
Preface

The theory of Eisenstein series, in the general form given to it by Robert
Langlands some forty years ago, has been an important and incredibly useful
tool in the fields of automorphic forms, representation theory, number theory
and arithmetic geometry. For example, the theory of automorphic L-functions
arises out of the calculation of the constant terms of Eisenstein series along
parabolic subgroups. Not surprisingly, the two primary approaches to the ana-
lytic properties of automorphic L-functions, namely the Langlands–Shahidi
method and the Rankin–Selberg method, both rely on the theory of Eisenstein
series. In representation theory, Eisenstein series were originally studied by
Langlands in order to give the spectral decomposition of the space of L2-
functions of locally symmetric spaces attached to adelic groups. This spectral
theory has been used to prove the unitarity of certain local representations.
Finally, on the more arithmetic side, the Fourier coefficients of Eisenstein series
contain a wealth of arithmetic information which is far from being completely
understood. The p-divisibility properties of these coefficients, for example, are
instrumental in the construction of p-adic L-functions.

In short, the theory of Eisenstein series seems to have, hidden within it,
an inexhaustible number of treasures waiting to be discovered and mined.

With such diverse applications, it is not easy even for the conscientious
researcher to keep abreast of current developments. Indeed, different users
of Eisenstein series often focus on different aspects of the theory. With this
in mind, the workshop “Eisenstein Series and Applications” was held at the
American Institute of Mathematics (Palo Alto) from August 15 to 19, 2005.
The goal of the workshop was to bring together users of Eisenstein series from
different areas who do not normally interact with each other, with the hope
that such a juxtaposition of perspectives would provide deeper insight into
the arithmetic of Eisenstein series and foster fruitful new collaborations.

This volume contains a collection of articles related to the theme of the
workshop. Some, but not all of them, are based on lectures given in the work-
shop. We hope that the articles assembled here will be useful to a diverse
audience and especially to students who are just entering the field.
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congruence subgroups.

1 Introduction

Let G be a semisimple algebraic group over Q, let G(Q) and G(A) be its rational
and adelic groups, and let K ⊂ G(A) be a good maximal compact subgroup.
Let K = KfK∞ with K∞ ⊂ G(R) and Kf ⊂ G(Af ), where G(Af ) is the
finite adelic group and G(R) is the group of real points. By our assumption on
G, we know that G(R) and K∞ are connected Lie groups (cf. Proposition 2.1
below). Then the cohomology of the congruence subgroup Γ = G(Q) ∩ Kf

can be computed by

H∗(Γ,C) = H∗ (G(Q)\G(A)/K∞,C)Kf , (1.1)

where the superscript Kf stands for the subspace of Kf -invariants in the
G(Af )-module

H∗ (G(Q)\G(A)/K∞,C) : = colim
Kf

H∗
(
G(Q)\G(A)/KfK∞,C

)
. (1.2)

The inductive limit is over all open subgroups Kf ⊆ Kf . It is clear from
definition 1.1 that the Hecke algebra H = C∞

c (Kf\G(Af )/Kf ) of compactly
supported Kf -biinvariant functions on G(Af ) acts on H∗(Γ,C). Let

I : =
{
f ∈ H = C∞

c (Kf\G(Af )/Kf )
∣∣∣
∫

G(Af )

f(g) dg
}

= 0

be the ideal of elements of H which act trivially on the constant representation.
Since H∗(Γ,C) is a finite dimensional vector space, any element of H∗(Γ,C) is
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annihilated by a finite power of an ideal of finite codimension in H. Therefore,
the subspace

H∗(Γ,C)I = {x ∈ H∗(Γ,C) |Inx = {0} for some n > 0}

is a direct summand of H∗(Γ,C) which, among other elements, contains the
constant cohomology class in dimension zero. One of the aims of this article
is to study the space H∗(Γ,C)I .

Our main result gives a topological model for H∗(Γ,C)I . We first recall
the topological model for the cohomology of the constant representation of
G(R), which maps to H∗(Γ,C)I . Let I∗G(R),K∞ be the algebra of G(R)-invariant
differential forms on the symmetric space G(R)/K∞. Such forms are closed
and give rise to G(Af )-invariant elements in H∗ (G(Q)\G(A)/K∞,C). We get
a map of graded vector spaces

I∗G(R),K∞ → H∗(Γ,C)I .

Furthermore, H∗(Γ,C)I is a I∗G(R),K∞ -module since multiplication by G(Af )-
invariant cohomology classes, unlike the rest of the multiplicative structure,
commutes with the action of the Hecke algebra. Let G(c)(R) ⊂ G(C) be a
compact form of G(R) such that K∞ ⊂ G(c)(R). Then the homogeneous space
X

(c)
G : = G(c)(R)/K∞ is the compact dual of G(R)/K∞. The complexified

tangent spaces at the origins of X
(c)
G and of G(R)/K∞ can be identified, and

one gets an identification of I∗G(R),K∞ with the space of G(c)(R)-invariant forms

on X
(c)
G . The space of G(c)(R)-invariant forms on X

(c)
G is equal to the space

of harmonic forms (with respect to a G(c)(R)-invariant metric) on X
(c)
G /K∞,

hence it is isomorphic to H∗(X(c)
G ,C). We obtain a multiplicative isomorphism

between I∗G(R),K∞ and H∗(X(c)
G ,C)π0(K∞).

Our topological model for H∗(Γ,C)I consists of a canonical isomorphism
of I∗G(R),K∞

∼= H∗(X(c)
G ,C)-modules from H∗(Γ,C)I onto the invariants of a

certain group in H∗(UG ,C), where UG ⊂ X
(c)
G is a certain open subset. To

give the definition of UG , we first have to introduce some new notation. Let
Po be a minimal Q-rational parabolic subgroup of G. We consider standard
parabolic subgroups P ⊇ Po. Let NP ⊂ P be the radical of P and let LP =
P/NP . Let

MP : =
( ⋂

χ∈X∗(LP)

ker(χ)
)o

(1.3)

be the connected component of the intersection of the kernels of all Q-rational
characters of LP . To ensure that our constructions do not depend on such a
choice, we will never choose a Q-rational section LP → P of the canoni-
cal projection P → LP . We will, however, use the fact that the projection
P ∩ θ(P) → LP , where θ is the Cartan involution defined by K∞, is an iso-
morphism of algebraic groups over R. This identifies LP(R) and LP(C) with
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subgroups of G(R) and G(C). Using this identification, the compact form of
MP becomes

M(c)
P (R) = MP(C) ∩ G(c)(R),

a subgroup of the compact form of G, and the compact dual of the symmetric
space defined by MP becomes

X
(c)
MP = M(c)

P (R)/(K∞ ∩MP(R)) ⊂ X
(c)
G ,

a subset of the compact dual of the symmetric space defined by G. We put

UG : = X
(c)
G −

⋃

P⊇Po
X

(c)
MP . (1.4)

The group K∞ ∩ Po(R) acts on X
(c)
G by left translations and leaves UG

invariant. The action of K∞∩Po(R) on the cohomology of X
(c)
G is trivial, the

action on the cohomology of UG factorizes over the finite group of connected
components π0

(
K∞ ∩ Po(R)

)
. With these definitions, we can formulate our

main result about H∗(Γ,C)I .

Theorem 1.1. There is a canonical isomorphism of I∗G(R),K∞
∼= H∗(X(c)

G ,C)-
modules

H∗(Γ,C)I ∼= H∗(UG ,C)K∞∩Po(R). (1.5)

Furthermore, elements of H∗(Γ,C)I , which by definition are annihilated by
some power of I ⊂ H, are already annihilated by I itself.

The map I∗G(R),K∞ → H∗(Γ,C) was first studied by Borel [2], who proved
that it is an isomorphism in low dimension. Since H∗(Γ,C)I is a direct sum-
mand of H∗(Γ,C), the question of noninjectivity of Borel’s map (which was
studied by Speh [22]), can be understood in terms of restriction of cohomol-
ogy classes from X

(c)
G to UG . Our interest in this particular summand was,

however, motivated by the fact that it is an important model case for the
effects produced by the singularities of Eisenstein series when one studies
the cohomology of congruence subgroups in terms of automorphic forms. Our
method of studying H∗(Γ,C)I uses the results of [9]. It consists of expressing
H∗(Γ,C)I as the (g,K)-cohomology of a direct summand of the space of au-
tomorphic forms and of representing this space in terms of Eisenstein series.
The Eisenstein series which are of interest are the Eisenstein series starting
from the constant functions on the Levi components of standard parabolic
subgroups, evaluated at one half the sum of the positive roots. There are
many singular hyperplanes which go through this parameter, and the iter-
ated residue of the Eisenstein series is the constant function on G(A). The
contributions from the Eisenstein series starting from a given parabolic sub-
group is therefore no direct summand of the space of automorphic forms, but
only a quotient of a suitable filtration on the space of automorphic forms.
The problem of understanding these extensions was the main motivation for
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writing this paper. For GL2 over algebraic number fields, the summand of
the cohomology considered in this paper, has been computed by Harder [13,
Theorem 4.2.2.]. There are probably more explicit calculations for rank one
cases and also some for rank two cases, for instance in [20]. These authors do
not use topological models to describe the Eisenstein cohomology, they arrive
at explicit formulas.

We can more generally study the G(Af )-module of all elements x in the
cohomology H∗ (G(Q)\G(A)/K∞,C) which at all but the finitely many ram-
ified places are annihilated by some power of I. Again it turns out that the
first power is sufficient. Let H∗(G)I be the space of cohomology classes x
with that property. Then H∗(G)I can be identified with the K∞ ∩ Po(R)-
invariants in the hypercohomology of a complex of sheaves with G(Af )-action
on X

(c)
G . It turns out that the hypercohomology spectral sequence for this

complex degenerates, and that the limit filtration can be described in terms
of the G(Af )-action. However, Hilbert modular forms and SL3 over imaginary
quadratic fields provide easy examples that the limit filtration will usually not
split in the category of G(Af )-modules. To get a complete picture of H∗(G)I
as a G(Af )-module, one may be forced to carry out the laborious work of
explicit calculations for the various families of algebraic groups. As an exam-
ple, we carry out explicit calculations for SLn over imaginary quadratic fields.
This example shows that while explicit calculations for the various series of
classical groups should be possible, the topological model provides a much
more vivid picture of the cohomology.

By the work of Moeglin and Waldspurger [17], the residual spectrum of
GLn over a number field is now completely understood. The structure of the
residues is quite similar to the case investigated in this paper. Therefore,
there is some hope that our methods can be used to completely understand
the Eisenstein cohomology of GLn in terms of the cuspidal cohomological
representations. Compared with this paper, one has to expect two difficulties.
Firstly, there is the possibility of “overlapping Speh segments”. In this case,
the structure of the Eisenstein cohomology may depend on whether some
automorphic L-function vanishes at the center of the functional equation. This
effect was first found by Harder [14, §III] in the case of GL3 over imaginary
fields. As a second complication, the Borel–Serre–Solomon–Tits Theorem 4.2
in this paper will not suffice. One needs a Solomon–Tits type theorem with
twisted coefficients, which investigates the cohomology of a complex formed
by normalised intertwining operators. I hope that the methods of this paper
are flexible enough to extend to this new situation.

The author is indebted to J. Arthur, D. Blasius, M. Borovoi, G. Harder,
J. Rohlfs, J. Schwermer and C. Soulé for interesting discussions on the sub-
ject and methods of this paper. In fact, it was after a discussion with C. Soulé
and G. Harder that I realized the need for passing to the space of invariants
in (1.5). I also want to use this occasion to thank the mathematics depart-
ment of the Katholische Universität Eichstätt and the Max-Planck-Institut
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für Mathematik in Bonn (where this paper was written) and the Institute for
Advanced Study, the Sonderforschungsbereich “Diskrete Strukturen in der
Mathematik”, and the mathematics department of the Eidgenössische Tech-
nische Hochschule Zürich (where [9] was written) for their hospitality and
support.

2 Notations

We will study connected reductive linear algebraic groups G over Q. Let K =
KfK∞ be a good maximal compact subgroup of G(A), decomposed into its
finite adelic factor Kf and its real factor K∞. Let θ be the Cartan involution
with respect to K∞, and let Ko

∞ be the connected component of K∞. We
denote by Po a fixed minimal Q-rational parabolic subgroup of G. Unless
otherwise specified, parabolic subgroups P will be assumed to be defined over
Q and to be standard with respect to Po. Let NP be the radical of P , and
let LP = P/NP be the Levi component. Unless P = G, we will not think of
LP as a subgroup of P . We will, however, identify L ×Spec(Q) Spec(R) with
the R-rational algebraic subgroup P ∩ θ(P) of LP . Let AP be a maximal
Q-split torus in the center of LP , and let MP be defined by (1.3), such that
LP = APMP is an isogeny. In the case P = Po, we will write Mo, Ao, and No
instead of MPo , APo , and NPo . In the case P = G, AG is a maximal Q-split
torus in the center of G, and MG is generated by the derived group of G and
the Q-anisotropic part of the center of G.

Let G(A) be the adelic group of G. If S is a subset of the set of valuations
of Q, let G(AS) be the restricted product over all places v ∈ S of the groups
G(Qv). In the special case where S is the set of finite primes, this is the finite
adelic group G(Af ). Let KS = K ∩ G(AS). For a parabolic subgroup P , let
AP(R)+ be the connected component of the group of real points AP(R). In
the special case P = G, this is the connected component of the group of real
points of a maximal Q-split torus in the center of G.

Let g be the Lie algebra of G(R), U(g) its universal enveloping algebra, and
Z(g) the center of U(g). Similar notations will be used for the Lie algebras of
other groups.

Let aP be the Lie algebra of AP (R). We will write ao for aPo . If P ⊆ Q,
then it is possible to choose a section iQ : LQ → Q of the projection Q →
LQ. Then iQ

(
prQ→LQ(P)

)
⊂ P . We define an embedding aQ → aP as the

restriction to aQ of the differential of the map

prP→LP iQ.

This embedding is independent of the choice of iQ. The dual space ǎP of aP
can be identified with the real vector space X∗(P) ⊗Z R generated by the
group of Q-rational characters of P . The same identification can be made for
Q. Then restriction of characters from Q to P defines an embedding ǎQ →
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ǎP . The embeddings aQ → aP and ǎQ → ǎP define canonical direct sum
decompositions aP = aQ ⊕ a

Q
P and ǎP = ǎQ ⊕ ǎ

Q
P .

Let Δo ⊂ ǎGo be the set of simple positive (with respect to Po) roots of Ao.
The subset ΔP

o of simple positive roots which occur in the Lie algebra of MP
is contained in ǎPo . Of course, both definitions require the choice of sections
Lo → LP → P , but the result does not depend on such a choice. Let ΔP be
the projection of Δo −ΔP

o to ǎP , and let ΔQ
P for P ⊆ Q be the projection of

ΔQ
o −ΔP

o to ǎ
Q
P . Let ρo ∈ ǎo be one half the sum of the positive roots of Ao,

and let ρP and ρQP be the projections of ρo to aP and to a
Q
P .

Our notion of a (g,K)-module is the same as in [26, §6.1]. A G(Af )-module
is a vector space on which G(Af ) acts with open stabilizers. If K is a field, let
C∞
c (G(Af ),K) be the G(Af )-module of compactly supported locally constant

K-valued functions on G(Af ). If no field is given, it is assumed that K = C. A
similar notation is used for quotients of the adelic group. For quotients of the
full adelic group like C∞(P(A)\G(A)) or similar quotients of partial adelic
groups which contain G(R), we adopt the conditions that C∞-functions have
to be locally constant with respect to the finite adelic part and K∞-finite and
infinitely often differentiable with respect to G(R).

2.1 Connected components of real groups

Let us recall the following fact:

Proposition 2.1. Let G be a reductive connected algebraic group over R and
let K∞ be a maximal compact subgroup of G(R).

1. Then π0

(
K∞

) ∼= π0

(
G(R)

)
.

2. If R ⊂ Q are parabolic subgroups defined over R, then the map

π0

(
R(R) ∩K∞

)
→ π0

(
Q(R) ∩K∞

)

is surjective.
3. If G is R-anisotropic or if it is semisimple and simply connected, then
G(R) is connected.

Proof. The first two assertions are consequences of the Iwasawa decomposi-
tion G(R) ∼= P(R)o × K∞, where P is a minimal R-parabolic subgroup (cf.
[23, Proposition 5.15]). The third fact is established in [6, Corollaire 4.7] for
semisimple simply connected groups and in [5, Corollaire 14.5] for anisotropic
groups. ��

3 Formulation of the main results

Let H∗(G) be the inductive limit

H∗(G) : = colim
Kf

H∗
(
G(Q)AG(R)+\G(A)/KfKo

∞,C
)

(3.1)
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over all sufficiently small compact open subgroups Kf ⊂ G(Af ). This is a
G(Af )-module. Let H∗

c (G,C) be the same inductive limit over the cohomology
with compact support. For any set of finite primes S, the Hecke algebra HS =
C∞
c (KS\G(AS)/KS) of KS-bi-invariant compactly supported functions on

G(AS) acts on H∗(G,C) and H∗
c (G,C). Let IS be the ideal

IS : =

{
f ∈ HS

∣∣∣∣∣

∫

G(AS)

f(g) dg = 0

}
,

and let

H∗(G,C)I : =
{x ∈ H∗(G,C) |for any set S of finite primes, ImS x = {0} for m � 0}
H∗
c (G,C)I : =

{x ∈ H∗
c (G,C) |for any set S of finite primes, ImS x = {0} for m � 0} .

These are direct summands of H∗(G,C) and H∗
c (G,C). Our main result de-

scribes them as the space of Ko
∞ ∩ Po(R)-invariants in the hypercohomology

of a complex of sheaves of G(Af )-modules on the compact dual.
The construction of these complexes of sheaves follows a general pattern,

which associates a chain complex to a functor with values in an abelian cat-
egory on the poset PG of standard parabolic subgroups. Note that G is a
maximal element of PG . Let ≺ be a total order on Δo. We order successors
Q of P in PG by the order ≺ of the unique element of ΔQ

o −ΔP
o and denote

the i-th successor (0 ≤ i < dim a
G
P) of P by Pi. Let FP be a contravariant

functor on PG . For P ⊆ Q, let

FP⊆Q : FQ → FP

be the transition map. We define the chain complex C∗(F •) by

Ck(F •) =
⊕

P∈P

dim aG
P=k

FP

with the differential

d

(
(fP) P∈P

dim aG
P=k

)
=

(
k∑

i=0

(−1)iFQ⊂Qi(fQi)

)

Q∈P

dim aG
Q=k+1

. (3.2)

Similarly, let FP be covariant, with transition maps

FP⊆Q : FP → FQ.

We order predecessors Q of P in P according to the order by ≺ of the unique
element of ΔP

o −ΔQ
o , denote the i-th predecessor (0 ≤ i < dim aPo ) by iP and

form the chain complex
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Ck(F •) =
⊕

P∈P

dim aP
o =k

FP

with differential

d

(
(fP) P∈P

dim aP
o =k

)
=

(
k∑

i=0

(−1)iF
iQ⊂Q(f

iQ)

)

Q∈P

dim aQ
o =k+1

. (3.3)

We apply similar conventions to functors of several variables. For instance, if
FQ

P is covariant with respect to P and contravariant with respect to Q, then
we have the following chain complexes:

• For fixed P , the chain complex C∗(F •
P) obtained by applying construction

3.2 to the contravariant variable.
• For fixed Q, the chain complex C∗(FQ

• ) obtained by applying construction
3.3 to the covariant variable.

• The chain complex C∗(F •
•), the total complex of the double complex,

obtained by applying (3.2) to the contravariant variable and (3.3) to the
covariant variable.

Of course, all these complexes depend on the choice of ≺. However, they do
so only up to unique isomorphism. For instance, let C∗(FP)≺ be formed with
respect to ≺ and let C∗(FP)≺̃ be formed with respect to ≺̃. Then we have
the isomorphism of complexes

C∗(F •)≺ → C∗(FP)≺̃
(fP) P∈P

dim aG
P=k

→ (εPfP) P∈P

dim aG
P=k

,

where εP is the signature of the permutation of Δo − ΔP
o which identifies

the total orders ≺ and ≺̃ of Δo − ΔP
o . We will therefore suppress the ≺-

dependence of C∗(F •) in our notations. The same applies to C∗(F •) and the
constructions for bifunctors. We will also apply these constructions if F takes
values in the category of chain complexes. In this case, C∗(F •) has the total
differential formed by the differential of F • and (3.2).

Recall the definition of the compact dual X
(c)
MG and of the embeddings

X
(c)
MP → X

(c)
MG from the introduction. For a topological space X , a closed

subset Y and a vector space V , let VY be the constant sheaf with stalk V
on Y and let (iY⊆X)∗VY be its direct image on X . If K is either R or C,
let A(G,Ko

∞,K)P be the functor which to P ∈ P associates the sheaf with
G(Af )-action

(
i
X

(c)
MP ⊆X

(c)
MG

)

∗
C∞
c (P(Af )\G(Af ),K)

X
(c)
MP

.
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For P ⊆ Q, A(G,Ko
∞,K)P⊆Q is defined by the inclusion

C∞
c (Q(Af )\G(Af ),K) ⊆ C∞

c (P(Af )\G(Af ),K),

followed by restriction from X
(c)
MQ to X

(c)
MP . The group Ko

∞ ∩ Po(R) acts
on this complex by left translation, and the resulting action on hypercoho-
mology factorizes over the quotient π0(Ko

∞ ∩ Po(R)). Recall the Borel map
I∗MG(R),Ko∞

→ H∗(G,C)G(Af ) and the isomorphism I∗MG ,Ko∞
∼= H∗(X(c)

MG )
from the introduction.

With this notation, we can formulate our main result as follows:

Theorem 3.1. There is a canonical isomorphism of G(Af )- and I∗MG(R),Ko∞
∼=

H∗(X(c)
MG )-modules between H∗

c (G,C)I and the hypercohomology of the com-
plex associated to the functor A(G,C)P

H∗
c (G,C)I ∼= H∗(X(c)

MG , C
∗(A(G, C)))πo(K

o
∞∩Po(R)). (3.4)

This isomorphism identifies the real subspace Hp
c (G,R)I with

ipHp(X(c)
MG , C

∗(A(G, C)))πo(K
o
∞∩Po(R)).

The proof of this theorem will occupy most of the remainder of this paper.
We will now give some corollaries. Since the sheaf of G(Af )-modules A(G,C)P

is annihilated by IS , we have the following result.

Corollary 3.2. If S is a set of finite places of Q, then H∗(G,C)I and
H∗
c (G,C)I are annihilated by IS (and not just a power of IS).

The assertion about H∗(G,C)I follows from the result about cohomology with
compact support by duality.

To evaluate the cohomology sheaves of the complex C∗(A(G,C)•), we have
to define some Steinberg-like G(Af )-modules. Let

V
G(Af )

P(Af )
= C∞(P(Af )\G(Af ),C)

/ ∑

Q⊃P
C∞(Q(Af )\G(Af ),C), (3.5)

and let V̌
G(Af )

P(Af )
be the dual of V

G(Af )

P(Af )
. For instance, V

G(Af )

G(Af )
and V̌

G(Af )

G(Af ) are
both isomorphic to the constant representation. Recall the definition of the
subsets

UMP = X
(c)
MP −

⋃

Q⊂P
X

(c)
MQ .

If V is a sheaf on UMP , let
(
i
UMP⊆X

(c)
MG

)
!
V be its continuation by zero.

Corollary 3.3. The i-th cohomology sheaf of the complex C∗(A(G,Ko
∞,C))

is given by
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⊕

P∈P

dim aG
P=i

(
i
UMP⊆X

(c)
MG

)

!

V
G(Af )

P(Af )
. (3.6)

The hypercohomology spectral sequence degenerates, and the limit filtration
FiliH∗

c (G,C)I has quotients

(Fili /Fili−1 )Hk
c (G,C)I ∼=

⊕

P∈P

dim aG
P=i

Hk−i
c (UMP )πo(K∞∩Po(R)) ⊗V

G(Af )

P(Af ) ,

(3.7)
where the isomorphism is an isomorphism of modules over G(Af ). This is the
only ascending filtration of H∗

c (G,C)I whose i-th quotient is of the form
⊕

P∈P

dim aG
P=i

VP ⊗V
G(Af )

P(Af )
.

Similarly, H∗(G,C)I has a descending filtration Fili with quotients
(
Fili
/
Fili+1

)
Hk
c (G,C)I ∼=

⊕

P∈P

dim aG
P=i

Hk+dim(nP )(UMP )πo(K∞∩Po(R))⊗V̌
G(Af )

P(Af )
.

(3.8)
This is the only descending filtration of H∗(G,C)I whose i-th quotient is of
the form ⊕

P∈P

dim aG
P=i

V P ⊗V
G(Af )

P(Af )
.

Proof. By Poincare duality, it suffices to prove the assertions about cohomol-
ogy with compact support. The formula (3.6) is a consequence of the Solomon–
Tits like Theorem 4.2 in the next section, which generalizes [4, §3]. The degen-
eration of the hypercohomology spectral sequence follows from Hodge theory
and the fact that the restriction of an invariant (= harmonic) form on the
compact dual of a Levi component of G to the compact dual of a smaller Levi
component is again invariant.

The uniqueness assertion about the filtration of H∗
c (G,C)I follows from

the next proposition. ��

Proposition 3.4. Let S be a set which contains all nonarchimedean primes
of Q with finitely many exceptions, and let P �= Q be parabolic subgroups of G.

Then the spaces of S-spherical vectors V
G(Af )

P(Af )

KS

and V
G(Af )

Q(Af )

KS

have finite
length as representations of the group

∏

v nonarchimedean
v �∈ S

G(Qv),

and their Jordan–Hölder series have mutually nonisomorphic quotients.



Topological Model for Eisenstein Cohomology 37

Proof. This is a consequence of [7, X.4.6.]. ��

Unfortunately, Hilbert modular forms and SL3 over imaginary fields provide
examples where the filtration FiliH∗

c (G,C)I does not split in the category of
G(Af )-modules.

Since Kf was supposed to be good, we have P(Af )Kf = G(Af ) for all
parabolic subgroups P . Therefore, V

G(Af )

P(Af )
has Kf -spherical vectors only if

P = G, and the only quotient of FiliH∗
c (G,C)I which has a Kf -spherical

vector is in dimension zero. We get the following corollary.

Corollary 3.5. The natural maps

H∗
c (G,C)G(Af ) → H∗

c (G,C)G(Af )
I → H∗

c (G,C)Kf

I

are isomorphisms. (The first of these isomorphisms follows from the fact that
the constant G(Af )-representation is annihilated by I.) Similarly, the maps

H∗(G,C)Kf

I → (H∗(G,C)I)G(Af ) → H∗(G,C)G(Af )

are isomorphisms, where the subscript G(Af ) stands for the space of G(Af )-

coinvariants. Also, we have isomorphisms of I∗MG(R),Ko∞
∼= H∗(X(c)

MG )-modules

H∗(G,C)G(Af )
∼= H∗(UMG ,C)

and
H∗
c (G,C)G(Af ) ∼= H∗

c (UMG ,C).

In particular, this establishes Theorem 1.1 of the introduction.

4 An adelic Borel–Serre–Solomon–Tits theorem

In this section we study the cohomology of the chain complexes associated to
certain functors on P. Let us start with the easiest example. For parabolic
subgroups Q ⊆ R, consider the contravariant functor

B(Q,R)P =
{

C if Q ⊆ P ⊆ R
{0} otherwise

and the covariant functor

B(Q,R)P =
{

C if Q ⊆ P ⊆ R
{0} otherwise

such that B(Q,R)P⊆P̃ and B(Q,R)P⊆P̃ are the identities ifQ ⊆ P ⊆ P̃ ⊆ R
and zero otherwise.
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Lemma 4.1. If Q ⊂ R, C∗(B(Q,R)•) and C∗(B(Q,R)•) are acyclic. If
Q = R, then the only cohomology group of C∗(B(Q,R)•) is C in dimension
dim a

G
Q, and the only cohomology group of C∗(B(Q,R)•) is C in dimension

dim aQo .

This is straightforward.
For a more interesting example, one takes the set of all C-valued functions

on P(Q)\G(Q) for FP together with the obvious inclusions as transition maps.
The associated chain complex gives the reduced cohomology of the Tits build-
ing of G shifted by −1; hence by the Solomon–Tits theorem it has cohomology
only in degree dim aGo . The related theorem in which continuous functions on
P(Qv)\G(Qv) (with Qv-rational parabolic subgroups P which are standard
with respect to a minimal Qv-rational parabolic subgroup) are considered has
been proved by Borel and Serre [4, §3]. We need an adelic version of their
result.

Theorem 4.2. Let S be a set of places of Q, and let R be a standard Q-
parabolic subgroup. Let C(G,R,AS)• be defined by

C(G,R,AS)P =
{

C∞(P(AS)\G(AS)) if P ⊆ R
{0} otherwise.

(Recall our convention that C∞-functions are supposed to be K∞-finite.) Let
the transition functions for C be given by the obvious inclusions. Then the
complex C∗(C(G,R,AS)•) is acyclic in dimension < dim aGo .

Proof. The only difference to the situation considered by Borel and Serre
is that we consider quotients of an adelic group by Q-parabolic subgroups,
whereas they consider quotients of the v-adic group by Qv-rational subgroups.
Their method is flexible enough to cover our situation. To eliminate any pos-
sible doubt, let us give the modified proof.

Since C(G,P ,AS)• is the inductive limit of its subfunctors C(G,P ,AT )
for finite T , it suffices to consider the case where S is a finite set of places of
Q. We will prove the following proposition.

Proposition 4.3. Let S be a finite set of places of Q, let B be a Banach
space, and let R ∈ P. Let C̃(R,AS) be given by spaces of B-valued continuous
functions on flag varieties of G

C̃(R,AS , B)P =
{

C(P(AS)\G(AS), B) if P ⊆ R
{0} otherwise

with the obvious inclusions as transition homomorphisms. Then the complex
C∗(C̃(R,AS , B)•) is acyclic in dimension < dim aGo .

For finite S, the theorem follows from the proposition, since C(G,R,AS) is
the inductive limit of its subfunctors C(G,R,AS)e over idempotents e of the
convolution algebra C∞(KS). But C(G,R,AS)e = C̃(R,AS ,C)e is a direct
summand of C̃(R,AS ,C). ��
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Proof. We proceed by induction on the cardinality of S, starting with the case
S = ∅. For this case, we have C̃(R,A∅, B)• : = B(Po,R)• ⊗ B and apply
Lemma 4.1.

Let v ∈ S be such that the proposition has been verified for S \ {v} and
arbitrary R and B. Let Pv ⊆ Po be a minimal Qv-parabolic subgroup, and
let Av ⊂ Pv be a maximal Qv-split torus. Let w0,. . . , wN be an enumeration
of the elements of the Weyl group W (Av,G(Qv)) such that �(wi) ≤ �(wj) if
i < j, where �(w) is the length of w. Let

C(w) = Pv(Qv)\Pv(Qv)wPv(Qv) ⊂ Pv(Qv)\G(Qv)

be the Schubert cell associated to w, and let Ei =
⋃i
j=0 C(wj). Let Δv and

ΔP
v be defined like Δo and ΔP

o , but with Po replaced by Pv. For α ∈ Δv, let
sα be the reflection belonging to α. Let

πP : Pv(Qv)\G(Qv) → P(Qv)\G(Qv)

be the projection. We have the following consequence of the Bruhat decom-
position as given in [4, 2.4.].

Lemma 4.4. Let 0 ≤ i ≤ N . If P ⊇ Pv is a Qv-parabolic subgroup such that
�(sαwi) > �(wi) for all α ∈ ΔP

o , then πP induces an isomorphism

C(wi) ∼= πP (C(wi)) = πP(Ei)− πP(Ei−1).

Otherwise, we have πP(Ei) = πP (Ei−1).

Let Fili C̃(R,AS , B)P be the set of all f ∈ C̃(R,AS , B)P which vanish on
(
P(AS\{v})\G(AS\{v})

)
× πP(Ei). (4.1)

This is a subfunctor of C̃(R,AS , B)•. Let us consider 0 ≤ i ≤ N . If there
exists no Q-parabolic subgroup Q ⊇ Pv such that �(sαwi) > �(wi) for all
α ∈ ΔQ

v , then Lemma 4.4 implies Fili−1 C̃(R,AS , B)• = Fili C̃(R,AS , B)•.
Otherwise, let Qi be the largest Q-parabolic subgroup with this property. Let
C(C(w), B) be the Banach space of continuous B-valued functions on C(w),
and let Cc(C(w), B) ⊂ C(C(w), B) be the closure of the set of compactly
supported functions. Identifying B-valued continuous functions on (4.1) with
C(πP (Ei), B)-valued continuous functions on

P(AS\{v})\G(AS\{v})

and using the isomorphism

ker (C(πP (Ei), B) → C(πP (Ei−1), B)) =
{
{0} if P �⊂ Qi
Cc(C(wi), B) if P ⊂ Qi,

we get an isomorphism
(
Fili−1

/
Fili
)
C̃(R,AS , B)P ∼= C̃(R∩Qi,AS−{v}, Cc(C(wi), B)),

and the induction argument is complete. ��
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Generalising the definition of V
G(Af )

P(Af ) in the third section, we define

V
G(AS)
P(AS) = C∞ (P(AS)\G(AS))

/ ∑

Q⊃P
C∞ (Q(AS)\G(AS)) (4.2)

where it is understood that if S contains the archimedean place, then induction
at this place is (g,K)-module induction. Let V̌

G(AS)
P(AS) be the KS-finite dual

of V
G(AS)
P(AS). We put StG(AS) = V

Po(AS)
G(AS) and ŠtG(AS) = V̌

Po(AS)
G(AS) . These can be

considered as Steinberg-like modules, although they are highly non-irreducible
unless S consists of a single place v at which Po is also a minimal Qv-parabolic
subgroup.

If we choose Haar measures on G(A) and Po(A), then the dual of

C∞(P(A)\G(A)) = IndG
P C

can be identified with IndG
P C2ρo . This allows us to view

IndG
P ŠtLP (A) ⊗ C2ρP

as a submodule of IndG
Po C2ρo . It is the orthogonal complement of

∑

Q⊂P
C∞(Q(A)\G(A)),

hence it decreases if P increases. This allows us to define

D(G)P =

⎧
⎨

⎩

IndG
P ŠtLP(A) ⊗ C2ρP if P �= Po∑

P∈P

IndG
P ŠtLP(A) ⊗ C2ρP if P = Po

⎫
⎬

⎭ ⊂ IndG
Po C2ρo . (4.3)

Theorem 4.5. If dim aGo > 0, then C∗(D(G)•) is acyclic.

Proof. D(G)• ⊂ B(Po,G)• ⊗ IndG
Po C2ρo is the orthogonal complement of

M• ⊂ B(Po,G)• ⊗ IndG
Po C,

where

MP =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

R⊆P
dim aR

o =1

C∞(R(A)\G(A)) if P �= Po

C =
⋂

R∈P

dim aR
o =1

C∞(R(A)\G(A)) otherwise

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⊂ C∞(Po(A)\G(A)).
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By Lemma 4.1, it suffices to show that C∗(M •) is acyclic. Let

M̃P =
{

MP if P �= Po
{0} if P = Po.

Since C ⊆ MPo ⊆ H1(C∗(M̃•)), the acyclicity of C∗(M•) and the theorem
will follow if we show that C∗(M̃•) has only one one-dimensional cohomology
space in dimension one.

We will reduce this to Theorem 4.2 by introducing a functor of two vari-
ables N•

• and using the spectral sequence for its double complex. We define
N•

• by

NQ
P =

{
{0} if Q �⊆ P or if Q = Po
C∞(Q(A)\G(A)) otherwise.

It is a consequence of Theorem 4.2 (applied to C(G,LG ,A)) that

Hk(C∗(N•
P)) =

{
{0} if k �= dim aGo − 1
M̃P if k = dim aGo − 1.

Since

NQ
• =

{
{0} if Q = Po
B(Q,G)• ⊗ C∞(Q(A)\G(A)) if Q ⊃ Po,

Lemma 4.1 implies

H l
(
C∗(NQ

• )
)

=
{
{0} if l �= dim aGo or Q �= G
C if l = dim aGo and Q = G.

Combining these two facts, we get

Hk
(
C∗(M̃•)

)
= Hk+dim aG

o−1 (C∗(N•
•)) =

{
{0} if k �= 1
C if k = 1.

As was mentioned earlier, this implies the theorem. ��
We complete this section with a rather elementary lemma. For a parabolic

subgroup R of G, let

E(R)P
∗

=
{

Λ∗(ǎPR) if P ⊇ R
{0} if P �⊇ R. (4.4)

The transition homomorphism E(R)P̃⊆P∗
is given by the projection ǎPR →

ǎP̃R. E(R)•∗ is a functor from P into the category of graded vector spaces.

Lemma 4.6. The projection

E(R)G
∗

= Λ∗(ǎGR) → det ǎ
G
R[− dim ǎ

G
R]

defines an isomorphism on cohomology

H∗ (C∗ (E(R)•∗
)) ∼= det ǎ

G
R[− dim ǎ

G
R].

By the determinant of a finite dimensional vector space, we understand its
highest exterior power.
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Proof. LetR1, . . . ,Rk be the parabolic subgroups containingR with the prop-
erty that dim a

Ri

R = 1. Then

C∗ (E(R)•∗
) ∼=

k⊗

i=1

(
(C⊕ ǎ

Ri

R ) → C

)
,

proving the lemma. ��

5 The space of automorphic forms

It is known that H∗(G,C) can be evaluated by using the cohomology of the de
Rham complex, which is isomorphic to the standard complex for evaluating
the (mG ,Ko

∞)-cohomology H∗
(mG ,K∞)(C

∞(AG(R)+G(Q)\G(A))). Let

C∞
umg(AG(R)+G(Q)\G(A)) ⊂ C∞(AG(R)+G(Q)\G(A)) (5.1)

be the subspace of functions of uniformly moderate growth. Let J = U(g)g∩
Z(g) be the annihilator of the constant representation in Z(g). Let

AJ : =
{
f ∈ C∞

umg(AG(R)+G(Q)\G(A))
∣∣J nf = {0} for n � 0

}
. (5.2)

Borel has verified that the inclusion (5.1) defines an isomorphism on coho-
mology and conjectured that the inclusion AJ ⊂ C∞

umg also defines an iso-
morphism on cohomology with constant coefficients. After partial results by
Casselman, Harder, and Speh, this has been verified in [9], where we denoted
C∞

umg by S∞ and AJ by FinJS∞ since we worked in a more general situation.
Let S be a set of finite primes which contains all but finitely many primes.

It is a consequence of well-known finiteness properties of the space of automor-
phic forms (cf. [11, Proposition 2.3]) that the space of KS-spherical vectors
AKS

J ⊂ AJ has a decomposition into associated Hecke eigenspaces

AKS

J =
∐

Ĩ
AKS

J ,Ĩ ,

where the sum is over maximal ideals Ĩ ⊂ HS and

AKS

J ,Ĩ =
{
f ∈ AJ

∣∣∣Ĩnf = {0} for n � 0
}

.

It is clear from the proven Borel conjecture that the cohomology of AKS

J ,Ĩ
is isomorphic to the space of KS-spherical vectors in H∗(G,C) which are
annihilated by a power of Ĩ. Recall the maximal ideal IS ⊂ HS , which is the
annihilator of the constant representation. We put

AJ ,I : = colim
S

AKS

J ,IS . (5.3)

The aim of this section is to study AJ ,I .
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There are two methods available for studying the space of automorphic
forms. One method is to define a filtration on the space of automorphic forms,
and to show that its quotients are spanned by principal values of cuspidal and
residual Eisenstein series. This method was used in [9]. It is particularly useful
in a general situation, where one has only the facts proved in Langlands’ book
[15] available. The second method, which was proposed by Harder in [14]
before [9] was written, is to generate the space of automorphic forms by the
coefficients of the Laurent expansions of cuspidal Eisenstein series at a certain
point. In [11], we derived from the result of [9] that this procedure really gives
the space of all automorphic forms. This method gives a complete description
of the space of automorphic forms (and not just the quotients of a filtration),
but is useful only if the precise structure of the singularities of the cuspidal
Eisenstein series near the point where they have to be evaluated is known.
For the Eisenstein series which contribute to AJ ,I , we are in the fortunate
situation to have such information available. We will therefore generate the
space AJ ,I by cuspidal Eisenstein series. At the beginning, the procedure
will be quite similar to the methods used by Speh in [22]. However, Speh
studied only a certain subspace of AJ ,I , which was sufficient for her examples
of the noninjectivity of the Borel map, and for which only Eisenstein series
depending on one parameter were needed.

Let P be a standard parabolic subgroup. Recall the standard height func-
tion HP : G(A) → aP , which is defined by

〈HP(g), χ〉 =
∑

v

log |χ(pv)|v , (5.4)

where g = pk with p ∈ P(A) and k ∈ K. The scalar product 〈., .〉 on the left
side is the pairing between aP and ǎP , and χ ∈ X∗(P) ⊂ ǎP . It is clear that
(5.4) characterizes HP(g) uniquely, and that HP(g) does not depend on the
choice of the Iwasawa decomposition g = pk. If Q ⊇ P , then HQ(g) is the
projection of HP(g) to aQ.

We have to recall a few facts about the Eisenstein series starting from
the constant representation of a Levi component. Proofs can be found in [10,
Lemma 2.7], although the results about the Eisenstein series were almost
certainly known previously. If φ ∈ C∞(P(A)\G(A)), the Eisenstein series
starting from φ is defined by

EG
P(φ, λ) =

∑

γ∈P(Q)\G(Q)

φ(γg) e〈λ+ρP ,HP(γg)〉 . (5.5)

This series converges for sufficiently regular �λ in the positive Weyl chamber,
and has an analytic continuation to λ ∈ (ǎP)C. The singular hyperplanes
of this function which cross through ρP are precisely the hyperplanes 〈λ −
ρP , α̌〉 = 0, where α ∈ ΔP and α̌ is the corresponding coroot. The residues
may be described as follows. Let for λ ∈ (ǎP)C



44 Jens Franke

qQP (λ) =
∏

α∈ΔQ
P

〈α̌, λ− ρP〉.

Then the function qQP (λ)EG
P (φ, λ) is regular on an open dense subset of

ρQP + (ǎQ)C. Its restriction to ρQP + (ǎQ)C can be described as follows. If
φ ∈ C∞(P(A)\G(A)), then

e〈HP (·),2ρP〉 φ(·) ∈ IndG
P C2ρP ,

and let C2ρP be the one-dimensional vector space on which p ∈ P(A) acts by
multiplication by e〈HP (p),2ρP〉. There exists a unique nonvanishing homomor-
phism

τQ
P : IndG

P C2ρP → IndG
Q C2ρQ

with the following property. For generic ϑ ∈ ǎQ we have

(
qQP (·)EG

P (·)
)
(φ, ϑ + ρQP ) = EG

Q
(
e−〈2ρQ,HQ(·)〉 τQ

P
(
e〈2ρP ,HP(·)〉 φ

)
, ϑ
)
. (5.6)

It is easy to verify
τR
Q τQ

P = τR
P

and to see that τQ
P is independent of Kf .

Let S(ǎGo ) be the symmetric algebra of ǎGo . It can be identified with the
algebra of differential operators with constant coefficients on ǎGo . After we
choose a basis for ǎGo , we have elements ∂α

∂λα ∈ S(ǎGo ) for any multi-index
α = (α1, . . . , αdim ǎG

o
). Elements of S(ǎGo ) can also be viewed as polynomials

on a
G
P ⊂ aP . Let Hα be the polynomial in H ∈ aP belonging to ∂α

∂λα . We
define a G(Af )-action on

S(ǎGP)⊗ C∞(P(A)\G(A)) (5.7)

by

(
h(

∂α

∂λα
⊗ φ)

)
(g) =

∑

α=β+γ

(dim aG
P∏

i=1

αi!
βi!γi!

) ∂β

∂λβ
⊗
((

HP(gh)−HP(g)
)γ e2〈ρP ,HP (gh)−HP(g)〉 φ(gh)

)

(5.8)

for h ∈ G(Af ). In a similar way, one obtains a (g,K∞)-module struc-
ture on (5.7) by taking the differential of the G(R)-action which would be
given by (5.8) if there was no condition of K∞-finiteness for elements of
C∞(P(A)\G(A)). Let a P(A)-action on S(ǎGP) be defined by

p : D → e−〈HP(p),·〉 D e〈HP(p),·〉 .
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At the infinite place, the P(R)-action gives rise to the structure of a (p,K∞∩
P(R))-module. There is a homomorphism of (p,K∞ ∩P(R),P(Af ))-modules

S(ǎGP)⊗ C∞(P(A)\G(A)) → S(ǎGP)⊗ C2ρP

D ⊗ φ(g) → D ⊗ φ(1)

which defines an isomorphism

S(ǎGP)⊗ C∞(P(A)\G(A)) → IndG
P S(ǎGP)⊗ C2ρP . (5.9)

Using this isomorphism and the regularity of qGP(·)EG
P (φ, ·) at ρP , we get a

homomorphism of (g,K∞,G(Af ))-modules

ΞG
P : S(ǎGP)⊗ C∞(P(A)\G(A)) ∼= IndG

P S(ǎGP)⊗ C2ρP → AJ ,I (5.10)

which maps D ⊗ φ to
(
DqGP(·)EG

P (φ, ·)
)
(ρP).

To see that the functions in the image of ΞG
P are annihilated by sufficiently

high powers of IS and J , it suffices to note that IndG
P S(ǎGP)⊗C2ρP is the union

of an ascending sequence of subrepresentations with quotients isomorphic to
IndG

P C2ρP , and that IS and J trivially act on IndG
P C2ρP .

We first prove the surjectivity of ΞG
Po .

Theorem 5.1. ΞG
Po is surjective. It is independent of the choice of Kf .

Proof. The fact that Ξ is independent of Kf is established by an easy com-
putation, using the fact that both EG

Po and the identification

S(ǎGo )⊗ C∞(Po(A)\G(A)) ∼= IndG
Po S(ǎGo )⊗ C2ρo

depend on Kf , and these dependencies cancel out.
We will derive the surjectivity of ΞG

Po from the description of the space of
automorphic forms in [11, §1]. Recall from [11, Theorem 1.4] that the space
AJ as a composition

AJ =
⊕

{P}

∐

ϕ∈ΦC,{P}

AC,{P},ϕ, (5.11)

where the first sum is over classes {P} of associate parabolic subgroups and
the second sum is over ΦC,{P}, a set of equivalence classes of cuspidal au-
tomorphic representations π of the Levi components of the elements of {P}.
Here two cuspidal automorphic representations belong to the same equivalence
class if they can be identified by a Weyl group substitution. An equivalence
class belongs to ΦC,{P} if and only if it is in a certain way compatible with
the infinitesimal character J of the constant representation. For a precise def-
inition, we refer to [11, §1.2]. Note that our notation is slightly different from
the notation in [11], where the space of automorphic forms was denoted AE
with a finite-dimensional representation E , which in our case is C. Therefore,
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AJ in our notations is AC in [11]. The notations on the left side of (5.11) are,
however, the same as in [11].

By [11, Theorem 1.4], the space AC,{P},ϕ can be spanned by the coefficients
of the Laurent expansion of cuspidal Eisenstein series starting from elements of
ϕ. In particular, [11, Theorem 1.4] says that, for the special case {P} = {Po}
and ϕ = {Cw·ρo}w∈W (Ao:G(Q)), we have

image of ΞG
Po = AC,{Po},{Cw·ρo}w∈W (Ao:G(Q))

. (5.12)

Let us fix {P} and ϕ ∈ ΦC,{P}. Let P ∈ {P} and let π be an irre-
ducible cuspidal automorphic representation of LP which belongs to ϕP . Let
χπ : AP(A)/AP (Q) → C

× be the central character of π, and let λπ ∈ ǎ
G
P be

the differential of the restriction of χπ to AP(R). By applying a Weyl group
substitution to P and π, we may assume λπ ∈ ǎ

G+
P . Let S be a set of non-

archimedean primes of Q which has a finite complement. We assume that π
is unramified at the places of S. Let v ∈ S. By [11, Theorem 2.3], we have an
ideal Iϕ,v ⊂ Hv associated to ϕ such that all Kv-spherical vectors in AC,{P},ϕ
are annihilated by some power of Iϕ,v. Recall the annihilator Iv ⊂ Hv of
the constant representation. If AC,{P},ϕ ∩ AJ ,I �= {0}, then we must have
Iϕ,v = Iv for all but finitely many places. We will verify that this implies
{P} = {Po} and ϕ = {w ·C2ρo}w∈W (Ao:G(Q)). By (5.12), this will complete
the proof of the theorem.

Let v ∈ S such that Iϕ,v = Iv. We recall Satake’s description of Hv. Let
Pv ⊂ Po be a minimal Qv-rational parabolic subgroup with Levi component
Lv. Let

ǎv = X∗(Pv)Qv ⊗Z R,

where X∗
Qv

are the characters defined over Qv, and let av be the dual of ǎv.
Let T v be the group of unramified characters of Lv(Qv), i.e., of continuous
characters χ : Lv(Qv) → C

× which are trivial on the projection of Pv(Qv)∩Kv

to Lv(Qv). The map

(ǎv)C → T v (5.13)
λ → χλ(l) = e〈HPv (l),χ〉

is surjective, and T v has the structure of a complex torus which is isomorphic
to (ǎv)C/Γv, where Γv is a lattice in iǎv. Let O(Tv) be the ring of algebraic
functions on the complex torus T v. The Weyl group W (Av : G(Qv)) of Av in
G(Qv) acts on Tv, and we have the Satake isomorphisms

SG(Qv) : Hv → O(T v)W
(
Av :G(Qv)

)

SLP(Qv) : Hv(LP ) → O(T v)W
(
Av :LP(Qv)

)

(cf. [8, Theorem 4.1]) for G and for the Levi components of standard parabolic
subgroups. Here Hv(LP ) is the Hecke algebra for LP(Qv), defined by the
projection of Kv ∩ P(Qv) to LP(Qv).
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Let Hv(LP) act on the Kv-spherical vector of π by multiplication by the
character (SLP(Qv)h)(tv) for tv ∈ T v. The W (Av : LP(Qv))-orbit of tv is
uniquely determined by π. Let t̃v ∈ ǎv be a lifting of tv. It is well-known that
the ideal Iv corresponds to the image of ρv in T v by (5.13), where ρv is one
half the sum of the positive roots of Av. If Iv = Iϕ,v, then the W (Av : G(Qv))-
orbit of that image must contain tv. By changing t̃v in its Γv-orbit, we may
assume

tv = wρv (5.14)

for some w ∈ W (Av : G(Qv)). Let ǎPv be defined in a similar way as ǎPo , and
let tv = tPv + tvP be the decomposition of tv according to ǎv = ǎPv ⊕ ǎP,v,
where ǎP,v ⊇ ǎP is the Qv-character group of P made into a real vector space.
By changing tv in its W (Av : LP(Qv))-orbit, we may assume that tPv belongs
to the closure of the positive Weyl chamber ǎ

P+
v .

Let Δv and ΔP
v be the same as in the proof of Proposition 4.3. For a root

α of Av, let nα be its multiplicity. If α is positive and reduced, then we have
the inequality

〈α̌, ρv〉 ≥ nα + 2n2α, (5.15)

for which equality occurs if and only if α is simple. This is easily verified by
comparing the expressions

sαρv = ρv − α〈α̌, ρv〉 = ρv −
∑

β>0
sαβ<0

nββ.

From (5.14) and (5.15), we get for α ∈ ΔP
v

∣∣〈α̌, tPv 〉
∣∣ = |〈α̌, tv〉|
≥ nα + n2α

= 〈α̌, ρPv 〉.

This implies tPv ∈ ρPv + ǎ
P+
v . By the boundedness of the matrix coefficients

of the unitary representation π, this may happen only if tπv = ρPv . But then
the local factor πv of π at v is multiplication by an unramified character of
L(Qv). Since this has to be the case at all but finitely many primes, weak
approximation proves that π must be one-dimensional. Since π is cuspidal,
this implies P = Po.

To show that π = Cρo , it remains to verify that tvPo = ρo. Fix a Weyl
group invariant scalar product on ǎv and consider the following inequality:

|tvPo |
2 = 〈tvPo , tv〉
≤ 〈tvPo , ρv〉
= 〈tvPo , ρo〉
≤ |tvPo | |ρo| . (5.16)
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The equalities are easy orthogonality relations. The inequality on the second
line follows from tv = wρv ∈ ρv − +ǎv, where +ǎv is the closed positive cone
spanned by the positive roots, plus the fact that by our assumption on π we
have tvPo = λπ ∈ ǎ

G+
o for the central character λ + π of π. The inequality

on the last line of (5.16) is the Cauchy-Schwarz inequality. We also have the
equality

|tvPo |
2 = |tv|2 −

∣∣tPov
∣∣2 = |ρv|2 −

∣∣ρPov
∣∣2 = |ρo|2 .

Comparing this with (5.16), we see that equality must occur on the last line
of (5.16). By Cauchy–Schwarz, this implies tvPo = ρo, and we have finally
verified that P = Po and π = Cρo . As was mentioned earlier, this completes
the proof. ��

Our next task is to determine the kernel of ΞG
Po . We start with a few facts

about the kernel of the operators τP
Po . The operator τG

Po is a G(A)-invariant
linear functional on IndG

P C2ρo and induces a duality

C∞(Po(A)\G(A)⊗ IndG
Po C2ρo → C

φ⊗ φ̃ → τG
Po(φφ̃).

With respect to this pairing, for any standard parabolic subgroup P with
dim aPo = 1, the orthogonal complement of C∞(P(A)\G(A)) is IndG

P ŠtLP(A).
For arbitrary P �= Po, the orthogonal complement of C∞(P(A)\G(A)) is the
kernel of τP . By Theorem 4.2 applied to C(LP ,Po/NP ,A)•, we have

C∞(P(A)\G(A)) =
⋂

Q⊂P
dim aQ

o =1

C∞(Q(A)\G(A)),

and the orthogonal complement of the intersection is the sum of the orthogonal
complements since any K-type occurs with finite multiplicity. We get

ker τP
Po =

∑

Q⊂P
dim aQ

o =1

IndG
Q ŠtLQ(A). (5.17)

We will now give the description of the kernel of ΞG
Po .

Theorem 5.2. We have

kerΞG
Po =

∑

P∈P

dim aP
o =1

IndG
P ŠtLP(A) ⊗ S(ǎGP)⊗ C2ρP . (5.18)

Proof. It is clear from (5.6) that the right-hand side of (5.18) is really con-
tained in the kernel of ΞG

Po . Conversely, let f ∈ IndG
Po S(ǎGo )⊗C2ρo belong to

the kernel of ΞG
Po . Define δP ∈ S(ǎGP) by



Topological Model for Eisenstein Cohomology 49

δP =
∏

α∈ΔP

ωα,

where ωα is defined by

〈ωα, β̌〉 =
{
{0} if β ∈ ΔP \ {α}
1 if α = β.

There is a unique decomposition

f =
∑

P∈P

f (P)δP

with
f(P) ∈ IndG

Po S(ǎGP)⊗ C2ρo .

Of course, the map f → f (P) is only a map of vector spaces. From the fact
that f ∈ kerΞG

Po we derive

(Id⊗ τP
Po)f

(P) = 0 ∈ IndG
P S(ǎGP)⊗ C2ρP . (5.19)

By (5.17) this implies

f (P)δP ∈
∑

Q⊆P
dim aQ

o =1

IndG
Q S(ǎGP)⊗ ŠtLQ(A) ⊗ C2ρQ

and proves (5.18).
Let T be a bijective map from the set of vectors ρP for P ∈ P to the set

{0; 1; . . . ; 2dim aG
o − 1} with the following property: If ρQ ∈ ρP − +ǎGo , then

T (ρP) ≤ T (ρQ). Here +ǎGo is the closed cone spanned by Δo. It easy to verify
the existence of such a function T . Let P(i) be the unique parabolic subgroup
with T (ρP(i)) = i. Then P(0) = Po.

It is a consequence of (5.6) that

ΞG
Pof =

∑

P
ΞG

P
(
(Id⊗ τP

Po)f
(P)δP

)
. (5.20)

We will prove (5.19) for P = P(i) by induction on i by an investigation of the
constant term of the Eisenstein series occurring in (5.20). Recall that for a
continuous function ψ on G(Q)\G(A), the constant term with respect to P is
defined by

ψP(g) =
∫

NP(Q)\NG(A)

ψ(ng) dn,

where the Haar measure dn is normalised by 1P = 1. The necessary facts
about the constant term of Eisenstein series are summarised in the following
lemma, which will be proved after the proof of Theorem 5.2 is complete.
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Lemma 5.3. There exists a finite set Wi of affine maps ǎP(i) → ǎo such that

(
EG

P(i)(φ, λ)
)
Po (g) =

∑

w∈Wi

(Ni(w, λ)φ) (g) e〈wλ+ρo,HPo (g)〉, (5.21)

where Ni(w, λ) is a meromorphic function from ǎP to the space of K-invariant
homomorphisms from C∞(P(A)\G(A)) to C∞(Po(A)\G(A)). If wi is defined
by

wi : ǎP(i) → ǎo

wiλ = λ− ρP
(i)

o ,

then wi ∈ Wi and Ni(wi, λ)φ = φ. Furthermore, if w ∈ Wj and if wρP(j) =
ρP(i) − ρP

(i)

o , then j ≤ i.

Let us assume that (5.19) has been proved for P = P(j) with j < i. If i = 0,
this assumption is void. In any case, the induction assumption implies that
the only summands in (5.20) which are possibly different from zero belong
to the parabolic subgroups P(j) with j ≥ i. As a consequence of (5.21), the
constant term of ΞG

Pof may be written as

(
ΞG

Pof
)
Po (g) =

∑

λ∈Λ
fλ(g) e〈λ+ρo,HPo (g)〉,

where Λ is a finite subset of ǎo and where fλ is a continuous function on G(A)
with the property that for any g ∈ G(A), the function fλ(pg) of p ∈ Po(A) is
a polynomial in HPo(p). Since f is in the kernel of ΞG

Po , we have fλ = 0 for
any λ.

Let N = dim a
G
P(i) , let α1, . . . , αN be the elements of ΔP(i) , and let ωi =

ωαi . We have a unique representation

(Id⊗ τP
Po)f

(P) =
∞∑

a1,...,aN=0

(
N∏

k=1

ωaii )⊗ fa1,...,aN

with fa1,...,aN ∈ IndG
P(i) C2ρP(i) . By the induction assumption, (5.20), the def-

inition of ΞG
P and Lemma 5.3, we have

f
ρP(i)−ρP(i)

o
(g) =

∞∑

a1,...,aN=0

(
N∏

k=1

(ai + 1)〈ωi, HPo(g)〉ai
)

fa1,...,aN (g).

This function vanishes identically if and only if fa1,...,aN = 0 for all choices of
the ai. This establishes (5.19) and completes the proof of the theorem. ��

Proof (of Lemma 5.3). The formula (5.21) is a general fact from the theory of
Eisenstein systems (cf. [15, §7] or the modern exposition [18, §IV]). In general,
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the theory of Eisenstein systems provides for the possibility of additional
polynomial factors of higher degree in the expression for the constant term.
Since this may happen only in the case of singular infinitesimal character, in
our case the expression for the constant term simplifies to (5.21).

To arrive at the assertion about Ni(wi, λ), we consider the partial Eisen-
stein series ER

P (φ, λ), which is defined as in (5.5), but with the summation
restricted to P(Q)\R(Q). As a general fact about Eisenstein systems, the con-
stant term of ER

P (φ, λ) is given as in (5.21), but with the summation restricted
to those w ∈ Wi whose linear part is the identity on ǎR. In the special case
R = P , where

EP
P (φ, λ) = e〈λ+ρP ,HP(·)〉 φ(·),

this expression for the constant term boils down to the assertion about
Ni(wi, λ).

Finally, the only Eisenstein series EG
P(φ, ρP ) which have an exponential

term of the form e〈2ρP(i) ,HP(i) 〉 in their constant terms are the Eisenstein
series starting from P = P(j) with j ≤ i. This fact is a consequence of our
condition on T and the proof of the main theorem in [9, §6]. The proof of
Lemma 5.3 is complete. ��

The description of the kernel of ΞG
Po is a little too complicated to use di-

rectly. Therefore, we will use it to get a resolution of the space of automorphic
forms by induced representations whose cohomology can be described easily.
This is achieved in two steps. In the first step, we consider the functor

FP =
{

IndG
P S(ǎGP)⊗ ŠtLP(A) ⊗ C2ρP if P �= Po

IndG
Po S(ǎGo )⊗ C2ρo if P = Po.

}
⊆ IndG

Po S(ǎGo )⊗ C2ρo .

The map F (G)P̃⊇P is given by the inclusion S(ǎGP̃) ⊂ S(ǎP), followed by the
inclusion

ŠtLP̃(A) ⊆ IndP̃
P ŠtLP(A) ⊗ C

2ρP̃P

which holds because of the description of ŠtG(A) as the orthogonal complement
of ∑

P⊃Po
C∞(P(A)\G(A)).

Proposition 5.4. The map ΞG
Po defines an isomorphism

Hdim aG
o (C∗ (F (G)•)) ∼= AJ ,I .

This is the only nonvanishing cohomology group of C∗ (F (G)•).

Proof. Let the functor F̃
•

be defined by F̃
P

= F (G)P if P ⊃ Po and

F̃
Po =

∑

P∈P

dim aP
o =1

IndG
P ŠtLP (A) ⊗ S(ǎGP)C2ρP .
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This is our expression for the kernel of ΞG
Po . It is therefore sufficient to prove

the acyclicity of the chain complex of F̃
•
.

We have a filtration of functors

Filk F̃
P

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

Q⊇P
dim aG

Q=k

IndG
P S(ǎGQ)⊗ ŠtLP(A) ⊗ C2ρP if P ⊃ Po

∑

Q∈P

dim aG
Q=k

IndG
P S(ǎGQ)⊗ ŠtLP(A) ⊗ C2ρP if P = Po

with quotients
(Filk /Filk−1 ) F̃

•
=

∑

R∈P

dim aG
R=k

M (R)•,

where

M(R)P =
{

0 if Q �⊆ R
S(ǎGR)⊗ IndG

R D(LR)P/NR if Q ⊆ R.

The acyclicity of the functors D(LR)• is the assertion of Theorem 4.5. This
implies the acyclicity of the quotients of the filtration of F̃

•
, and hence of F̃

•

itself. ��

If P ⊃ Po, then the cohomology of the representation F (G)P is still rather
mysterious. We construct a second resolution for AJ ,I by the bifunctor

G(G)PQ =
{

IndG
Q S(ǎGP)⊗ C2ρQ if Q ⊆ P

{0} if Q �⊆ P .

The map G(G)PQ̃⊆Q is given by τQ
Q̃ , and the map G(G)P⊆P̃

Q is given by the

inclusion S(ǎGP̃) ⊆ S(ǎGP).

Proposition 5.5. The map

IndG
Po S(ǎGPo)⊗ C2ρo = G(G)PoPo ⊂ Zdim aG

o (G•
•(G))

induces a surjection

IndG
Po S(ǎGPo)⊗ C2ρo → Hdim aG

o (C∗ (G(G)••))

whose kernel is equal to the kernel of ΞG
Po . This gives us an isomorphism

Hdim aG
o (C∗ (G(G)••)) ∼= AJ ,I .

The other cohomology groups of C∗ (G(G)••) vanish.
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Proof. It suffices to construct an isomorphism

H l
(
C∗ (G(G)P•

))
=
{

F (G)P if l = 0
{0} if l > 0 (5.22)

which is functorial in P . Let us fix P . Then

G(G)P• = IndG
P S(ǎGP)⊗M• ⊗ C2ρP ,

where

MQ =
{

IndP
Q C2ρPQ

if Q ⊆ P
{0} if Q �⊆ P .

If Q ⊆ P , then MQ is in duality with C (LP , (Po/NP),A). An isomorphism
(5.22) is therefore given by Theorem 4.2. It is easy to see that this isomorphism
is functorial in P . ��

6 Construction of the isomorphism of equation (3.4)

Our final goal is to compute the (g,K)-hypercohomology of the chain complex
C∗(G(G)••) and to relate it to the topological model explained in Section 3.
We first compute H∗

(mG,Ko∞)

(
C∗ (G(G)•Q

))
for a given parabolic subgroup Q.

We have the projection

C∗
(mG,Ko∞)

(
C∗ (G(G)•Q

))
→ C∗

(mG,Ko∞)

(
G(G)GQ

)

= C∗
(mG,Ko∞)

(
IndG

Q C2ρQ

)
. (6.1)

By Frobenius reciprocity we have

C∗
(mG ,Ko∞)

(
IndG

Q C2ρQ

)
∼=

(
IndG(Af )

Q(Af )
C2ρQ

)
⊗
(
HomKo∞∩Q(R) (Λ∗(q ∩mG/q ∩ k),C)

)
, (6.2)

where the G(Af )-action on the second factor is trivial. The second factor
carries the differential of the standard complex for computing
(q ∩mG ,Ko

∞ ∩ Q(R))-cohomology. The embedding

det(aGQ ⊕ nQ)⊗ Λ∗(mQ/mQ ∩ k) ⊂ Λ∗(q ∩mG/q ∩ k)[dim a
G
Q + dim nQ]

defines a projection

pQ : HomKo∞∩Q(R) (Λ∗(q ∩mG/q ∩ k),C) (6.3)

→ HomKo∞∩Q(R)

(
Λ∗(mQ/mQ ∩ k)⊗ det(aGQ ⊕ nQ),C

)
[− dim a

G
Q − dim nQ].

This is a homomorphism of chain complexes, and the differential of its target
vanishes. Let H(G)Q

∗ be the graded vector space
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H(G)Q
∗ =

(
IndG(Af )

Q(Af ) C2ρQ

)
(6.4)

⊗HomKo∞∩Q(R)

(
Λ∗(mQ/mQ ∩ k)⊗ det(aGQ ⊕ nQ),C

)
[− dim a

G
Q − dim nQ],

which can also be viewed as a chain complex with zero differential. The com-
position of (6.1), (6.2), and (6.3) defines a projection

C∗
(mG,Ko∞)

(
C∗ (G(G)•Q

))
→ H(G)Q

∗
. (6.5)

Proposition 6.1. The projection (6.5) defines an isomorphism on cohomol-
ogy.

Proof. By Frobenius reciprocity and by Kostant’s theorem on n-homology
([27, Theorem 9.6.2] or [26, Theorem 3.2.3]), there is an isomorphism

H∗
(mG,Ko∞)

(
IndG

Q S(ǎGP)⊗ C2ρQ

)
[dim nQ]

∼= IndG(Af )

Q(Af )

({
H∗

(mQ,Ko∞∩Q(R))(C)⊗H∗
aG
Q

(
S(ǎGP)

)
⊗ det n

−1
Q
}
⊗ C2ρQ

)

∼= IndG(Af )

Q(Af )

({
H∗

(mQ,Ko∞∩Q(R))(C)⊗ Λ∗(ǎPQ)⊗ det n
−1
Q
}
⊗ C2ρQ

)
(6.6)

∼= IndG(Af )

Q(Af )

({
H∗

(mQ,Ko∞∩Q(R))(C)⊗E(Q)P
∗ ⊗ det n

−1
Q
}
⊗ C2ρQ

)
,

where the factors in curved braces have trivial Q(Af )-action. We have used
the following isomorphism, which is easily constructed:

H∗
aG
Q

(
S(ǎGP)

) ∼= Λ∗(ǎPQ) ∼= E(Q)P
∗
,

where E(Q)P = Λ∗(ǎPQ) was considered at the end of Section 4. This iso-
morphism, and hence also (6.6), is functorial with respect to P . (Recall that
E(Q)P̃⊆P∗

is defined by the projection ǎ
Q
P → ǎ

Q
P̃ .)

If P = G, then the composition of the isomorphism (6.6) with the projec-
tion

E(Q)G = Λ∗(ǎGQ) → det(aGQ)−1[− dim a
G
Q] (6.7)

is precisely the map defined by (6.2) and (6.3) on cohomology. By Lemma 4.6,
the projection (6.7) defines an isomorphism

H∗
(
C∗
(
IndG(Af )

Q(Af )

({
H∗

(mQ,Ko∞∩Q(R))(C)⊗E(Q)P
∗ ⊗ det n

−1
Q
}
⊗ C2ρQ

)))

∼= IndG(Af )

Q(Af )

({
H∗

(mQ,Ko∞∩Q(R))(C)⊗E(Q)P
∗ ⊗ det(aGQ ⊕ nQ)−1

}
⊗ C2ρQ

)

[− dim a
G
Q],

which proves our claim. ��
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We now have to determine the structure of a covariant functor on H(G)Q
∗

such that (6.5) becomes functorial in Q. We have to introduce some new
notation. For any Q, let the Haar measure on K∞ ∩ Q(R) be normalized by∫

K∞∩Q(R)
dk = 1. Then there is a unique homomorphism

τ
Q(Af )

P(Af ) : IndG(Af )

P(Af )
C2ρP → IndG(Af )

Q(Af ) C2ρP

such that we have, for the standard model of the induced representation in
the space of functions on the adelic group,

(τQ
P f)(gfg∞) = τ

Q(Af )

P(Af )
e〈HQ(g∞),2ρQ〉

∫

K∞∩Q(R)

f(gfkk∞) dk, (6.8)

where gf ∈ G(Af ) and g∞ = p∞k∞ ∈ G(R) with p∞ ∈ P(R) and k∞ ∈ Ko
∞.

It is easy to see that the right-hand side of (6.8) is independent of the choice
of the Iwasawa decomposition g∞ = p∞k∞.

It is clear that (6.1) is functorial with respect to Q. Let Q̃ ⊇ Q. Since
q̃ ∩mG/q̃ ∩ k = q ∩mG/q ∩ k, the formula

(
iQ̃⊇Qφ

)
(λ) =

∫

K∞∩Q̃(R)

φ(kλ) dk (6.9)

for λ ∈ Λ∗(q̃ ∩mG/q̃ ∩ k) and

φ ∈ HomKo∞∩Q(R)(q̃ ∩mG/q̃ ∩ k,C) = HomKo∞∩Q(R)(q ∩mG/q ∩ k,C)

defines a map

iQ̃⊇Q : HomKo∞∩Q(R)(q ∩mG/q ∩ k,C) → HomKo∞∩Q̃(R)(q̃ ∩mG/q̃ ∩ k,C).

It follows from (6.8) that the isomorphism (6.2) is functorial in Q if the tran-

sition homomorphism for its target is defined by τ
Q̃(Af )

Q(Af ) ⊗ iQ̃⊇Q. It is clear
that

iQ̃⊇Q HomKo∞∩Q(R)(mQ/q ∩ k⊗ det(aGQ ⊕ nQ),C)

⊆ HomKo∞∩Q̃(R)(mQ̃/q̃ ∩ k⊗ det(aGQ̃ ⊕ nQ̃),C).

Therefore, we may define H(G)Q̃⊇Q by τ
Q̃(Af )

Q(Af ) ⊗ iQ̃⊇Q. To verify that (6.3) is
functorial in Q, we have to verify that pQ̃iQ̃⊇Q vanishes on the kernel of pQ.
This follows from the following lemma.

Lemma 6.2. Let H be a semisimple algebraic group over R, K ⊂ H(R) a
maximal compact subgroup, and let P = MAN be a R-parabolic subgroup of
H. Let h, p, m, a, n be the Lie algebras of H(R), P(R), M(R), A(R), N (R).
If λ ∈ Λia⊗ det n⊗ Λ∗(m/k ∩m) ⊂ Λ∗(h/h ∩ k) for i < dim a, then

∫

Ko

kλ dk = 0

in Λ∗(h/h ∩ k).
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Since (6.1), (6.2) and (6.3) are natural in Q, the same is true for their
composition (6.5). Therefore, Proposition 6.1 together with Proposition 5.5
and the proven Borel conjecture imply the following theorem.

Theorem 6.3. Let H(G)Q
∗ be defined by (6.4), and let H(G)Q̃⊇Q =

τ
Q̃(Af )

Q(Af ) ⊗ iQ̃⊇Q. Then we have an isomorphism of G(Af )-modules

Hk(G,C)I ∼= Hk−dim aG
o
(
C∗ (H(G)•

∗))

which respects the canonical real structures on its source and its target.

It remains to prove Lemma 6.2.

Proof (of Lemma 6.2). By Poincare duality, it suffices to verify that

φ
(
Λj(a)⊗ Λ∗(m/m ∩ k)

)
= 0 (6.10)

for j > 0 and any φ ∈ HomKo (Λ∗(h/k),C). Recall the definition of the com-
pact homogeneous space X

(c)
H and of the compact duals H(c), M(c), and A(c)

from the introduction. Then (6.10) admits a topological reformulation

im
(
H∗(X(c)

H ,C) → H∗(X(c)
M ×A(c)(R),C)

)
⊆ H∗(X(c)

M ,C) (6.11)

in terms of the pull-back of cohomology classes from X
(c)
H to X

(c)
M ×A(c)(R).

Let J be an integer, and let

fJ : A(c)(R)×X
(c)
M → X

(c)
H

fJ(a, x) = aJx

be defined by the action of A(c)(R) on X
(c)
H and the embedding X

(c)
M ⊂ X

(c)
H .

To verify (6.11), it suffices to take some J �= 0 and to verify

im(f∗
J ) = im(f∗

0 ) (6.12)

for the pull-back on cohomology with complex coefficients. For the right-hand
side of (6.12) is always contained in the right-hand side of (6.11), and for
J �= 0 the left-hand sides of (6.11) and (6.12) agree.

As H was supposed to be semisimple, the fundamental group of H(c)(R)
is finite. Since A(c)(R) is a product of circles, if J is divisible by a certain
positive integer, the map

A(c)(R) → H(c)(R)
a → aJ

will be homotopic to the identity. But then f0 and fJ are homotopic, and this
implies (6.12). The proof of Lemma 6.2 is complete. ��
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For those who are only interested in an algebraic formula for H∗(G,C)I ,
Theorem 6.3 would be the final result of this paper. It remains to derive the
isomorphism (3.4) from this theorem.

Let

Ȟ(G)Q
∗

= C∞(Q(Af )\G(Af ))⊗HomKo∞∩Q(R)(Λ∗(mQ/mQ ∩ k),C),

where the transition maps Ȟ(G)Q⊇Q̃∗
are given by the embedding

C∞(Q(Af )\G(Af )) ⊆ C∞(Q̃(Af )\G(Af ))

and the restriction to mQ̃

HomKo∞∩Q(R)(Λ∗(mQ/mQ ∩ k),C) → HomKo∞∩Q̃(R)(Λ
∗(mQ̃/k ∩mQ̃),C).

If P is a standard parabolic subgroup, then Ko
∞ ∩ Po(R) meets every con-

nected component of K∞ ∩ P(R) by Proposition 2.1. Consequently, there is
a canonical isomorphism between

H∗
(
C∗
(
H̃(G)•

∗))πo(K∞∩Po(R))

and the invariants in the hypercohomology of the complex associated to the
functor A(G,C)P

H∗
(
C∗
(
H̃(G)•

∗)) ∼= H∗
c (G,C)I ∼= H∗(X(c)

MG , C
∗(A(G, C))).

This isomorphism identifies the canonical real subspace of its source with

ipHp(X(c)
MG , C

∗(A(G, C))).

To construct (3.4), we construct a duality between H̃(G)•
∗

and H(G)•
∗.

Let o be an orientation of the real vector space mG/k. Multiplication by a
square root i of −1 defines an isomorphism between mG/k and the tangent
space of X

(c)
MG at the origin. Therefore, o and i define an orientation oi of

the differentiable manifold X
(c)
MG . There exists δo ∈ idim(mG/k) det(mG/k) such

that ∫ oi

X
(c)
MG

δo = idim(mG/k)

if δo is viewed as a real dim(mG/k)-form on X
(c)
MG . We have

o−i = (−1)dim(mG/k)oi,
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hence δo is independent of the choice of i. Then δo defines a duality

HomKo∞∩Q(R)(Λ∗(mQ/mQ ∩ k)⊗ det(aGQ ⊕ nQ),C)

⊗HomKo∞∩Q(R)(Λ∗(mQ/mQ ∩ k),C)

→ C[− dim(mG/k)],

and τqfQ
G(Af) defines a duality between IndG(Af )

Q(Af ) C and IndG(Af )

Q(Af ) CtrQ. We
get a duality

H̃(G)•
∗
H(G)•

∗ → C[− dim(mG/k)] (6.13)

which defines an isomorphism (3.4) independent of o; (6.13) changes its sign
if o is changed. Furthermore, (6.13) maps the real subspaces of H and Ȟ
to idim(mG/k)R, whence the assertion about real subspaces in Theorem 3.1
applies.

7 Some examples

7.1 Ghost classes in the image of the Borel map

It is rather easy to use the topological model to explicitly compute the kernel
of the Borel map

I∗G(R),Ko∞
→ H∗(G,C).

This allows us to give new examples of ghost classes. Recall that a cohomology
class of G is called a ghost class if it trivially restricts to each boundary
component of the Borel–Serre compactification and if its restriction to the
full Borel–Serre boundary is not zero. This notion was coined by Borel. The
first example of a ghost class was constructed by Harder in the cohomology
of GL3 over totally imaginary fields, using Eisenstein series starting from
an algebraic Hecke character whose L-function vanishes at the center of the
functional equation. Our computation of the kernel of the Borel map will make
it clear that ghost classes abound in the image of the Borel map, at least for
most groups of sufficiently high rank.

Recall that H∗
c (G,C)I can be computed as the cohomology of the complex

of graded vector spaces C∗(Ȟ
•∗

). The map

C∗(Ȟ
•∗

) → Ȟ
G∗ → I∗G(R),Ko∞

defines a homomorphism

H∗
o (G,C)I → I∗G(R),Ko∞

(7.1)

which is easily identified with the Poincare dual of the Borel map. It can
also be viewed as the restriction to the subspaces which are annihilated by
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the Hecke ideal I of the map from cohomology with compact support to L2-
cohomology. By the definition of the differential of the complex C∗(Ȟ

•∗
), the

image of (7.1) is the space

(I∗G(R),Ko∞
)Image = ker

(
I∗G(R),Ko∞

→
⊕

P∈P

dim aG
P=1

I∗MP(R),Ko∞∩P(R)

)
. (7.2)

In other words, a cohomology class of the constant representation of G is
in the image of the cohomology with compact support if and only if its re-
striction to the cohomology of the constant representation of any maximal
Levi component vanishes. By Poincare duality, the kernel (I∗G(R),Ko∞

)Kernel of
the Borel map is equal to the orthogonal complement of (I∗G(R),Ko∞

)Image. Let
(I∗G(R),Ko∞

)Ghost be the space of all invariant forms i ∈ I∗G(R),Ko∞
such that, for

any parabolic subgroup P with dim a
G
P = 1, the image of j in

I∗MP (R),Ko∞∩P(R)

belongs to
(I∗MP (R),Ko∞∩P(R))Kernel.

Then the space of ghost classes in the image of the Borel map is isomorphic
to (IGhost/IImage + IKernel)∗G(R),Ko∞

. This follows from: the fact ([20, 1.10])
that after identifying (g,K)- and de Rham-cohomology, the homomorphism
defined on (g,K)-cohomology, by taking the constant term along P , corre-
sponds to restriction to the Borel–Serre boundary component belonging to P ;
and (7.3) as presented below in Proposition 7.2.

Let us explain this a little more for the case of groups over totally imag-
inary fields. That is, let G be obtained by Weil restriction from a totally
imaginary field. Then X

(c)
G has a group structure. Therefore, its cohomology

I∗G(R),Ko∞
is a Hopf algebra. By the Hopf structure theorem, it is an exterior

algebra over a graded space E∗(G) of primitive elements, which are of odd
order. The same is true for all Levi components of parabolic subgroups of G.
Let

E∗
Top(G) = ker

(
E∗(G) →

⊕

P∈P

dim aG
P=1

E∗(MG)
)

and

E∗
Ghost(G) = ker

(
E∗(G) →

⊕

P∈P

dim aG
P=2

E∗(MG)
)
.

Then
(
I∗G(R),Ko∞

)
Image

= E∗
Top(G) ∧ Λ∗(E∗(G)

)

(
I∗G(R),Ko∞

)
Kernel

= det
(
E∗

Top(G)
)
∧ Λ∗(E∗(G)

)
(
I∗G(R),Ko∞

)
Ghost

= det
(
E∗

Ghost(G)/E∗
Top(G)

)
∧ Λ∗(E∗(G)/E∗

Top(G)
)
.
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For instance, for SLn over a totally imaginary field K, we have primitive
generators λ

(v)
2 ,. . . , λ(v)

n for each v in the set V∞
K

of archimedean primes of K,
with the relation

∑
V∞

K

λ
(v)
1 = 0. The degree of λ

(v)
j is 2j − 1. The following

fact is an obvious consequence of this discussion.

Theorem 7.1. Then an invariant form is in the image of cohomology with
compact support if and only if it is a sum of monomials which contain one of
the classes λ

(v)
n . It is in the kernel of the Borel map if and only if it is divisible

by
∧

V∞
K

λ
(v)
n . It defines a ghost class if and only if it is a sum of monomials

which contain all of the classes λ
(v)
n−1 but none of the classes λ

(v)
n .

The space E∗(G) is known for groups over totally imaginary fields by the
known calculation of the cohomology of compact Lie groups. (See [1, §11] for
a statement of the result and for references, and [12, §VI.7] for the case of
the classical groups.) Therefore, the spaces (I∗G(R),Ko∞

)Image, Kernel, Ghost are
at least in principle known for groups over totally imaginary fields.

Let us also formulate the result about the kernel of the Borel map and
about ghost classes for SLn over a field K which has real places. We first have
to formulate the necessary facts about the cohomology of SU(n,R)/ SO(n,R).
They can be obtained from the consideration of the Leray spectral sequence
for the projection SU(n,R) → SU(n,R)/ SO(n,R), either by hand or by the
general theory (cf. [12, XI.4.4.]).

Proposition 7.2. If n is odd, then the cohomology with complex coefficients
of SU(n,R)/ SO(n,R) is an exterior algebra with generators λ̃3, λ̃5,. . . , λ̃n,
where deg λ̃i = 2i − 1. Furthermore, λ̃i can be obtained from the primitive
element λi in the cohomology of SU(n,R) by pull-back via the map

SU(n,R)/ SO(n,R) → SU(n,R) (7.3)
ġ → g · gT.

If n is even, then the cohomology of SU(n,R)/ SO(n,R) is an exterior algebra
generated by elements λ̃3,. . . , λ̃n−1 obtained in the same way as above, and by
a class ε in degree n, which is the Euler class of the canonical n-dimensional
orientable real bundle on SU(n,R)/ SO(n,R).

If
∑k
i=1 ni ≤ n, then the restriction of λ̃l to

k∏

i=1

SU(ni,R)/ SO(ni,R) ⊂ SU(n,R)/ SO(n,R) (7.4)

is ∑

1≤i≤k
ni≤l

λ̃
(i)
l ,

where λ̃
(i)
l is the copy of λ̃l for the i-th factor in (7.4). If n is even, then

the restriction of the Euler class ε to (7.4) can be described as follows.
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If n =
∑k

i=1 ni and if all the ni are even, then the restriction of ε is
given by

ε(1) ∧ . . . ε(k),

where εi is the copy of ε for the i-th factor in (7.4). If n <
∑k
i=1 ni or if some

of the ni are odd, then the restriction of the Euler class is zero.

Now let K be a field which has at least one real place. Let G be SLn
over K. If n is odd, then the space of invariant forms is an exterior algebra
with generators λ̃

(u)
3 , λ̃

(u)
5 ,. . . , λ̃

(u)
n for the real places u and λ

(v)
2 ,. . . ,λ(v)

n for
the complex places v (if there are any complex places). A monomial in these
generators belongs to (I∗G(R),Ko∞

)Image if and only if it contains one of the

generators λ̃
(u)
n for a real place u or one of the generators λ

(v)
n for a complex

place v. It belongs to the kernel of the Borel map if and only if it is divisible
by ∧

u real

λ̃(u)
n ∧

∧

v imaginary

λ(v)
n .

If n is even, then I∗G(R),Ko∞
is an exterior algebra with generators λ̃

(u)
3 ,

λ̃
(u)
5 ,. . . , λ̃(u)

n−1 and ε(u) for each real place u and λ
(v)
2 ,. . . , λ(v)

n for the complex
places v. A monomial in these generators belongs to (I∗G(R),Ko∞

)Image if and
only if it contains one of the following factors:

• λ
(v)
n for a imaginary place v;

• ε(u) ∧ λ̃
(w)
n−1 for real places u and w;

• or ε(u) ∧ λ
(v)
n−1 for a real place u and an imaginary place v.

A monomial belongs to the kernel of the Borel map if and only if it contains
at least one of the following two factors:

∧

u real

λ̃
(u)
n−1 ∧

∧

v imaginary

(λ̃(u)
n ∧ λ̃

(u)
n−1)

or
∧

u real

ε(u) ∧
∧

v imaginary

λ(v)
n ,

where a product over the set of imaginary places is supposed to be one if the
field is totally real. In particular, if n > 2 is even and if K is totally real, then
(I∗G(R),Ko∞

)Image does not contain (I∗G(R),Ko∞
)Kernel completely.

We can use this to describe all ghost classes in the image of the Borel map.
If n is odd, then a monomial in the generators of I∗G(R),Ko∞

is a ghost class if

and only if it contains all the generators λ̃
(u)
n−2 for all the real places u and all

the generators λ
(v)
n−1 and λ

(v)
n−2 for all the imaginary places v, but none of the

generators λ̃
(u)
n or λ

(v)
n . If n = 3, this means that there are no ghost classes

in the image of the Borel map. (Recall our assumption that K is not purely
imaginary.)
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If n is even, then a monomial μ in the generators of I∗G(R),Ko∞
defines

a ghost class if and only if at least one of the following four conditions is
satisfied:

• K is not totally real, and μ contains all the generators λ
(v)
n−1 for v complex

and λ̃
(u)
n−1 for u imaginary, but none of the classes λ

(v)
n nor any Euler class

ε(u);
• K is not totally real, and μ contains all the generators ε(u) for u real and

λ
(v)
n−2 for v imaginary, but none of the generators λ

(v)
n ;

• n ≥ 6 and K is not totally real, and μ contains at least one of the generators
ε(u) and all of the generators λ̃

(u)
n−3, λ

(v)
n−3 and λ

(v)
n−2, but none of λ(v)

n , λ(v)
n−1

or λ̃
(u)
n−1;

• or n ≥ 6 and K �= Q is totally real, and μ contains at least one but not all
of the generators ε(u) and all of the generators λ̃

(u)
n−3, but none of λ̃

(u)
n−1.

If n = 4 and K is totally real or if n > 4 is even and K = Q, this means that
there are no ghost classes in the image of the Borel map.

In our description of ghost classes, we have used the following fact1.

Proposition 7.3. Let P be a standard parabolic subgroup. Then the image of
the restriction map

H∗
mG,K∞(C) → H∗

mP+n,K∞∩P(R)(C)

is contained in H∗
mP+nP ,K∞∩P(R)(C) ⊂ H∗

mP+n,K∞∩P(R)(C).

Proof. By an easy induction argument, it suffices to prove this assertion
for maximal proper Q-parabolic subgroups. In this case, it follows from
Lemma 7.4 below that

H∗
mP+n,K∞∩P(R)(C) ∼= H∗

mP+n,K∞∩P(R)(C)⊕H∗−dim nP
mP+n,K∞∩P(R)(det nP),

and it follows from (6.2) that the restriction of an element of H∗
mG,K∞(C)

never has a nonvanishing projection to the second summand. ��

Lemma 7.4. Let P be a maximal proper Q-parabolic subgroup of G. Then

H∗(nP ,C)MP = C⊕ det nP [− dimnP ]. (7.5)

Proof. Let h be a Cartan subalgebra of g which contains ao and is contained
in ao ⊕ mP . Let B ⊆ Po be a Borel subgroup defined over C with h ⊆ b,
and let Δη be the set of simple positive roots of h determined by B. This set
decomposes according to the restrictions to ao:

Δh =
⋃

a∈Δo∩{0}
Δh,α.

1I am indebted to A. Kewenig and T. Rieband for pointing out that this is not
self-evident.
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By a theorem of Kostant ([27, Theorem 9.6.2] or [26, Theorem 3.2.3])

H∗(nP ,C) ∼=
∑

w∈Ω(h,g)

w−1Δ
mP
h >0

Fwρh−ρh [−�(w)]. (7.6)

In fact, it follows from the proof given in the above references that (7.6) even
holds in the derived category of (mP ,K∞ ∩P(R))-modules. This implies the
splitting of the Leray spectral sequence, which will be used below. Since both
summands on the right-hand side of (7.5) are accounted for by this formula,
it suffices to show that there are at most two w for which the corresponding
summand in (7.6) contributes to (7.5).

Indeed, if the summand belonging to w in (7.6) contributes to (7.5), then

〈α̌, wρh〉 = 〈α̌, ρh〉 = 1 (7.7)

for all α ∈ ΔmP
h and

〈α̌, wρh〉 =
〈
β̌, wρh

〉
(7.8)

for α, β ∈ Δh,γ , where Δo = ΔP
o ∪ {γ}. The first of these conditions implies

that w−1α is not only positive but also a simple positive root. It follows from
the second condition, (7.8), either w−1Δh,γ > 0 or w−1Δh,γ < 0. In the first
case, w−1 maps every positive root to a positive root, and w is the identity.
In the second case, let γ be a root of h in nP . Then γ = γ′ + γ′′, where γ′

is a linear combination of elements of Δh,γ with nonnegative coefficients, and
γ′′ is a linear combination of elements of ΔP

h . By our assumption, w−1γ′ is a
linear combination of simple roots with nonpositive coefficients. Since γ′ does
not vanish on aP , it is not a linear combination of elements of ΔP

h . Therefore,
there is an element α ∈ Δh−w−1ΔP

h which occurs with a negative coefficient
in the representation of w−1γ′ as a linear combination of the elements of Δh.
Since w−1γ′′ is a linear combination of the elements of w−1ΔP

h ⊂ Δh, this
means that α occurs with a negative coefficient in the representation of w−1γ
as a linear combination of positive roots. But this means that w−1 maps all
positive roots of h which do not occur in lP to negative roots. Therefore, the
length of w is the largest possible, and the contribution of w to (7.6) is in
the highest possible degree, which is one-dimensional and coincides with the
second summand in (7.5) ��

7.2 SLn over imaginary quadratic fields

Let K be an imaginary quadratic field, and let G = resK

Q
SLn. We want to

explicitly compute H∗
c (G,C)I . We will directly use the complex C∗ (Ȟ(G)•∗

)
.

Let us first describe this complex explicitly.
Recall that the cohomology of the constant representation of SLn over an

imaginary quadratic field is the exterior algebra with generators λ2, . . . , λn.
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The degree of λn is 2n−1, and, using the coalgebra structure of the cohomol-
ogy of X

(c)
G = SU(n,C) coming from the group law, λn is characterised up to

multiplication by a nonvanishing number as the primitive element in degree
2n− 1. We will assume that for k ≤ l < n, the restriction of λk on SLn is λk
on SLl.

Let the minimal parabolic subgroup be the stabilizer of the full flag V1 ⊂
V2 ⊂ . . . ⊂ Vn = K

n. Then any standard parabolic subgroup P is the stabilizer
of a flag Vi1 ⊂ Vi2 ⊂ · · · ⊂ ViK for some sequence 0 < i1 < i2 < · · · < iK = n.
Then

MP =
K∏

l=1

ResK

Q SLil−il−1 , i0 : = 0

hence the cohomology of X
(c)
MP is an exterior algebra with generators

λ
(1)
2 , . . . , λ

(1)
i1

, λ
(2)
2 , . . . , λ

(2)
i2−i1 , . . . , λ

(K)
2 , . . . , λ

(K)
iK−iK−1

,

where the supercript (l) stands for the l-th simple factor of the Levi compo-
nent. If il − il−1 = 1, there is primitive element of H∗(MG) belonging to the
l-th factor. Furthermore, the restriction from X

(c)
G to X

(c)
MP of the primitve

generator λk is given by

res
X

(c)
G

X
(c)
MP

λk =
∑

il−il−1≥k
λ

(l)
k . (7.9)

Finally,

K∞ ∩ P(R) = S(U(i1)×U(i2 − i1)× · · · ×U(iK − iK−1))

is connected, hence its group of connected components does not interfere with
the computation of the functor Ȟ(G)•∗. Therefore, we get an explicit descrip-
tion of the functor Ȟ(G)•∗ which we now want to describe.

Let Ln(K) be the set of functions

l : {2, . . . , n} → {0, 1, . . .}

such that ∞∑

j=1

max {k |l(k) ≥ j } ≤ n. (7.10)

If the parabolic subgroup P corresponds to 0 < i1 < · · · < iK = n, let Yl,P
be the set of functions

y : {(k, l) |2 ≤ k ≤ n, 1 ≤ l ≤ l(k)} → {1, . . . , k}

with the property that
iy(k,l) − iy(k,l)−1 ≥ k (7.11)
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and
0 < y(k, 1) < y(k, 2) < · · · < y(k, l(k)). (7.12)

Note that Yl,P is not functorial with respect to P . Let P̃ ⊇ P , y ∈ Yl,P ,
ỹ ∈ Yl,P̃ . Let P belong to the sequence 0 < i1 < · · · < iK = n and let P̃
correspond to 0 < ĩ1 < · · · < ĩK̃ = n. Then {ĩ1, . . . , ĩK̃} ⊆ {i1, . . . , iK}. We
will write ỹ � y if

ĩỹ(k,l)−1 < iy(k,l) ≤ ĩy(k,l). (7.13)

It is clear that for given P , P̃, and y there is at most one ỹ with ỹ� y. Let IP
l

be the vector space with base Yl,P . Then IP
l is a contravariant functor from

P to the category of vector spaces if we put for ỹ ∈ Yl,P̃ ⊂ (IP)l

IP̃⊇P
l (ỹ) =

∑

y ∈ Yl,P
ỹ � y

y. (7.14)

By (7.9), the map

IP
l [− deg l] → Ȟ(G)P∗

y →
n∧

k=2

l(k)∧

l=1

λ
y(k,l)
k ,

where

deg l =
n∑

k=2

(2k − 1)l(k) (7.15)

is a functormorphism. We get a direct sum decomposition

Ȟ(G)P∗ ∼=
⊕

l∈Ln(K)

IP
l [− deg l]⊗ C∞(P(Af )\G(Af )). (7.16)

If Kf is a good maximal compact subgroup of G(Af ), we also get a direct
sum decomposition for spherical vectors

(Ȟ(G)P∗)Kf ∼=
⊕

l∈Ln(K)

IP
l [− deg l]. (7.17)

Let us first formulate our result for spherical vectors in the cohomology.

Theorem 7.5. For l ∈ Ln(K), e ∈ {0, 1}, and N ≤ 0, let XN,e,l be the set
of ordered (N + 1)-tuples x = (X0, . . . , XN ) of subsets of {2, . . . , n} with the
following properties:

• Each number k with 2 ≤ k ≤ n belongs to precisely l(k) of the sets Xi;
• We have

N∑

i=0

max #{Xi} = n− e.
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If l = 0, we put XN,e,l = ∅. Then for each x ∈ XN,e,l, H∗(C∗(I•
l )) has a

generator {x} in degree N + e, and we have

Hi(C∗(I•
l )) =

1⊕

e=0

⊕

x∈Xi−e,e,l

C · {x}. (7.18)

Consequently,

Hj
c (G,C)I ∼=

⊕

l∈Ln(K)

1⊕

e=0

⊕

x∈Xj−e−deg l

C · {x}.

Moreover, let the ordering ≺ on the roots which was used to define the complex
C∗(F •) be

x1 − x2 ≺ x2 − x3 ≺ · · · ≺ xn−1 − xn.

Then for x = (X0, . . . , XN ) ∈ XN,0,l a representative of the cohomology class
{x} is given by the element

N∧

i=0

#(Xi)∧

j=2
j∈Xi

λ
(i)
j (7.19)

in the cohomology of X
(c)
MP , where P ∈ P is the stabilizer of the standard flag

of vector spaces with dimensions

0 < #(X0) < #(X0) + #(X1) < · · · <
N−2∑

i=0

#(Xi) <

N−1∑

i=0

#(Xi) = n.

If x = (X0, . . . , XN ) ∈ XN,1,l and if 0 ≤ k ≤ N + 1, then a representative of
the cohomology class {x} is given by the element

(−1)k
k−1∧

i=0

#(Xi)∧

j=2
j∈Xi

λ
(i)
j ∧

N∧

i=k

#(Xi)∧

j=2
j∈Xi

λ
(i+1)
j (7.20)

in the cohomology of X
(c)
MP , where P ∈ P is the stabilizer of the standard flag

of vector spaces with dimensions

0 < #(X0) < #(X0) + #(X1) < · · · <
k−1∑

i=0

#(Xi)

< 1 +
k−1∑

i=0

#(Xi) < · · · 1 +
N−2∑

i=1

#(Xi) < 1 +
n−1∑

i=1

#(Xi) = n.
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For instance, if n = 2, then the only spherical vector in H∗
c (G,C)I is the

volume form in degree 2. This is in good keeping with the results of Harder for
SL2 and also with the computation of R. Staffeldt [25, Theorem IV.1.3.] which
implies that H∗(SL2(Z[i]),C) vanishes in positive dimension. In particular,
there are no harmonic cusp forms for SL2(Z[i]). If n = 3, then H∗

c (G,C)I
contains the following three spherical vectors:

• In degree 4, the cohomology class belonging to

l(k) =
{

1 if k = 2
0 otherwise

and x =
{
{2}
}
∈ X0,1,l;

• In degree 5, the cohomology class belonging to

l(k) =
{

1 if k = 3
0 otherwise

and x =
{
{3}
}
∈ X0,0,l (This class maps to λ3 in I∗G(R),K∞ .);

• And in degree 8, the volume form belonging to

l(k) =
{

1 if k = 2 or k = 3
0 otherwise

and x =
{
{2, 3}

}
∈ X0,0,l.

In the case K = Q(i), this can be compared with the computation by
R. Staffeldt ([25, Theorem IV.1.4.] combined with the Borel–Serre duality
theorem [3, Theorem 11.4.1.]). It turns out that in this case all cohomology
classes of SL3(Z[i]) can be generated by Eisenstein series starting from the
constant representation or by the constant representation itself. In particular,
there are no harmonic cusp forms modulo SL3(Z).

7.3 Homotopy type of a poset of partitions

As the main combinatorial tool in our computation of H∗
c (G,C)I for GLn over

imaginary quadratic fields, we use the description of the homotopy type of a
partially ordered set of partitions.

In the following, we shall write ‘poset’ for ‘partially ordered set’. Let BX
be the classifying space of the poset X . Notions from homotopy theory applied
to posets or morphisms of posets will have the meaning of these notions,
applied to the classifying space of the poset or morphism of posets. We will
freely use the basic techniques for investigating the homotopy of the classifying
space of a category (cf. [19] or the textbook [24]).

By an ordered partition of an integer n, we mean a tuple (M,x0, . . . , xM ),
where M is the number of intervals in the partition and 0 = x0 < x1 <
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· · · < xM = n are the vertices of these intervals. We will say that a partition
(M,x0, . . . , xM ) is finer than or equal to (N, y0, . . . , yN ), and write

(M,x0, . . . , xM ) � (N, y0, . . . , yN),

if {y0, . . . , yN} ⊆ {x0, . . . , xM}.
Consider a finite set S and a function F : S → {1, 2, . . .}. Let Pn,S,F be

the set of pairs (f, (M,x1, . . . , xM )), where (M,x0, . . . , xM ) is a partition of
n and f : S → {1, . . . ,M} such that xf(s) − xf(s)−1 ≥ F (s) for s ∈ S. In
other words, elements of Pn,S,F are ordered partitions of n in which for each
element s ∈ S an interval of length ≥ F (s) is marked. The intervals associated
to different elements of S are not supposed to be different.

There is a partial order � on Pn,S,F for which

(f, (M,x1, . . . , xM )) � (g, (N, y1, . . . , yN ))

if and only if (M,x0, . . . , xM ) � (N, y0, . . . , yN ) and yf(s)−1 ≤ xf(s)−1 <
xf(s) ≤ yf(s) for s ∈ S. In other words, the partition (M,x0, . . . , xM ) has
to be finer than (N, y0, . . . , yN ) and the interval in (M,x0, . . . , xM ) associ-
ated to s by f must be contained in the interval in (N, y0, . . . , yN ) associated
to s by g.

If n < max
s∈S

F (s), the poset Pn,S,F is empty. Otherwise, it is contractible

since it has a final object (1, (1, 0, n)), where 1 is the constant function s → 1
on S. Let

P̃n,S,F = pn,S,F − {(1, (1, 0, n))}.
We will investigate the homotopy type of P̃n,S,F . It will turn out that it is a
wedge of spheres. Before formulating our result, we have to define the index
sets over which the wedge is taken. For 1 ≤ k ≤ #(S) and e ∈ {0, 1}, let
Mn,S,F,e,k be the set of ordered k-tuples (S1, . . . ,Sk) of nonempty mutually
disjoint subsets of S such that S =

⋃k
l=1 Sk and n = e +

∑k
l=1 max

s∈Sl

F (s).

Proposition 7.6. If n = max
s∈S

F (s), P̃n,S,F is empty. Let n > max
s∈S

F (s). Fix

the basepoint � =
(
1, (2, 0,max

s∈S
F (s), n)

)
of the poset P̃n,S,F . We have a

homotopy equivalence of pointed spaces

φn,S,F :
(
BP̃n,S,F

)
∼=

1∨

e=0

#S∨

k=1

∨

Mn,S,F,e,k

Sk+e−2, (7.21)

where Sl is the pointed l-sphere (a set of two points if l = 0). It is assumed
that the wedge over an empty index set is a contractible space.

Moreover, if s = (S1, . . . ,Sk) ∈ Mn,S,F,0,k, then the reduced cohomology
class of its factor in (7.21) is given by the unrefinable chain of length k − 1

x1(s) � x2(s) � · · ·� xk−1(s),
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where

xl(s) =
(
fs
l ,
(
k − l,

l∑

j=1

#Sj ,

l+1∑

j=1

#Sj , . . . ,

k∑

j=1

#Sj = n
))

and

fl(s) =
{

1 if s ∈
⋃l
i=1 Si

k + 1 if s ∈ Sl+k with k > 0.

Similarly, if (S1, . . . ,Sk) ∈ Mn,S,F,1,k, then any of the following unrefinable
chains of length k is a representative for the reduced cohomology class defined
by the corresponding factor in the wedge (7.21). Take 1 ≤ m ≤ k + 1, define

f
(m)
l (s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if l < m and s ∈
⋃l
i=1 Si

2 if l ≥ m and s ∈
⋃l
i=1 Si

k + 1 if s ∈ Sk+l with k > 0 and k + l < m
k + 2 if s ∈ Sk+l with k > 0 and k + l ≥ m

for 1 ≤ l ≤ k and consider the chain

x
(m)
1 � x2 � · · ·� x

(m)
k

with

x
(m)
l =

(
f

(m)
l ,

(
k + 2− l,

l∑

i=1

#Si, . . .

m−1∑

i=1

#Si, 1 +
m−1∑

i=1

#Si, 1 +
m∑

i=1

#Si, . . . , n
))

if l < m and

x
(m)
l =

(
f

(m)
l ,

(
k + 2− l, 1 +

m−1∑

i=1

#Si, 1 +
m∑

i=1

#Si, . . . , n

))

otherwise.

Proof. It is clear that P̃n,S,F is empty if n = max
s∈S

F (s). If n = 1 + max
s∈S

F (s),

it is easy to see that P̃n,S,F consists of two points without relation, and the
theorem follows.

Let n > 1 + max
s∈S

F (s). Let A be the poset of all elements (f, (M,x1, . . . ,

xM )) ∈ P̃n,S,F which satisfy one of the following two conditions:

• f−1(1) is empty;
• or x1 > max

s∈f−1(1)
F (s).
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Since n > 1 + max
s∈S

F (s), Pn−1,S,F is contractible. We have an embedding

i1 : Pn−1,S,F → A

defined by

i1 ((g, (N, y1, . . . , yN )))
= (g + 1, (N + 1, 0, 1 = y1 + 1, y2 + 1, . . . , n = yN + 1)) ,

where g + 1 is the function s → g(s) + 1 on S. We also have a retraction for
i1

r1 : A → Pn−1,S,F

which is defined by

r1 ((f, (M,x1, . . . , xM )))

=
{

(f − 1, (M − 1, 0 = x1 − 1, x2 − 1, . . . , n− 1 = xM − 1)) if x1 = 1
(f, (M, 0, x1 − 1, . . . , xM − 1 = n− 1)) if x1 > 1.

Since i1r1 (f, (M,x1, . . . , xM )) � (f, (M,x1, . . . , xM )), Pn−1,S,F is a deforma-
tion retract of A, hence A is contractible.

Let B ⊂ P̃n,S,F be the poset of all (f, (M,x1, . . . , xM )) which satisfy at
least one of the following two conditions:

• (f, (M,x1, . . . , xM )) ∈ A;
• or M > 2.

We have the obvious inclusion i2 : A → B and a retraction r2 : B → A which
is defined as follows. If (f, (M,x1, . . . , xM )) ∈ A, we put

r2((f, (M,x1, . . . , xM ))) = (f, (M,x1, . . . , xM )) .

If (f, (M,x1, . . . , xM )) ∈ B −A, we define a function

h : S → 1, . . . ,M − 1

by

h(s) =
{

1 if f(s) = 1
f(s)− 1 if f(s) > 1 (7.22)

and put

r2((f, (M,x1, . . . , xM ))) = (h, (M − 1, x0, x2, . . . , xn)) . (7.23)

It is easy to see that r2 is a morphism of posets, that r2i2 = Id, and that
i2r2 (f, (M,x1, . . . , xM ))�(f, (M,x1, . . . , xM )). Therefore, A is a deformation
retract of B, and B is contractible.

For x ∈ P̃n,S,F − B, let B−(x) be the poset of all y ∈ B with y � x. The
set of all x for which B−(x) is empty can be identified with Mn,S,F,0,2. Since
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no element of P̃n,S,F can be coarser than x, the fact that B is contractible
gives us a homotopy equivalence

BP̃n,S,F ∼=
∨

x∈P̃n,S,F−B
B−(x) �=∅

Σ(BB−(x)) ∨
∨

Mn,S,F,0,2

S0, (7.24)

where Σ is the suspension functor.
Let us first assume that S consists of a single element s. The assumption

made at the beginning of the proof means that n > F (s) + 1. Then all sets
Mn,S,F ,e,k are empty, and we have to show that P̃n,S,F is contractible. The
only factor in (7.24) is B−(�), which has an initial object

(1, (n− F (s), 0, F (s), F (s) + 1, . . . , n)) .

This completes the proof of the proposition if S has only one element.
Now we assume by induction that the proposition has been verified for all

subsets of S. As above, B−(�) has an initial object and is contractible. The
other elements of P̃n,S,F −B for which B−(x) is not empty are of the form

x =

((
1 on T

2 on S − T

)
,
(
2, 0,max

s∈T
F (s), n

)
)
,

where T is a nonempty subset of S such that max
s∈T

F (s) + max
s�∈T

F (s) ≤ n. For

such x we have
B−(x) = P̃n−max

s∈T
F (s),S−T,F .

Then a combination of (7.24) with the induction assumption gives us

BP̃n,S,F ∼=
∨

T⊂S

T �=∅
max
s∈T

F (s)+max
s 	∈T

F (s)<n

Σ(BP̃n−max
s∈T

F (s),S−T,F ) ∨
∨

Mn,S,F,0,2

S0

∼=
(

∨

T⊂S

T �=∅
max
s∈T

F (s)+max
s 	∈T

F (s)<n

1∨

e=0

#(S−T )∨

k=1

∨

Mn−max
s∈T F (s),S−T,F,e,k

Sk+e−1

)

∨
∨

Mn,S,F,0,2

S0.

Since the maps

Mn−max
s∈T

F (s),S−T,F,e,k → Mn,S,F ,e,k+1

(S1, . . . ,Sk−1) → (T,S1, . . . ,Sk−1)
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define an isomorphism
⋃

T⊂S

T �=∅
max
s∈T

F (s)+max
s 	∈T

F (s)<n

Mn−max
s∈T

F (s),S−T,F,e,k ∼= Mn,S,F ,e,k+1,

this completes the induction argument. The explicit formula for the reduced
cohomology classes defined by the individual factors in the wedge (7.21) can
easily be verified by induction. ��

We now want to explain how one can translate homology computations
for certain posets into assertions about the homology of functors from P to
abelian groups. Let

p : (X,�) → (P,⊂)

be a morphism of posets such that p−1(G) is empty and such that

a. for G ⊃ P ⊇ Q and x ∈ p−1(Q), there is a unique y ∈ p−1(P) with y � x.

We define a functor J•
X,p by

JP
X,p =

{⊕
x∈p−1(P) Cx if P ⊂ G

Cif P = G (7.25)

and
JQ⊆P
X,p (x) =

∑

y ∈ p−1(Q)
y � x

y

for x ∈ p−1(P) with P ⊂ G and

JQ⊆G
X,p 1 =

∑

y∈p−1(Q)

y.

Proposition 7.7. Assume condition a. above and assume moreover the con-
dition

b. If x1, . . . , xk ∈ X such that p(xi) is a maximal parabolic subgroup for 1 ≤
i ≤ k, then there is at most one y ∈ p−1(p(x1) ∩ · · · ∩ p(xk)) with y � xi
for all 1 ≤ i ≤ k.

Under these circumstances, we have a canonical isomorphism

H∗(C∗(J•
X,p))[1] ∼= H̃∗(BX). (7.26)

Moreover, let us assume that the differential on C∗(J•
X,p) was defined using

the order ≺ on Δo. Let ξ = (x1 � x2 � . . . xk) be an unrefinable chain in X,
defining a reduced cohomology class [ξ] in degree k−1 on BX. Then x1 cannot
be refined, hence it defines a cohomology class in degree k for JX,p. Let αi be
the unique element of Δ

p(xi+1)
o − Δ

p(xi)
o if i < k and the unique element of

Δo −Δ
p(xk)
o if i = k. Further, let ε ∈ {1;−1} be the orientation with respect

to ≺ of α1, . . . , αk. Then (7.26) maps [ξ] to εxk.
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Proof. Let us define a simplicial complex (Y,Σ) as follows. The set of ver-
tices Y is the set of x ∈ X such that p(x) is a standard maximal parabolic
subalgebra. A k-tuple (x1, . . . , xk) of vertices belongs to the set Σ of sim-
plices if there exists an x ∈ X with x � xk for all k. By conditions a. and
b. above, the reduced chain complex for computing the cohomology of (Y,Σ)
is C∗(J•

X,p)[1]. The proposition now follows from the well-known fact that
the barycentric subdivision of a simplicial complex is the nerve of its poset of
simplices, which in the case of (Y,Σ) is X . ��

7.4 Proof of Theorem 7.5

We now prove the explicit formulas for the Eisenstein cohomology which we
announced earlier. We are considering the group G = resK

Q
GLn for an imagi-

nary quadratic field K.
To prove Theorem 7.5, consider l ∈ Ln(K). If l(n) = 1, then Yl,P is empty

unless P = G, in which case it has precisely one element. It follows that
C∗(I•

l ) has a one-dimensional cohomology group in dimension zero, and no
other cohomology. Also, XN,e,l is empty unless N = 1 and e = 0, in which
case it consists of a single element. This proves the theorem for those l with
l(n) = 1. The case l(n) > 1 is excluded by the condition (7.10). Therefore we
suppose for the remaining part of this proof that l(n) = 0.

We define the set Sl by

Sl = {(k, l) |2 ≤ k ≤ n, 1 ≤ l ≤ l(k)}

and define the function F : Sl → {1, 2, . . .} by F ((k, l)) = k. Since l(n) = 0,
the poset P̃n,Sl,F defined in the last subsection is not empty. We have the
map

pl : P̃n,Sl,F → P

from P̃n,Sl,F to the poset P of standard parabolic subgroups which as-
sociates to the tuple (f, (M, i1, . . . , iM )) the parabolic subgroup of type
0 < i1 < · · · < iM = n, i.e., the stabilizer of the standard flag of sub-
spaces of succesive dimension ik. The formula (7.25) now defines us a functor
J P̃n,Sl,F

,pl
from P to vector spaces whose homology is known by Proposi-

tion 7.6 and Proposition 7.7. We will express IP
l as an “antisymmetrization”

of J P̃n,Sl,F
,pl

.
The product of the symmetric groups

∏n
k=2 Sl(k) acts on the set Sl by

permutation of the second entry of the pairs (k, l) which form Sl. This per-
mutation leaves F invariant, therefore it extends to an action of the group∏n
k=2 Sl(k) on the poset P̃n,Sl,F . This action leaves pl invariant, therefore it

extends to an action of
∏n
k=2 Sl(k) on the functor J P̃n,Sl,F

,pl
. We want to

consider the antisymmetrization of J P̃n,Sl,F
,pl

with respect to this action.
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For each parabolic subgroup P , we have an injective map of sets

i : Yl,P → p−1
l (P)

which maps the element y ∈ Yl,P to the element

(y, (K, i1, . . . , iK)) ∈ Sl.

By condition (7.11), this element really belongs to Sl. Consider an element
(f, (K, i1, . . . , iK)) of p−1(P). If there exists a k and if 1 ≤ l1 < l2 ≤ l(k), then
exchanging (k, l1) and (k, l2) is an odd element of

∏n
k=2 Sl(k) which leaves

(f, (K, i1, . . . , iK)) fixed. Therefore, the image of (f, (K, i1, . . . , iK)) in the
anisymmetrization of J P̃n,Sl,F

,pl
vanishes. Otherwise, the

∏n
k=2 Sl(k)-orbit of

(f, (K, i1, . . . , iK)) contains an element in the image of i, which is unique by
(7.12). This identifies I•

l with the antisymmetrization of J P̃n,Sl,F
,pl

.
By Proposition 7.6 and Proposition 7.7, the cohomology of J P̃n,Sl,F

,pl
is a

graded vector space with a basis given by the sets Mn,Sl,F,e,k. A permutation
p in

∏n
k=2 Sl(k) acts on these sets by

π : (S1, . . . ,Sk) → (π(S1), . . . , π(Sk)),

and this action commutes with the action on the cohomology of J P̃n,Sl,F
,pl

.
We have the map

j : XN,e,l → Mn,Sl,F,e,N+1

which maps the collection X0, . . . , XN of subsets of {2, . . . , n} to the disjoint
partition Sl =

⋃N+1
j=1 Sj , where

Sj =
{

(k, l) ∈ Sl

∣∣∣ k ∈ Xj+1, and there

are precisely l − 1 elements i with 0 ≤ i < j and k ∈ Xi+1

}
.

If (S1, . . . , SN+1) ∈ Mn,Sl,F,e,N+1 and if there exists 2 ≤ k < n and
1 ≤ l1 < l2 ≤ l(k), then exchanging (k, l1) and (k, l2) is an odd element of∏n
k=2 Sl(k) which leaves (S1, . . . , SN+1) fixed. Therefore, the image of the gen-

erator belonging to (S1, . . . , SN+1) vanishes in the antisymmetrization of the
cohomology of J P̃n,Sl,F

,pl
. Otherwise, the

∏n
k=2 Sl(k)-orbit of (S1, . . . , SN+1)

contains a unique element in the image of j.
We have identified I•

l with the antisymmetrization of J P̃n,Sl,F
,pl

and the
right-hand side of (7.18) with the antisymmetrization of the homology of
J P̃n,Sl,F

,pl
. This proves (7.18). By the remarks made before the formulation

of Theorem 7.5, this also completes the computation of the spherical subspace
of H∗

c (G,C)I .
To get a result about the nonspherical vectors in the cohomology, we have

to investigate the cohomology of the functor
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J̃
P
n,S,F = J P̃n,S,F ,pl

⊗ C∞(P(Af )\G(Af )),

where S is a finite set and F is a function from S to integers. Since both
the formulation and the proof of the result are straightforward but quite
unpleasant,the result will be formulated precisely but the proof will only be
sketched. Let Qk(S) be the set of partitions

s : S =
k⋃

l=1

Sl

into k disjoint pieces. For s ∈ Qk(S), let As,S,F be the set of pairs (P , f) with
the following properties:

• P is a standard parabolic subgroup, stabilizing the standard flag of sub-
spaces of dimensions

0 = iP0 < iP1 < · · · < iP
dim aG

P
= n.

• f is a monotonous map from {1, . . . , k} to {1, . . . ,dim a
G
P} such that

if(j) − if(j)−1 = max
s∈Sj

F (s).

• If j ∈ {1, . . . ,dim a
G
P} − f({1, . . . , k}), then ij − ij−1 = 1.

Note that the rank of P is uniquely determined; it is equal to

d(s) = dim a
G
P = k + n−

k∑

j=1

#(Sk).

For (P , f) ∈ As,S,F , let xP,f ∈ Pn,S,F be the element
(
f
♠, (dim a

G
P , i1, . . . , idim aG

P
)
)
,

where f♠ is equal to f(j) on Sj. This is a minimal element of Pn,S,F which
lies over P . We get a homomorphism

as :
⊕

(P,f)∈As

C∞(P(Af )\G(Af )) → Hd(s)
(
C∗(Ĩ

•
n,S,F )

)

(fP,f)(P,f∈As) →
∑

(P,f)∈As

fP,f ⊗ xP,f.

If Q is a parabolic subgroup of rank > d(s), let B
†
Q,s be the set of all pairs(

(P , f), (P̃ , f̃)
)

with the following properties:

• We have (P , f), (P̃ , f̃) ∈ As and Q ⊃ P , Q ⊃ P̃ .
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• Let 0 = iQ0 < iQ1 < · · · < iQ
dimaG

Q
= n be the dimension of the spaces in the

standard flag defining Q. For each j ∈ {1, . . . , k}, there exists an l with

iQl−1 < iPf(j) ≤ iQl

and
iQl−1 < iP̃

f̃(j)
≤ iQl .

In other words, the intervals [iPf(j)−1 + 1; iPf(j)] and [iP̃f(j)−1 + 1; iP̃f(j)] are
contained in the same interval of the partition iQm.

• We have ∑

1≤j≤k
iQl−1<i

P
f(j)≤iQl

#Sj = iQl − iQl−1 − 1.

An empty sum is supposed to be zero. Note that by the previous assump-
tion, the sum on the left-hand side of the inequality is also equal to

∑

1≤j≤k
iQl−1<i

P̃
f̃(j)

≤iQl

#Sj .

We have the homomorphism

b
†
s :

⊕

Q∈ dim aG
Q>d(s)

⊕

((P,f),(P̃ ,̃f))∈B†
Q,s

→
⊕

(P,f)∈As

C∞(P(Af )\G(Af ))

which for
(
(P , f), (P̃ , f̃)

)
maps f ∈ C∞(Q(Af )\G(Af )) to f⊗(P , f)−f⊗(P̃, f̃).

Similarly, let C
†
Q,s be the set of all (P , f) ∈ As such that P ⊂ Q and such that

there exists an l with

iQl − iQl−1 − 1 >
∑

1≤j≤k
iQl−1<i

P
f(j)≤iQl

#Sj .

Let c
†
s be the obvious map
⊕

Q∈ dim aG
Q>d(s)

⊕

(P,f)∈C†
Q,s

C∞(Q(Af )\G(Af )) →
⊕

(P,f)∈As

C∞(P(Af )\G(Af )).

Theorem 7.8. The kernel of ãs is equal to the image of b
†
s⊕ c

†
s, and we have

an isomorphism of G(Af )-modules

H∗
(
C∗(J̃n,S,F )

)
∼=
⊕

k

⊕

s∈Qk(S)

coker(b†s ⊕ c
†
s)[−d(s)]. (7.27)
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To prove the theorem, one filters ĨP
n,S,f by the subspaces

⊕

R∈P

R⊆P
dim aG

R≤k

C∞(R(Af )\G(Af ))⊗ J P̃n,Sl,F
,pl

,

to define a similar filtration on the sources of as, b
†
s and c

†
s, and to derive the

theorem for the grading from Proposition 7.6 and Proposition 7.7.
To compute H∗(G,C)I , recall that IP

l is the antisymmetrization of J̃n,Sl,F

with respect to the group
∏n
k=2 Sl(k) and note that (7.27) identifies the action

of this group on the cohomology of J̃n,Sl,F with the action on the right-hand
side of (7.27) derived by permutation of the elements of the set Qk(Sl). If
therefore Qmon

k (Sl) is the set of all s = (S1, . . . ,Sk) ∈ Qk(Sl) such that, if
1 ≤ l1 < l2 < l(m) and (m, l1) ∈ Si1 and (m, l2) ∈ Si2 then i1 < i2, we then
get

Theorem 7.9. We have a canonical isomorphism

H∗(G,C)I ∼=
⊕

l∈Ln(K)

⊕

k

⊕

s∈Qmon
k (Sl)

coker(b†s ⊕ c
†
s)[−d(s)− deg l]. (7.28)

7.5 The case SLn(Z)

Here we consider the case G = SLn. We want to explicitly compute the space
of spherical vectors in H∗(G,C)I and to compare the result with computations
by C. Soulé and J. Schwermer for n = 3 and by R. Lee and R. H. Szczarba
for n = 4.

We start with an explicit description of the spaces Ȟ(G)P∗Kf . Recall that
the minimal parabolic subgroup Po is the stabilizer of a standard full flag
V1 ⊂ V2 ⊂ · · · ⊂ Vn = K

n. Let P be the stabilizer of the subflag Vi1 ⊂ Vi2 ⊂
· · · ⊂ ViK for some sequence 0 < i1 < i2 < · · · < iK = n. Then

MP =
K∏

l=1

SLil−il−1 .

By Proposition 7.2, the cohomology of X
(c)
MP is an exterior algebra which, for

1 ≤ l ≤ K, has the following generators:

λ̃
(l)
3 , λ̃

(l)
5 , . . . , λ̃

(l)
n if il − il−1 is odd

λ̃
(l)
3 , λ̃

(l)
5 , . . . , λ̃

(l)
n−1, ε

(l) if il − il−1 is even.
(7.29)

The group

π0

(
SO(n,R) ∩ LP(R)

) ∼=
{
σ1, . . . , σK ∈ {±1}

∣∣∣∣
K∏

l=1

σl = 1
}
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acts on this cohomology algebra, and only the invariants will contribute to
Ȟ(G)P∗Kf . Using the fact that λ̃

(l)
i is obtained by pull-back with respect to

(7.3), one easily sees that the classes λ̃
(l)
i are π0

(
SO(n,R)∩LP(R)

)
-invariant.

However, conjugation by an element of O(n,R) − SO(n,R) changes the ori-
entation of the canonical n-dimensional real bundle on SU(n,R)/ SO(n,R),
hence

(
σi
)K
i=1

∈ π0

(
SO(n,R) ∩LP(R)

)
maps ε(l) to σlε

(l). This means that a
monomial μ in the generators (7.29) is π0

(
SO(n,R)∩LP (R)

)
-invariant if and

only if one of the following cases occurs:

• μ contains no Euler class ε(l);
• or the numbers il − il−1 are all even, and μ contains all Euler classes ε(l).

It follows that

Ȟ(G)P∗Kf =

{
M∗P

(n) n odd
M∗P

(n) ⊕ eM∗P
(n) n even,

(7.30)

where

M∗P
(n) =

{
monomials in the λ̃

(l)
i

}

and

eM∗P
(n) =

⎧
⎨

⎩

∏K
l=1 ε(l) ·

{
monomials in the λ̃

(l)
i

} if all the numbers il,
1 ≤ l ≤ K, are even

{0} otherwise.

The explicit formulas for the restriction of cohomology classes in Proposi-
tion 7.2 show that, for n even, the decomposition (7.30) is functorial in P .

We first give an explicit formula for the first summand in (7.30). Let

Odd≤n : =
{
{3, . . . , n} if n is odd
{3, . . . , n− 1} if n is even.

Let Ln(Q) be the set of functions

l : Odd≤n → {0, 1, . . .}

satisfying the condition

∞∑

j=1

max {k ∈ Odd≤n |l(k) ≥ j } ≤ n. (7.31)

If the parabolic subgroup P corresponds to 0 < i1 < · · · < iK = n, let Yl,P
be defined in the same way as in the case of imaginary quadratic fields, i.e.,
as the set of functions

y : {(k, l) |k ∈ Odd≤n, 1 ≤ l ≤ l(k)} → {1, . . . , k}
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with the properties (7.11) and (7.12). For P̃ ⊇ P , y ∈ Yl,P and ỹ ∈ Yl,P̃ , let
the relation ỹ � y be defined by (7.13). Then the vector space IP

l with base
Yl,P is functorial in P by formula (7.14), and there is a functor isomorphism

M ∗P
(n)

∼=
⊕

l∈Ln(Q)

IP
l [− deg l] (7.32)

which maps y to
∧

k∈Odd≤n

l(k)∧

l=1

λ̃
y(k,l)
k .

The degree deg l is defined in the same way as for imaginary quadratic fields,
by (7.15).

Let
Sl = {(k, l) |k ∈ Odd≤n, 1 ≤ l ≤ l(k)} ,

and let F (k, l) = k. As in the case of imaginary quadratic fields, I•
l can

be identified with the antisymmetrization of J P̃n,Sl,F
,pl

with respect to the
product of symmetric groups

∏
k∈Odd≤n Sl(k). As a result, we get a description

for the first summand in (7.30) which is similar to (7.18).

Theorem 7.10. For l ∈ Ln(Q), e ∈ {0, 1} and N ≤ 0, let XN,e,l be the set
of ordered (N + 1)-tuples x = (X0, . . . , XN) of subsets of {Odd≤n} with the
following properties:

• Each number k ∈ Odd≤n belongs to precisely l(k) of the sets Xi;
• We have

N∑

i=0

max #{Xi} = n− e.

If l = 0, we put XN,e,l = ∅. Then for each x ∈ XN,e,l, H∗(C∗(I•
l )) has a

generator {x} in degree N + e, and we have

Hi

(
C∗(I•

l

))
=

1⊕

e=0

⊕

x∈Xi−e,e,l

C · {x}.

Consequently, the cohomology of the first summand in (7.30) is given by

Hj

(
C∗(M∗P

(n)

)) ∼=
⊕

l∈Ln(K)

1⊕

e=0

⊕

x∈Xj−e−deg l

C · {x}.

These cohomology classes are given by formulas similar to (7.19) and (7.20),
with λ

(i)
j replaced by λ̃

(i)
j .
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If n is odd, this is the only summand in (7.30), and the computation of
H∗
c (G,C)Kf

I is complete in this case. For example, if n = 3, the only possible
l is l(3) = 1 or l(3) = 0. In the second case, the XN,e,l are empty by definition.
In the first case, the only element of the sets XN,e,l is

{
{2}
}
∈ X0,0,l which

gives us the volume form in degree 5. This compares well to the result of
Soulé [21, Theorem 4] which implies that H∗(SL3(Z),C) vanishes in positive
dimension. In particular, there are no harmonic cusp forms for SL3(Z).

If n is even, then we still have to compute the cohomology of the second
summand eM∗P

(n) in (7.30). Let eLn(Q) be the set of functions

l : Odd≤n−1 → {0, 1, . . .}

satisfying the condition

∞∑

j=1

(
1 + max {k ∈ Odd≤n−1 |l(k) ≥ j }

)
≤ n. (7.33)

If the parabolic subgroup P corresponds to 0 < i1 < · · · < iK = n, let eYl,P
be empty of one of the numbers il is odd, and be equal to the set of functions

y : {(k, l) |k ∈ Odd≤n−1, 1 ≤ l ≤ l(k)} → {1, . . . , k}

with the properties (7.11) and (7.12) if all numbers ik are even. The vector
space eIP

l with base eYl,P is functorial in P by by formula (7.14), where the
relation � is defined by (7.13), and there is a functor isomorphism

eM∗P
(n)

∼=
⊕

l∈eLn(Q)

eIP
l [−n− deg l] (7.34)

which maps y to
K∧

j=1

ε(j) ∧
l(k)∧

l=1

λ̃
y(k,l)
k .

Let
e
Sl = {(k, l) |k ∈ Odd≤n−1, 1 ≤ l ≤ l(k)} ,

and let F (k, l) = k. Recall the poset P̃n,eSl,F consisting of partitions of n
which have for each s ∈ eSl a piece of length ≥ F (s) marked, and recall the
projection

pl : P̃n,eSl,F → P

which sends a partition of n to the corresponding parabolic subgroup of GLn.
Let P̂n,l ⊂ P̃n,eSl,F be the subposet of all partitions of n into even pieces,
together with a map which for each s ∈ eSl marks a piece of length ≥ F (s),
and let p̂l be the restriction of pl to P̂n,l. Then eI•

l can be identified with
the antisymmetrization of J•

P̂n,l,p̂l
with respect to the product of symmetric
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groups
∏
k∈Odd≤n−1

Sl(k). Proposition 7.7 can be applied to J•
P̃n,eSl,F

,pl
and

gives us an isomorphism

H∗
(
C∗(J•

P̂n,l,p̂l
)
)
∼= H̃∗(BP̂n,l).

On the other side, the homotopy type of the poset

P̂n,l ∼= P̃n
2 ,
eSl,

1+F
2

is given by Proposition 7.6. We arrive at the following explicit description of
the second summand in (7.30).

Theorem 7.11. If n = 2, we have

H∗
(
C∗( eM∗•

(n)

)) ∼= C[2].

For n > 2 and l ∈ eLn(Q), e ∈ {0, 1}, and N ≤ 0, let eXN,e,l be the set of
ordered (N + 1)-tuples x = (X0, . . . , XN ) of subsets of {Odd≤n−1} with the
following properties:

• Each number k ∈ Odd≤n−1 belongs to precisely l(k) of the sets Xi;
• We have

N∑

i=0

(1 + max{Xi}) = n− 2e.

If l = 0, we put eXN,e,l = ∅. Then for each x ∈ eXN,e,l, H∗(C∗(eI•
l )) has a

generator {x} in degree N + e, and we have

Hi

(
C∗(eI•

l

))
=

1⊕

e=0

⊕

x∈eXi−e,e,l

C · {x}.

Consequently, the cohomology of the second summand in (7.30) is given by

Hj

(
C∗( eM∗•

(n)

)) ∼=
⊕

l∈eLn(K)

1⊕

e=0

⊕

x∈eXj−e−n−deg l

C · {x}.

Moreover, let the ordering ≺ on the roots which was used to define the complex
C∗(F •) be

x1 − x2 ≺ x2 − x3 ≺ · · · ≺ xn−1 − xn.

Then for x = (X0, . . . , XN ) ∈ eXN,0,l, a representative of the cohomology class
{x} is given by the element

N∧

i=0

(
ε(i) ∧

#(Xi)∧

j=2
j∈Xi

λ̃
(i)
j

)
(7.35)
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in the cohomology of X
(c)
MP , where P ∈ P is the stabilizer of the standard flag

of vector spaces with dimensions

0 < 1 + #(X0) < 2 + #(X0) + #(X1)

< · · · < N − 1 +
N−2∑

i=0

#(Xi) < N +
N−1∑

i=0

#(Xi) = n.

If x = (X0, . . . , XN ) ∈ eXN,1,l and if 0 ≤ k ≤ N + 1, then a representative of
the cohomology class {x} is given by the element

(−1)k
N−1∧

i=0

ε(i)
k−1∧

i=0

#(Xi)∧

j=2
j∈Xi

λ̃
(i)
j ∧

N∧

i=k

#(Xi)∧

j=2
j∈Xi

λ̃
(i+1)
j (7.36)

in the cohomology of X
(c)
MP , where P ∈ P is the stabilizer of the standard flag

of vector spaces with dimensions

0 < 1 + #(X0) < 2 + #(X0) + #(X1) < · · · < k +
k−1∑

i=0

#(Xi)

< k + 2 +
k−1∑

i=0

#(Xi) < · · ·N + 2 +
N−2∑

i=1

#(Xi) < 1 +
n−1∑

i=1

#(Xi) = n.

In the case n = 4, we have the vector degree 6 in the first summand in
(7.30) defined by l(3) = 1 and x =

{
{3}
}
∈ X0,1,l. In the second summand, we

have the cohomology class defined by l(3) = 1 and x =
{
{3}
}
∈ eX0,0,l. It is

the volume form in degree 9. These are all spherical vectors in the cohomology
with compact support, since Hi

(
SL4(Z),Z

)
is of dimension one if i ∈ {0; 3}

and zero otherwise, by the computation of Lee and Szczarba [16, Theorem 2].
Once again there are no harmonic cusp forms modulo SL4(Z). One may ask
if this is true for all the groups SLn(Z).

It is also possible to give a full computation of H∗(G,C) for G = SLn. The
result has a decomposition similar to (7.30) into a summand containing no
Euler classes and, for n even, a summand containing the Euler classes. The
first of these summands is given by (7.28). The second summand is similar to
(7.28), however, the definition of the summands in (7.28) has to be modified
to allow only parabolic subgroups corresponding to decompositions of n into
even pieces. It is also possible to generalize this to SLn over arbitrary number
fields. The only difference to the cases treated here is that the cohomology
with compact support of the Levi components has additional generators in
dimension one, which complicate the formulation of the result even more.
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Selective Index of Notation

This is a selective index of the mathematical notations which are most
frequently used. They are listed according to the order in which they are
introduced in the text.

I∗G(R),K∞ section 1, p. 28

G(c)(R), X
(c)
G section 1, p. 28

G, K, Kf , K∞, Ko
∞, Po, LP , MP ,

NP , Lo, Lo, No, AG , MG , θ
section 2, p. 31

G(A), G(A)S , G(A)f , KS , AP(R)+,
AG(R)+

section 2, p. 31

g, U(g), Z(g) section 2, p. 31

aP , ao, a
Q
P , ǎP , ǎo, ǎ

Q
P section 2, pp. 31–32

Δo, ΔP
o , ΔP ΔQ

P , ρo, ρP , ρQP section 2, p. 32

(g,K)-module, (Af )-module,
C∞
c (G(Af ,K)), C∞(P(A)\G(A)) section 2, p. 32

H∗(G,C), H∗
c (G,C), HS , IS , H∗(G,C),

H∗
c (G,C)I

section 3, (3.1), pp. 32–33

PG , FP⊆Q, FP⊆Q, C∗(F •), C∗(F •),
C∗(F •

P), C∗(FP
• ), C∗(F •

•)
section 3, (3.2), (3.3),
pp. 33–34

A(G,Ko
∞,R), A(G,Ko

∞,C) section 3, pp. 34–35

V
G(Af )

P(Af )
, V̌

G(Af )

P(Af )
section 3, (3.5), p. 35

B(Q,R)•, B(Q,R)• section 4, pp. 37–38

C(G,R,AS)• section 4, theorem 0,
p. 38

V
G(AS)
P(AS), V̌

G(AS)
P(AS), StG(AS), ŠtG(AS) section 4, (4.2), p. 40

D(G)P
section 4, (4.3),
theorem 0, p. 40

E(R)•, det section 4, (4.4), pp. 41–42

J , AJ section 5, p. 42

AJ ,I section 5, (5.3), p. 42

HP(g) section 5, (5.4), p. 43

EG
P(φ, λ), qQP (λ), τQ

P section 5, (5.5), pp. 43–44

S(ǎGP), ΞG
P

section 5, (5.9), (5.10),
pp. 44–45



84 Jens Franke

F (G)• section 5, p. 51

G(G)•• section 5, p. 52
pQ section 6, (6.3), p. 53

H(G)Q
∗ section 6, (6.4), (6.5),

pp. 53–54

τ
Q(Af )

P(Af ) section 6, (6.8), p. 55

iQ̃⊇Q section 6, (6.9), p. 55

Pn,S,F subsection 7.3, p. 68

P̃n,S,F , Mn,S,F,e,k subsection 7.3, p. 68
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