples, staff, and the environment. Culture of gametes and embryos in vitro provides multiple targets for transmission of potential infection, including the developing embryo, neighbouring gametes and embryos, the couple undergoing treatment, and other couples being treated during the same period. This unique situation, with multifaceted opportunities for microbial growth and transmission, makes infection and contamination control absolutely crucial in the practice of assisted reproduction, and in the laboratory in particular.

This unique and practical book provides a basic overview of microbiology in the context of ART, providing an up-to-date guide to infections in reproductive medicine. The relevant facets of the complex and vast field of microbiology are condensed and focused, highlighting information that is crucial for safe practice in both clinical and laboratory aspects of ART. This is an essential publication for all ART clinics and laboratories.

Kay Elder is Director of Continuing Education at Bourn Hall Clinic, Bourn, Cambridge, UK.

Doris J. Baker is Chair and Professor, Department of Clinical Sciences at the University of Kentucky.

Julie A. Ribes is Associate Professor of Pathology and Laboratory Medicine at the University of Kentucky.

Infections, Infertility, and Assisted Reproduction

Kay Elder, M.B., Ch.B., Ph.D.

Director of Continuing Education, Bourn Hall Clinic, Cambridge, UK

Doris J. Baker, Ph.D.

Professor and Chair, Department of Clinical Sciences and Director of Graduate Programs in Reproductive Laboratory Science, University of Kentucky, Lexington, KY, USA

Julie A. Ribes, M.D., Ph.D.

Associate Professor of Pathology and Laboratory Medicine, and Director of Clinical Microbiology, University of Kentucky, Lexington, KY, USA

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge, CB2 2RU, UK
40 West 20th Street, New York, NY 10011–4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© K. Elder, D. J. Baker and J. A. Ribes 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typefaces Utopia 8.5/12pt. and Dax System \LaTeX [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Elder, Kay, 1946-

Infections, infertility, and assisted reproduction/Kay Elder, Julie Ribes, Doris Baker.

p. cm.

Includes bibliographical references and index.

ISBN 0 521 81910 5

1. Human reproductive technology. 2. Infertility – Complications – Treatment. 3. Communicable diseases. 4. Microbiology. I. Ribes, Julie, 1960 – II. Baker, Doris, 1950 – III. Title.

RC889.E375 2004

616.6'9206 - dc22 2003060536

ISBN 0521819105 hardback

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Nevertheless, the authors, editors and publisher can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publisher therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.

To: our families,

Robbie and Bethany John and Justin Paul and Maxwell James

With love and thanks for their patience, tolerance, and support.

Contents

Foreword

Preface		xiii	
Ackn	Acknowledgements		
Part	I Overview of microbiology		
1	Introduction	3	
	History of microbiology	3	
	History of assisted reproduction	7	
	Artificial insemination	7	
	In vitro fertilization	8	
	Assisted reproductive technology (ART)		
	and microbiology	10	
	Overview of microbiology	11	
	References	14	
	Further reading	15	
	Appendix: glossary of terms	16	
2	Bacteriology	21	
	Structure and function of bacteria	21	
	Bacterial structure	21	
	Bacterial growth	26	
	Bacterial metabolism	26	
	Bacterial classification and identification	27	
	Nomenclature	27	
	Identification of bacteria	27	
	Major groups of organisms	38	
	Gram-negative bacilli and		
	coccobacilli	38	
	Gram-negative cocci	42	
	Gram-positive cocci that are		
	catalase positive	42	

vii

page xi

viii **Contents**

	Gram-positive cocci that are		4	Virology	105
	catalase-negative	43		Introduction	105
	Gram-positive bacilli that are			Virus structure	105
	non-branching and catalase			Host range and specificity	106
	positive	44		Viral replication	106
	Gram-positive bacilli that are			Growth characteristics	106
	non-branching and catalase			Lytic growth	107
	negative	46		Lysogenic growth	107
	Gram-positive bacilli that are			Latent infections	107
	branching or partially			Virus classification	107
	acid-fast	47		Double-stranded DNA	107
	Anaerobic bacteria	47		Single-stranded DNA	109
	Mycobacteria and bacteria with			Double-stranded RNA	109
	unusual growth requirements	50		Single-stranded RNA	109
	Normal flora in humans	54		Single-stranded (+) sense RNA	
	Further reading	61		with DNA intermediate	109
	Appendix	62		Double-stranded DNA with RNA	
	2.1 Media used for isolation of			intermediate	109
	bacteria	62		Laboratory diagnosis of viral	
	2.2 Biochemical tests for			disease	110
	identification of bacteria	67		Direct examination	110
	2.3 Antibacterial agents	85		Culture	110
	Further reading for Appendix 2.3	89		Antigen detection systems	110
				Serologic diagnosis	111
3	Mycology: moulds and yeasts	90		Molecular diagnostics	111
	Introduction	90		Viruses directly relevant to ART	111
	Classes of fungi	91		Double-stranded DNA	
	Zygomycetes	92		viruses	112
	Ascomycetes	92		Hepatitis viruses	115
	Basidiomycetes	92		Retroviruses	116
	Deuteromycetes	92		Human oncornaviruses	117
	Laboratory classification of			Further reading	118
	fungi	92		Appendix: antiviral agents	119
	Taxonomic classification	92	5	Prions	122
	Clinical classification of fungi	94	3	Prion protein	122
	Infections	94		Prion diseases	122
	Contaminants	98		Animal	122
	Laboratory identification of fungi	99		Human	122
	Direct examination	99		Prion structure	122
	Culture	99		Replication	124
	Microscopic examination for			Transmission	124
	fungal structures	100		Clinical presentation	124
	Mycology in ART	100		Sporadic Creutzfeldt–Jakob	120
	Further reading	100		disease (nvCJD)	126
	Appendix: antifungal agents	102		discuse (iivojb)	120

Contents ix

	New-variant Creutzfeldt–Jakob		8	Vaginitis syndromes	199
	disease (CJD)	126		Trichomonas vaginalis	200
	Pathology	126		Yeast vaginitis	203
	Diagnosis	127		Candida spp.	203
	References	128		Bacterial vaginosis	207
	Further reading	129		Gardnerella vaginalis	000
6	Parasitology	131		Vaginal colonization with Group B	
	Introduction	131		Streptococcus (GBS)	209
	Terminology	131		Streptococcus agalactiae	209
	Classification	133		Further reading	212
	Unicellular: protozoa	133			
	Lobosea (amoeba)		9	Genital human papillomavirus	
	Sarcomastigophora (flagellates)	136		(HPV) infections	215
	Ciliophora (ciliates)	139		Genital human papillomavirus	
	Apicomplexa (sporozoa)	140		infections (HPV)	215
	Coccidia	141		Genital warts and cervical cancer	215
	Microsporidia	145		Further reading	219
	Multicellular parasites: helminths and				
	arthropods	145	10	Urethritis and cervicitis	
	Nemathelminthes	145		syndromes	220
	Platyhelminthes	154		Male urethritis	220
	Arthropods <i>Insecta</i>	163 163		Female urethritis/cervicitis	220
				Gonorrheal disease	221
	Arachnida	164		Neisseria gonorrhea	221
	Crustacea	164		Chlamydial disease	228
	Further reading	165		Chlamydia trachomatis	229
	Appendix: antiparastic agents	166		Genital mollicutes	234
_				Mycoplasma and Ureaplasma	
Part II Infections in reproductive				spp.	234
medicine			References	238	
_				Further reading	238
7	Genital ulcer diseases	177	11	Doth along of the same or	
	Herpes simplex virus infections	177	11	Pathology of the upper	0.40
	Syphilis	185		genitourinary tract	243
	Treponema pallidum	185		Male upper GU infections	243
	Chancroid	190		Epididymitis	243
	Haemophilus ducreyi	190		Orchitis	244
	Lymphogranuloma venereum	100		Prostatitis Formula unper CII infections	244
	(LGV)	192		Female upper GU infections	245
	Chlamydia trachomatis	192		Salpingitis	245
	Granuloma inguinale (Donovanosis)	193		Oophoritis	246
	Calymmatobacterium	100		Endometritis	246
	granulomatis	193		Pelvic inflammatory disease (PID)	247
	References	195		Pelvic anaerobic actinomycetes Genital tuberculosis	247
	Further reading	195		Genital tuberculosis	250

© Cambridge University Press

x Contents

	Further reading	259	Treatment of HBV seropositive couples	336
	References	259	Treatment of HCV seropositive couples	336
12	Cytomegalovirus and		Treatment of HIV seropositive	
	blood-borne viruses	262	couples	337
	Cytomegalovirus (CMV)	262	Semen washing procedures for	
	Hepatitis B virus (HBV)	270	HBV/HCV/HIV serodiscordant	
	Hepatitis C virus (HCV)	275	couples	339
	Hepatitis D virus (HDV)	278	Virus decontamination	340
	HIV and AIDS	281	Accidental exposure	340
	Human T-lymphotrophic viruses	201	HBV prophylaxis	341
	(HTLV)	290	HCV prophylaxis	341
	HTLV-I	291	HIV prophylaxis	341
	HTLV-II	291	Air transport of biohazardous	
	References	293	materials	342
	Further reading	293	Useful addresses for air transport of	
	Appendix to Part II: specimen culture by		hazardous materials	349
	body site	299	Appendix: general laboratory safety	
	body site	200	issues	350
Pari	t III Infection and the assisted		References	350
	roductive laboratory		Further reading	351
	, , , , , , , , , , , , , , , , , , , ,		15 Prevention: patient screening	
13	Infection and contamination		and the use of donor gametes	353
	control in the ART laboratory	305	Routine screening	353
	Sources of infection	305	Prevalence of BBV: geographic	
	Sterilization methods	316	distribution	353
	Physical methods of sterilization	316	The use of donor gametes	353
	Chemical methods of		Recruitment of donors	355
	sterilization	318	Screening	356
	Disinfection and decontamination	320	Procedures and technical	
	Air quality, classification of cleanrooms		aspects	357
	and biological safety cabinets	321	Use of gametes for donation	357
	Biological safety cabinets (BSCs)	322	Treatment evaluation	358
	Microbiological testing and		Summary of donor testing	
	contamination	325	practices and proposals in the	
	Fungal contamination in the laboratory	325	USA	358
	Laboratory cleaning schedules	327	Cryopreservation and transmission of	
	References	330	infection	358
	Further reading	331	Tissue banking: ovarian and testicular	
	~		tissue	361
14	Handling infectious agents in		References	362
	the ART laboratory	332	Further reading	363
	Blood-borne viruses	332	3	
	Biosafety levels	333		
	Biosafety for ART	334	Index	365

© Cambridge University Press

Foreword

Roger G. Gosden
The Jones Institute for Reproductive Medicine
Norfolk, VA.

Lucinda L. Veeck Weill Medical College of Cornell University New York, NY

Wolbachia are gram-negative, intracellular bacteria that shelter in the gonads of invertebrates, and have profound effects on the fertility of their hosts. In some species, infected hosts can only reproduce parthenogenetically, in others cytoplasmic incompatibility prevents infected males from breeding with uninfected females, and in some cases genetically determined male embryos are transformed into females. Wolbachia engineers effects, as do all parasites, for selfish ends. Although this bizarre pathology is unknown in medical science, the relationships between microbes and human fertility are nonetheless complex, fascinating and important for the practice of reproductive medicine.

Unfortunately, and usually without advance warning, microbes occasionally enter the clinical laboratory through infected semen or vaginal tissue. When this occurs, a patient's treatment outcome may be seriously compromised because microbes can quickly deplete nutrients in culture media and alter the pH, and it would be irresponsible to knowingly transfer an infected embryo or semen to a patient. Bacterial and fungal growth are often obvious and easily tested, but how often do infectious agents go unrecognized and contribute to the problems of infertility, treatment failure and even possibly affect the child-to-be?

This is the first book on medical microbiology that has been written by experts in reproduction for clinical scientists and physicians in their own field. They are to be congratulated on filling a gap in the

xii Foreword

literature between microbiology and assisted reproduction, which they achieve in three sections. The first serves as a primer of medical microbiology for readers who are unfamiliar or rusty on the subject. The second focuses on microbes that have implications for human reproduction, whether by causing infertility (a familiar example being *Chlamydia*) or by jeopardizing reproductive safety (such as HIV).

In the final section, the practical implications of this knowledge are addressed in the context of infertility, and especially the setting of the clinical embryology laboratory. Every embryologist is trained in sterile techniques, filtration of media and prudent use of antibiotics to keep out the bugs, but a deeper knowledge of the foundations of safe and effective practice is an undervalued safeguard for patient care.

Preface

The world of microbes is intrinsically fascinating. Microbes are abundant in every place on earth where larger living creatures exist, and they can also thrive in habitat extremes where no other kind of organism can survive for long: from deep under the sea to the stratosphere – up to 32 km in the atmosphere, in oil formations and in hot telluric water. It is estimated that the total biomass of microbes probably exceeds that of all the plants and animals in the biosphere. This biomass is predominantly composed of bacteria, and these microorganisms play a crucial role in recycling much of the organic material in the biosphere. Despite their minute size, microorganisms carry out all the fundamental processes of biochemistry and molecular biology that are essential to the survival of all living species. Although their size may give them the illusion of being 'primitive', their range of biochemical and biophysical capabilities is far wider than that of higher organisms. One of their most important properties is adaptability and versatility, a key feature in their long history of evolution. Fossil records suggest that at least some members of the microbial world, oxygen-producing cyanobacter-like organisms, had evolved 3.46 billion years ago (Schopf, 1993); a viable fungus, Absidia corymbifera, was recovered from the right boot that accompanied the frozen, well-preserved prehistoric corpse, 'Ice Man', aged approximately 5300 years (Haselwandter & Ebner, 1994).

Records of microbial disease that probably influenced the course of history can be found in archaeological sites of early civilizations, as well as in later

XIII

xiv **Preface**

periods of history. A hieroglyph from the capital of ancient Egypt dated approximately 3700 BC illustrates a priest (Ruma) with typical clinical signs of a viral infection, paralytic poliomyelitis. The mummified body of the Pharaoh Siptah, who died in 1193 BC, also shows signs of classic paralytic poliomyelitis, and the preserved mummy of Rameses V has facial pustular lesions suggesting that his death in 1143 BC was probably due to smallpox. This virulent disease was endemic in China by 1000 BC, and had reached Europe by 710 AD. Hernando Cortez transferred the disease to the Americas in 1520, and it appears that around 3 500 000 Aztecs died of smallpox within the next two years – arguably precipitating the end of the Aztec empire.

In the early 1330s an outbreak of deadly Bubonic plague occurred in China, one of the busiest of the world's trading nations, and rapidly spread to Western Asia and Europe. Between 1347 and 1352 this plague, 'The Black Death', killed 25 million people – one-third of the population of Europe – with far-reaching social, cultural and economic repercussions.

The world of assisted reproduction is equally fascinating, and is one that also has a long history of evolution. The concept of assisted procreation by human artificial insemination was a topic of discussion between Jewish philosophers as early as the third century AD, and tales exist of fourteenthcentury Arab horse breeders obtaining sperm from mated mares belonging to rival groups, using the sperm to inseminate their own mares. Assisted reproduction explores the fundamental principles behind the creation of a new life, the intricate biological mechanisms that are involved when mature gametes come into contact, combine genetically and set in motion a cascade of events leading to the correct expression of genes that form a new individual.

Microbiology and assisted reproduction both deal with a miniature world, magnified for observation

with the help of microscopy. Culture of microorganisms and of preimplantation embryos in vitro requires special media and growth conditions to promote cell division, and both are visualized and assessed at various stages following cell division. A knowledge of microbiology is fundamental to the safety and success of assisted reproductive techniques-but the field of microbiology is vast, and continues to increase in complexity with the discovery of new organisms and implementation of new medical treatments. The field of assisted reproductive technology also continues to expand and develop, particularly in areas of science and biotechnology. Members of an assisted reproduction team are not usually also experts in infectious diseases, and may find it difficult to identify and follow significant areas of microbiology that can impact upon their

The purpose of this book is to select areas and topics in microbiology that are specifically relevant to assisted reproductive technology (ART), in order to provide a very basic background of facts and fundamental principles. A background of understanding can help prevent contamination and transmission of disease in ART, and also limit the opportunities for microbial survival in embryo culture and cryopreservation systems. The book is divided into three Parts:

Part I provides an outline of microorganism classification and identification, as a foundation for understanding the relationships and the differences between the types of organisms that may be encountered in routine ART practice. The microorganisms that are human pathogens or resident flora, and those that are routinely found in the environment are introduced. Each chapter includes an Appendix of antimicrobial drugs and their modes of action.

Part II details organisms that cause disease of the reproductive tract and those that are blood-borne pathogens, describing their

Preface

X۷

etiology, pathogenesis, diagnosis, pathology and treatment.

Part III describes the practical application of microbiology principles within an assisted reproduction laboratory.

REFERENCES

Haselwandter, K. & Ebner, M. R. (1994). Microorganisms surviving for 5300 years. FEMS Microbiology Letters, 116(2), 189–93.

Schopf, J. W. (1993). Microfossils of the early Archean apex chart: new evidence of the antiquity of life. *Science*, **260**, 640–6.

Acknowledgements

Digital images for illustrations were produced with the expert help of Stephen Welch and Robbie Hughes. We would like to thank all of our colleagues and friends for their valuable encouragement, input and comments throughout the preparation of this book, with particular acknowledgement of the contributions made by Marc van den Berg, Charles Cornwell, Rajvi Mehta, Rita Basuray, George Kalantzopoulos, Dimitra Kaftani and Kim Campbell. Special thanks to Professor Bob Edwards for his personal reflections on the 'History of IVF' and to Alan Smith for his perspectives on the development of biotechnology.

Barbara and Janet – thank you for your endless patience and moral support.

We are also grateful for the support of Bourn Hall Clinic, Cambridge, and the Departments of Clinical Sciences and Pathology and Laboratory Medicine, University of Kentucky, and the University of Kentucky Clinical Microbiology Laboratory.

xvii