
Preface

Sub-Riemannian (also known as Carnot–Carathéodory) spaces are spaces whose
metric structure may be viewed as a constrained geometry, where motion is only
possible along a given set of directions, changing from point to point. They play
a central role in the general program of analysis on metric spaces, while simul-
taneously continuing to figure prominently in applications from other scientific
disciplines ranging from robotic control and planning problems to MRI function
to new models of neurobiological visual processing and digital image reconstruc-
tion. The quintessential example of such a space is the so-called (first) Heisenberg
group. For a precise description we refer the reader to Chapter 2; here we merely
remark that this is the simplest instance of a sub-Riemannian space which retains
many features of the general case.

The Euclidean isoperimetric problem is the premier exemplar of a problem in
the geometric theory of the calculus of variations. In Chapter 1 we review the ori-
gins of this celebrated problem and present a spectrum of well-known approaches
to its solution. This discussion serves as motivation and foundation for the remain-
der of this survey, which is devoted to the isoperimetric problem in the Heisenberg
group. First formulated by Pierre Pansu in 1982 (see (8.2) in Chapter 8 for the
precise statement), the isoperimetric problem in the first Heisenberg group is one
of the central questions of sub-Riemannian geometric analysis which has resisted
sustained efforts by numerous research groups over the past twenty-five years.

Our goals, in writing this survey, are twofold. First, we want to describe
the isoperimetric problem in the Heisenberg group, outline recent progress in this
field, and introduce a number of techniques which we think may lead to further
understanding of the problem. In accomplishing this program we simultaneously
provide a concise and detailed introduction to the basics of analysis and geometry
in the setting of the Heisenberg group. Rather than present a general, exhaustive
introduction to the field of subelliptic equations, Carnot–Carathéodory metrics
and sub-Riemannian geometry, as is done (to different extents) in the standard
references [32], [100], [103], [130], [243], [203], [255], and in the forthcoming mono-
graph [114], here we focus on the simplest example of the first Heisenberg group.
This seems to us a good starting point for a novice who wants to learn some basic
techniques and issues in the field without having to face the most general picture
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first. At present there are no elementary or introductory texts in this area; we are
convinced that there is great need for such a text, to motivate young researchers
to work in this area or to clarify to mathematicians working in other fields its
principal features. While most of the material in this survey has appeared else-
where, the approach to the horizontal differential geometry of submanifolds via
Riemannian approximation is original; we hope it may be helpful for those who
wish to further investigate this interesting line of research.

The structure of this survey is as follows:

Chapter 1. We give an abbreviated review of the isoperimetric problem and its
solution in Euclidean space, indicating a few proofs for the sharp isoperimetric
inequality in the plane arising from diverse areas such as complex analysis, differ-
ential geometry, geometric measure theory, nonlinear evolution PDE’s (curvature
flow), and integral geometry.

Chapters 2, 3. We introduce the first Heisenberg group H and describe in detail
its principal metric, analytic and differential geometric features. Our presentation
of the sub-Riemannian structure of H is somewhat nonstandard, as we first in-
troduce an explicit coordinate system and later define the sub-Riemannian metric
by referencing this particular set of coordinates. This “hands-on” approach, while
not in the coordinate-free approach of modern geometry, fits well with our basic
aim as described above.

In Chapter 3 we present a selection of pure and applied mathematical models
which feature aspects of Heisenberg geometry: CR geometry, Gromov hyperbolic
spaces, jet spaces, path planning for nonholonomic motion, and the functional
structure of the mammalian visual cortex.

Chapter 4. We turn from the global metric structure of the Heisenberg group H

to a study of the geometry of submanifolds. We introduce the concept of horizon-
tal mean curvature, which gives a sub-Riemannian analog for the classical notion
of mean curvature. Computations of the sub-Riemannian differential geometric
machinery are facilitated by considering H as a Gromov–Hausdorff limit of Rie-
mannian manifolds. We illustrate this by computing some of the standard machin-
ery of differential geometry in the Riemannian approximants, and identifying the
appropriate sub-Riemannian limits. Typical submanifolds in H contain an excep-
tional set, the so-called characteristic set, where this sub-Riemannian differential
geometric machinery breaks down. In Section 4.4 we work through an extended
analysis of the limiting behavior of fundamental ingredients of sub-Riemannian
submanifold geometry at the characteristic locus. Such an analysis plays a key
role in our later discussion of Pansu’s isoperimetric conjecture (see Chapter 8).

Chapters 5, 6. Weakening the smoothness requirements of differential geome-
try leads to the study of geometric measure theory. We give a broad summary
of some basic tools of geometric measure theory in H: horizontal Sobolev and
BV spaces and the Sobolev embedding theorems, perimeter measure, Hausdorff



Preface xiii

and Minkowski content and measure, area and co-area formulas, and the Pansu–
Rademacher differentiability theorem for Lipschitz functions. This development
culminates in Section 6.4, where we present two derivations of the first variation
formula for perturbations of the horizontal perimeter. These formulas are essen-
tial ingredients in the most recent developments associated with proofs of Pansu’s
conjecture in certain special cases; our presentation of the first variation formula
for the horizontal perimeter is preparatory to our discussion of these developments
in Sections 8.5 and 8.6. We conclude Chapter 6 with a brief overview of Mostow’s
rigidity theorem for cocompact lattices in complex hyperbolic space, emphasizing
the role of quasiconformal functions on the Heisenberg group in the proof and
building on this to summarize some of the essential aspects of the field of sub-
Riemannian geometric function theory which has grown from this application.

Chapters 7, 8. With the above tools in hand, we are prepared to begin our dis-
cussion of the sub-Riemannian isoperimetric problem in the Heisenberg group. In
Chapter 7 we give two proofs for the isoperimetric inequality in H. Neither proof
gives the best constant or identifies the extremal configuration. The first proof re-
lies on the equivalence of the isoperimetric inequality with the geometric Sobolev
inequality. The second is Pansu’s original proof, which relies on an adaptation of
an argument of Croke. Chapter 8 is the heart of the survey. We present Pansu’s
famous conjecture on the isoperimetry extremals, and discuss the current state of
knowledge, including various partial results (requiring a priori regularity and/or
symmetry), and various Euclidean techniques whose natural analogs have been
shown to fail in H.

Chapter 9. In this concluding chapter, we discuss three other analytic “best con-
stant” problems in the Heisenberg group, whose solutions are known.

We envision this survey as being of use to a variety of audiences and in a
variety of ways. Readers who are interested only in obtaining an overview of the
general subject area are invited to read Chapters 2–6. These chapters provide a
concise introduction to the basic analytic and geometric machinery relevant for
the sub-Riemannian metric structure of H. We presuppose a background in Rie-
mannian geometry, PDE and Sobolev spaces (in the Euclidean context), and the
basic theory of Lie groups. For those already fluent in sub-Riemannian geometric
analysis, Chapters 7 and 8 provide an essentially complete description of the cur-
rent state of knowledge regarding Pansu’s conjecture, and present a wide array of
potential avenues for attacks on it and related conjectures. Chapter 9 is essentially
independent of the preceding two chapters and can be read immediately following
Chapter 6.

We have deliberately aimed at a treatment which is neither comprehensive
nor put forth in the most general setting possible, but instead have chosen to
work (almost entirely) in the first Heisenberg group, and present those topics and
results most closely connected with the isoperimetric problem.



xiv Preface

Notable topics which we omit or mention only briefly include:

• The theory of (sub-)Laplacians and the connections between sub-Riemannian
geometry, subelliptic PDE and Hörmander’s “sums of squares” operators.
Similarly, we have very little to say on the subject of potential theory (both
linear and nonlinear), apart from some brief results in Chapter 6 connected
with the Sobolev embedding theorems.

• Carnot groups as tangent cones of general sub-Riemannian manifolds.
• Further extensions of geometric analysis beyond the sub-Riemannian context,

e.g., the emerging theory of “analysis on metric measure spaces”.
• Singular geodesics in the Martinet (and other sub-Riemannian) distributions.
• Further applications of sub-Riemannian geometry in control theory and non-

holonomic mechanics (apart from the discussion in Chapter 3).

These topics are all covered in prior textbooks, which mitigates their omission
here. Singular geodesics in sub-Riemannian geometry play a starring role in Mont-
gomery’s text [203], and the intricacies of the construction of tangent cones on sub-
Riemannian spaces are presented in both [203] and the survey article of Belläıche
[32]. For analysis on metric spaces, the best reference is Heinonen [136]; see also
[137]. For nonlinear potential theory (in the Euclidean setting) the principal ref-
erence is Heinonen–Kilpeläinen–Martio [139]. In addition to the preceding list, we
are also omitting a full discussion of several important recent developments, most
notably:

• Rigidity theorems à la Bernstein for minimal surfaces in the Heisenberg
group.

• The extraordinary developments in rectifiability and geometric measure the-
ory connected with the extension by Franchi, Serapioni and Serra-Cassano
of the structure theorem of de Giorgi to sets of finite perimeter in Carnot
groups.

These topics are still very much the subject of active investigation and it is too
soon to write their definitive story.

In conclusion, we would be remiss in failing to pay homage to the comprehen-
sive treatise by Gromov [130] on the metric geometry of sub-Riemannian spaces,
which provides a wealth of information regarding the structure of these remarkable
spaces. Much of the current development in the area represents the working out
and elaboration of ideas and notions presented in that work.

Remarks on notation and conventions

With only a few exceptions, we have attempted to keep our discussion of references,
citations, etc. limited to the “Further results” and “Notes” sections of each chapter.
In certain cases, particularly when we have used without proof some well-known
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result which can be found in another textbook, we have deviated from this policy.
Despite its size, our reference list still represents only a fraction of the work in this
area, and should be viewed merely as a guide to the existing literature.

Our notation and terminology is for the most part standard. The Euclidean
space of dimension n and its unit sphere are denoted by Rn and Sn−1, respectively.
By Hn

A
we denote the hyperbolic space over the division algebra A (either the

real field R, the complex field C, the quaternionic division algebra K or Cayley’s
octonions O.) We denote by B(x, r) the (open) metric ball with center x and
radius r in any metric space (X, d). We write diamA for the diameter of any
bounded set A ⊂ X , and dist(A,B) for the distance between any two nonempty
sets A,B ⊂ X . If the metric needs to be emphasized we may use a notation of
the form Bd(x, r), diamdA, etc. In the case of the Euclidean metric in Rn, we
write BE(x, r), diamE d, etc. We always reserve the notation 〈·, ·〉 for the standard
Euclidean inner product. An alternate family of inner products, associated to a
family of degenerating Riemannian metrics gL on R3, will be written 〈·, ·〉L. The
latter family of inner products will play an essential role throughout the survey.

We will use both vector notation and complex notation for points in R2,
switching between the two without further discussion. The unit imaginary element
in C will always be written i . For v = (v1, v2) ∈ R2 we write v⊥ = (v2,−v1).

In any dimension n, we write |A| for the Lebesgue measure of a measurable
set A. For any domain Ω ⊂ Rn, we denote by W k,p(Ω) the Sobolev space of
functions on Ω admitting p-integrable distributional derivatives of order at most
k. The surface area measure on a smooth hypersurface S in a Euclidean space Rn

of any dimension will be denoted dσ. Finally, we write

ωn−1 :=
2πn/2

Γ(n/2)

for the surface area σ(Sn−1) of the standard unit sphere Sn−1 in Rn.
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