
4
Techniques for Performance Engineering

4.1 Introduction

In this chapter we present general techniques for performance engineering data
networks. We begin by discussing a collection of techniques: load engineering,
application characterization, application discrimination methods and collec-
tion and traffic monitoring. We end this chapter with a section that ties these
various techniques and tools together. The context we choose is a discussion of
the process to follow when implementing a new application in an existing data
network. The discussion of load engineering in the first section of this chapter
builds on our knowledge of queuing systems, their stability, and general load
versus delay characterization. This knowledge is leveraged to define measurable
component thresholds in order to maintain satisfactory application level per-
formance over the enterprise network.

We next classify applications into two broad categories: latency sensitive
and bandwidth sensitive. Even this broad classification of application types
is useful when engineering data networks for application-level performance
objectives. This discussion is followed by an extensive taxonomy of techniques
to minimize cross-application interference effects in multiprotocol, enterprise
networks. Techniques discussed here include type of service routing, priority
queuing, processor sharing, adaptive controls, and selective discards.

This is followed up by a section on network management and data
collection tools. These are useful in several areas including (1) data collection
and application-level characterization and (2) traffic monitoring and forecast-
ing. The general techniques we consider in this chapter are used in one way or
another for performance engineering data networks. To reinforce this concept,

101

we conclude the chapter with a step-by-step identification of the process to
follow when deploying a new application over an existing corporate network.

4.2 Load Engineering

In Chapter 3 we developed various queuing models relating component delays
to their utilization. We also know that queuing systems are stable, that is, they
have finite queuing time and queue lengths, when their load remains less than
100%. The goal of load engineering is to ensure that the load on the system
remains less than an identified threshold, above which performance degrada-
tion occurs. This is accomplished through (1) defining appropriate target
component utilization on critical components within the network, (2) constant
monitoring of the load on system components, and (3) making necessary
adjustments to component load in the event that it becomes too high or too
low, based on a developed action plan.

Within this section, we concentrate on a simple queuing model akin to a
packet buffer system feeding a private line facility. In Section 5.4 in the follow-
ing chapter, we discuss load engineering of a more complex frame relay inter-
face and its associated virtual circuits.

As discussed in Chapter 3, the queuing time is a function of Ts(average),
the average service time, and U, the utilization. The component utilization is a
product of the arrival rate, L, and Ts(average), that is, U = L × Ts(average). In
fact, the queuing delay increases when either (or both) the service time or the
arrival rate on the system increases. As a rule of thumb, queuing delays in a
system should not overly dominate the service times; say, queuing time should
never be more than twice the service time.

Looking at the curve for the queuing time in an M/M/1 system, shown
in Figure 4.1 (and discussed in Chapter 3), this implies that the load on the
system should remain less than roughly 70%. In the figure, the queuing time is
measured in units of Ts(average). This point can be thought of as the location
in the curve above which small increases in load will result in large increases in
queuing times. If instead we wanted to keep the queuing delays less than or
roughly equal to the insertion times, then from the figure we see that the utili-
zation should be maintained at less than or equal to 50%. Again, these esti-
mates are based on the M/M/1 queuing model and results will vary depending
on the specific queuing model used.

From Chapter 3, we know that the queuing delay, Q, as a function of
utilization, U, is:

Q = [U / (1 − U)] × Ts(average)

102 Wide-Area Data Network Performance Engineering

For the queuing delay to be equal to Ts(average), we see that the utilization
should be equal to 50%, that is,

Q = [0.5 / (1 − 0.5)] × Ts(average) = Ts(average)

For the queuing delay to be equal to 2 × Ts(average), we see that the utilization
is equal to 66%:

Q = [0.66 / (1 − 0.66)] × Ts(average) = 2 × Ts(average)

This is consistent with our reading of the delay versus load curve shown in
Figure 4.1.

A more general queuing model discussed in Appendix A is the M/G/1
model. This model incorporates the variability of the packet sizes in its expres-
sion for the queuing delay. The queuing delay expression from the M/G/1
model is:

Q = [(U × V) / (1 − U)] × Ts(average)

where V is a measure of the variability of the packet transmission time, that is,
V = (1 + CV ∗∗2) / 2, and CV is the ratio of the standard deviation of the packet

Techniques for Performance Engineering 103

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

Qu
eu

in
g

tim
e

5

6

7

8

9

Load

Threshold

Figure 4.1 The expected queuing time as a function of load for the M/M/1 queuing.

transmission time to the average packet transmission time. As we discuss in
Appendix A, V = 1 for the M/M/1 queuing model. The M/G/1 expression sim-
ply states that the greater the variability in the packet sizes, the greater the queu-
ing delay experienced on the transmission facility. So, the higher the variability
in packet sizes, the more conservative one must be about loading the connec-
tion. To make this a little more quantitative, say we choose to try to maintain
queuing delays to be no more than twice the average packet insertion time on
the transmission facilities. Then the M/G/1 queuing model yields:

Q = 2 × Ts(average) = [(U × V) / (1 − U)] × Ts(average)

Eliminating Ts(average) on both sides of this equation yields

2 = [(U × V) / (1 − U)]

Rearranging this expression and solving for U we get:

U = 2 / (2 + V)

If V = 1, as it is assumed to be in the M/M/1 model, we get that U = 66% as
a target threshold (which is roughly our 70% threshold in the previous para-
graph). However, if the variability in the packet sizes is higher, say, V = 2, then
we get U = 50% as a target threshold. This validates our claim that the higher
the variability in packet sizes, the more conservative one must be about loading
the connection.

One last consideration in defining thresholds is the period of time over
which the loads are measured. Or, in other words, should the thresholds (and
their corresponding averaging) apply to 1-, 5-, or 15-min intervals? And should
the engineer focus on the average results over a number of sampling intervals
or the peak result? Further, at what point should the engineer decide to make
capacity management decisions to increase the necessary bandwidth? If the cho-
sen threshold is exceeded once a day for one month, does this constitute the
point at which more capacity is ordered? Or should more capacity be ordered
only when 20% of all measurements during the 8-hour work day exceed the
chosen threshold?

Unfortunately there are no clear and definitive answers to these questions.
Much depends on the nature and the time sensitivity of the applications run-
ning over the network and on the amount of data the engineer wishes to store
and analyze. For example:

104 Wide-Area Data Network Performance Engineering

• Fifteen-minute averages. In most situations it is probably reasonable to
tract 15-min intervals and monitor the average utilization threshold
over this period. Fifteen-minute intervals are short enough to catch the
hourly variations in the daily behavior of corporate employee activities.
However, it is not so short as to cause the data collection and monitor-
ing systems to have to store large amounts of data.

• Five-minute averages. In some situations, for example, reservation sys-
tems where end customers of the corporation are immediately affected
by the system delays, network engineers should consider shorter time
periods over which to tract thresholds. This would give the engineer
greater visibility into the nature of the variations in the network load-
ing, while not requiring the collection and storage of too much data.

• Five-minute averages with hourly peaks. In some situations it is more
important to keep track of the extremes in the variation of the utiliza-
tion. In these cases, taking relatively short averaging periods, for
example, 5-min, and monitoring the hourly peak 5-min period is
appropriate. Here, the thresholds are set for these 5-min, hourly peaks
and capacity management decisions are based on these peak values.

Of course, there are an infinite number of possibilities and combinations.
Note that the shorter the time interval over which the component values are
averaged, the greater the amount of data to be collected and the greater the
storage requirement on the data collection system.

Further, for a fixed threshold, for example, 70% utilization on a private
line facility, the shorter the time measurement interval, the greater the band-
width requirement to maintain the chosen component levels. This is due to the
fact that short measurement intervals will show a greater variation in the aver-
aged values and in turn increase the likelihood of seeing component thresholds
exceeded.

At one level it would be nice to be able to answer all of these questions by
relating all of this back to end-to-end performance objectives. But this is rarely
feasible. At another level, just by going through the thought process of setting
thresholds and measurement periods (and collecting and analyzing them), the
network engineer has accomplished the majority of the work discussed in this
section, independent of the specific periods, peaks, thresholds, and so on.

Once the component thresholds are identified and the measurement
intervals chosen, then methods to monitor the component metrics must be
determined. Monitoring tools is one of the topics discussed in Section 4.5.
However, before moving on, let us first mention several ways to modify the

Techniques for Performance Engineering 105

load on a queuing system in the event that it is determined through monitoring
that the component threshold is consistently being exceeded. These include:

• Changing the number of servers in the system; for example, we can
add servers in a client/server environment when the server is being
overloaded, or we can add parallel communications facilities between
two locations in the event that the transmission line is being over-
loaded.

• Changing the rate at which the servers operate; for example, we can
increase the speed of the transmission facility that is being overloaded.

• Providing preferential treatment to the more important applications,
hence reducing their effective utilization (see Section 4.4).

To summarize, the keys to successful load engineering are:

• To clearly define thresholds for each component that is critical to the
end-to-end performance of the network;

• To ensure that the load on the particular components in question is
constantly monitored; and

• To develop a strategy to actively adjust the load in the event that the
specified threshold is either being exceeded or the load is too small in
comparison to the threshold.

To accomplish these tasks, measurement and monitoring equipment need to be
utilized. These are discussed in Section 4.5. But first we wish to discuss some
techniques to characterize applications and to discriminate between application
types in network deployments.

4.3 Latency-Sensitive and Bandwidth-Sensitive Applications

The first section of this chapter outlined a methodology for load engineering
components within a data network. The methodology consisted of component
level thresholds from load engineering models and monitoring of the compo-
nents to maintain loads less than or equal to the desired thresholds. Measure-
ment systems are deployed in order to maintain the component level thresholds
and to support capacity management tools and methods. But how do these
component thresholds relate to the end-to-end performance desired by the end
user or application running over the data network? To answer this question, it

106 Wide-Area Data Network Performance Engineering

is necessary to understand the applications running over the data network and
their characteristics.

This section discusses various application types or profiles. We use these
profiles to better understand how to engineer the underlying network com-
ponents in order to achieve desirable end-to-end performance. We identify
two categories of applications, latency-sensitive and bandwidth-sensitive applica-
tions.1 In this section we identify and define these application types. In the next
section, we discuss issues associated with supporting both application types
within a common packet network infrastructure.

Latency-sensitive applications are those whose performance critically
depends on the delay of the underlying network. In Chapter 3, we distin-
guished between latency and delay as a way to reinforce the notion that some
delays are immutable, that is, cannot be changed by modifying the underlying
network infrastructure. For instance, propagation delay is ultimately bounded
by a fundamental law of physics, that is, the finite speed of light.

Latency-sensitive applications do not perform well over a network with
significant delays. These applications are often very “chatty” in nature. A single
user transaction, for example, a request for a piece of information, may be com-
posed of numerous, elemental exchanges between the requesting client and the
responding server. This is illustrated in Figure 4.2. Here a user makes a request
for some information from the remote server. The application invokes numer-
ous elemental exchanges (for example, multiple SQL queries to a database
server) of information between the client and the server before sending the user
the specific information requested. In this instance, the user-perceived delay
between the issuance of the request and the receipt of information is propor-
tional to ∼N × (Network round-trip delay). Therefore, the network round-trip
delay is magnified by a factor of N in the eyes of the end user. The factor of N
can be as large as several hundred for some applications (see Chapters 9 and 11
for examples of such applications).

This tends not to be a problem if the underlying network is a LAN with
round-trip delays on the order of a few milliseconds. However, if the applica-
tion runs over a WAN where the round-trip delays are typically in the
hundreds of milliseconds, the impact on the end user performance would be
devastating.

Applications such as these abound in corporate data networks. Often,
the application developers do not give WAN performance issues adequate
attention until after full-scale deployment. When deployed over the WAN, the

Techniques for Performance Engineering 107

1. Many applications have the combined characteristics of latency and bandwidth sensitivity.
These are treated in more detail in Chapter 9.

frailties of these latency-sensitive applications are exposed. Several approaches
can be taken to alleviate this situation, including migrating to three-tier archi-
tectures or relying on the use of thin-client solutions. This topic is discussed in
Chapter 9.

In contrast to latency-sensitive applications are bandwidth-sensitive
applications. Bandwidth-sensitive applications typically involve the transfer
of high volumes of data with relatively few elemental exchanges between the
client and the remote server machines. This is illustrated in Figure 4.3. Here
the user perception of application delay is dominated by the connection band-
width, and is proportional to ∼(Volume of data) / (Connection throughput).
Bandwidth-sensitive applications show little to no dependence on the round-
trip delay. These applications are written to require few elemental exchanges, in
contrast to latency-sensitive applications.

4.4 Methods to Discriminate Traffic in a Multiprotocol
Network

Some latency-sensitive applications tend to exchange a high number of rela-
tively small packet transactions, such as many client/server applications. Other
latency-sensitive applications, such as Winframe and telnet, rely on the net-
work to essentially echoplex packets off of remote servers before presenting the

108 Wide-Area Data Network Performance Engineering

User request
for data

Exchange 1

Client Server

User data

Exchange 2

Exchange n

Figure 4.2 An example trace of a latency-sensitive application.

typed characters or the mouse actions at the user’s terminal screen. For good
user performance, these packet exchanges must not encounter excessive delays.

In contrast, bandwidth-sensitive applications tend to transmit large vol-
umes of traffic within a short period of time. If care is not taken in engineering,
these applications may cause temporary network congestion. If the network
is simultaneously carrying both types of applications, then the presence of the
bandwidth-sensitive applications may adversely degrade the user perceived per-
formance of the latency-sensitive applications. The several techniques available
to mitigate these cross-application effects are the topic of this section. In the
following chapter, we revisit this discussion within the context of frame relay
networking.

Consider the case where we are mixing the two types of applications
simultaneously carried over the reference connection in Figure 4.4. We first
consider the impact the underlying window size associated with the
bandwidth-sensitive application has on the performance of the latency-sensitive
application. The result of this inspection will lead us to the conclusion that we
should not rely on network buffers to store our end system’s data. We follow
this analysis with a discussion of the techniques available to network designers
and engineers to discriminate between traffic types within the network.

4.4.1 Window Size Tuning

In this section, we analyze the effect the bandwidth-sensitive application win-
dow size has on latency-sensitive applications. The result of this analysis is that

Techniques for Performance Engineering 109

User request
for data

Exchange 1

Client Server

User dataVolume/throughput

Figure 4.3 An example trace of a bandwidth-sensitive application.

windows should be tuned large enough that the file transfers can reasonably fill
the facilities along the data path, but not be so large that they cause a large
amount of queuing within the data buffers of the intermediate network routers
and switches.

Although we find this statement to be true, it is often the case that the
engineer has little control over the specifics of the transport window sizes. We
discuss this in more detail later.

Now that we know the conclusion, let’s see how this conclusion comes
about. Consider the performance of reference connection #1 (RC#1, shown in
Figure 4.4), when the transaction and the file transfer servers are simulta-
neously active. What is the impact of the file transfer traffic on the observed
performance of the database transaction application? Assume for the moment
that the file transfer has been ongoing for some time and look at the timing
diagrams in Figure 4.5.

Figure 4.5 shows the timing diagrams for the file transfer traffic in “steady
state” for two different window sizes, windows of size three and seven. These
timing diagrams are similar to those we have shown earlier with respect to file
transfers, only they are somewhat more cluttered. However, this clutter is
necessary to observe the effect we want to analyze.

Notice that for the case of the smaller window size (that is, the timing dia-
gram on the left-hand side of the figure), the private line facility is fairly highly
utilized yet there is little or no queuing delay experienced by the file transfer
data in the WAN router. The upper part of this timing diagram roughly rep-
resents a steady-state behavior of the file traffic over RC#1. The window is
smoothly rotating and the WAN facility shows a fairly high utilization. Then,
about halfway down the timing diagram, the transaction application kicks
off and transmits a transaction packet onto the LAN segment. This transaction

110 Wide-Area Data Network Performance Engineering

Router A

Minicomputer A

Transaction server A

Router B

Minicomputer B

Workstation B

Source

Figure 4.4 Reference connection #1.

T
echniquesfor

Perform
ance

Engineering
111

Random
transaction

3n 1+

3(n 1) 1+ +

3n 2+

3n 3+

3(n 1) 2+ +

3(n 1) 3+ +

Random
transaction

7n 2+

7(n 1) 1+ +

7n 3+

7n 4+

7(n 1) 2+ +

7n 5+

7n 6+

7n 1+

7n 7+

Packet (7n 6)+
Packet (3n 2)+

Packet (3n 3)+

Packet (3(n 1) 2)+ +

3(n 2) 1+ +

Packet (3(n 1) 3)+ +

Packet (3(n 2) 1)+ +

Packet (7n 5)+

Packet (7(n 1) 2)+ +

Packet (7(n 1) 3)+ +

Router A Router B Router BRouter A
Transaction

server

Minicomputer B

Workstation B
Minicomputer A

Transaction
server

Minicomputer A
Minicomputer B

Workstation B

Figure 4.5 Timing diagrams showing cross-application effects.

packet gets interleaved between packets of the ongoing file transfer. Due to the
relatively high speed of the LAN segment, gaps exist between the ongoing file
transfer packets, and the transaction packet has little effect on the file packets.
Once the transaction packet enters the router, the interesting question is how
long does the transaction packet have to wait before it gets transmitted onto the
relatively slower WAN private line segment. In the case of the timing diagram
on the left-hand side of the figure for the case of the smaller file transfer win-
dow size, the wait for the transaction packet is small. The window is tuned to
keep the WAN facility at a little less than 100% utilization (as is evident by
the existence of small idle periods between file transfer packet transmissions).
Hence, the transaction packet has a queuing delay of (on average) one-half the
insertion delay of a file transfer packet (onto the private line facility).

As an example, for a WAN private line facility running at 56 Kbps
and a file transfer packet size of 560 bytes (roughly the size of an off-LAN IP
packet carrying FTP data), one-half the insertion delay is roughly 40 msec
(560 × 8/56,000 sec divided by 2). This would not be noticeable to the end
user of the transaction application.

The timing diagram on the right-hand side of Figure 4.5 shows compara-
ble behavior for the case in which the window size of the file transfer appli-
cation is larger, that is, seven packets. As we now know, the main effect of
increasing the window size in these example reference connections is to place
more of a burden on the buffers in the intermediate routers to queue the file
traffic packets. Increasing the window beyond a given size does not improve
the performance of the file transfer application.

This point is again evident in Figure 4.5. In this example, the router is
roughly buffering from two to three file transfer data packets while queuing for
transmission onto the relatively slow WAN facility. So now what do we expect
to happen when the transaction application packet is transmitted? As before, it
is interleaved with the file transfer packets on the LAN segment to the router. It
must now wait its turn for transmission onto the WAN facility and hence it is
queued. But instead of only having to wait on average for half a packet insertion
time, it has to wait for roughly two and a half file transfer packet insertion delays.

Using the same example conditions as in the previous paragraphs, the
transaction packet will experience a queuing delay of roughly 200 msec. This is
within the perception of an end user and can be exacerbated by larger window
sizes or a greater number of simultaneous file transfers or a greater number of
transaction packets.

For the conditions assumed in drawing the timing diagram in Figure 4.5,
anything larger than roughly a window size of three will cause larger and larger
delays for the transaction applications. Further, increasing the window from
one to two to three will improve the end-to-end performance of the file transfer

112 Wide-Area Data Network Performance Engineering

traffic. But increasing the window size greater than three will not improve the
end-to-end performance of the file application and it will only degrade the
performance of the transaction application. From this example, we can then
conclude that the “optimal” window size for the file transfer is three. This
example demonstrates the necessity of choosing a window size large enough to
support sufficient file transfer throughput but not so large as to degrade the
performance of other applications sharing the same network resources.
However, while it is important to understand the dynamics of this situation,
window size tuning may be appropriate only on special occasions. It cannot be
recommended as a general method for traffic discrimination because (1) dis-
similar TCP stacks deployed within an enterprise will have different configura-
tion capabilities and characteristics, (2) it is hard to implement/configure
options on all clients in an enterprise, and (3) it is not always clear what to con-
figure the options to because of the heterogeneous nature of the enterprise net-
work. Therefore, other methods of traffic discrimination are usually relied on.

We are not quite ready to leave the example in Figure 4.5. We now want
to ask another question: What can be tuned or implemented in this example to
improve the relative performance of the file and transaction traffic when mixed
on a common network segment? We have already discussed in some detail one
way to improve the relative performance of these interacting applications, that is,
optimal tuning of the file transfer window size. A number of other techniques
have been discussed in the industry and have been implemented in various data
products, in networking protocols, and in data services, including the following:

• Type of service routing;

• Priority queuing;

• Bandwidth or processor sharing (also referred to as weighted fair
queuing);

• Adaptive controls; and

• Selective discards.

We now discuss each of these other techniques in turn as they apply to our first
example of mixing various types of applications onto a common multiprotocol
data network.

4.4.2 Type of Service Routing

Within most data networks, there are often several different routes to a given
destination. This is by design, usually to provide a high level of reliability

Techniques for Performance Engineering 113

within the overall network. These different paths to the same destination
may ride over similar types of facilities, but these facilities may have different
engineering rules applied to their capacity management or have different band-
widths associated with each, or they may ride over different types of facilities.
For example, one route may travel over satellite facilities while another route
over terrestrial facilities.

In any event, these different routes may have different performance
characteristics associated with them. The path utilizing satellite facilities may be
characterized as a high-throughput yet high-delay route. The path utilizing ter-
restrial facilities may be characterized as a low-throughput, low-delay route. In
this case, our transaction traffic would be perceived to perform better by the
end user if it were carried over the path utilizing the terrestrial facilities. The file
transfer application would be perceived to perform better by the end user if it
were carried (or routed) over the path utilizing the satellite facilities. This is the
essence of type of service (TOS) routing.

Because different applications impose different performance require-
ments on the underlying network, it seems reasonable to route the various
applications over the “optimal path” within the network for the particular
application in question. In practice, this capability is described by first defining
the set of performance metrics necessary to specify all reasonable application
requirements. The metrics typically include delay, delay variation, throughput,
reliability, and cost. The requested values for each of the metrics and allowable
groupings are defined. Then their encoding is specified. Often only a rather
crude set of values is specified: high, medium, or low delay; high, medium, and
low throughput; and so on. Typical groupings may be high throughput with
high-delay service or low throughput with low-delay service. These groupings
are termed the type of service.

To implement TOS routing, several capabilities are necessary. For virtual
circuit networks the requested TOS values for the connection are indicated in
the call setup message. In datagram networks, the requested TOS values must
be carried in every datagram header. For TOS routing, separate routing tables
must be maintained for each possible TOS supported within the given net-
work. Also, the network should have developed separate capacity management
capabilities and guidelines for each TOS supported in the given network.
When strict TOS routing is desired, some negotiation capabilities should be
supported. In practice, all of these are extremely complex to develop, imple-
ment, and maintain.

The most common implementations of TOS routing support through-
put metrics (often referred to as throughput classes). These implementations are
found in X.25 (referred to as throughput class), frame relay (referred to as com-
mitted information rate), and ATM (referred to as sustainable cell rate) networks

114 Wide-Area Data Network Performance Engineering

supporting SVC signaling capabilities or PVC manual provisioning capabili-
ties. All of these technologies support the routing of a VC, which can sustain
the throughput defined by these terms, for example, throughput class, CIR,
and SCR.

Finally, to be truly useful in our examples, the end applications need
some capability of communicating the necessary TOS to the routing entity in
the network. This is rarely available in layered networks due to the lack of con-
sistent standards in this area.

So how would TOS routing improve the relative performance of our file
transfer and transaction-based application traffic in our reference network?
Figure 4.6 shows an expansion of RC#1 with multiple routes providing differ-
ent TOS paths. The satellite path provides a high-throughput and high-delay
TOS, and the terrestrial path provides a low-throughput and low-delay TOS.
One strategy would be to route the file transfer traffic over the satellite path and
the transaction traffic over the terrestrial path; this essentially isolates the cross-
application effects. Specifically, the transaction traffic does not get caught in a
large queue behind the file transfer packets, while queuing for insertion onto
the same communications facility.

4.4.3 Priority Queuing

In the examples given in the last section, the file transfer and transaction
application data essentially collide at the gateway buffer onto the WAN facility.

Techniques for Performance Engineering 115

Low bandwidth,
low delay

Workstation B

Satellite

Satellite
dish

Satellite
dish

High bandwidth,
high delay

Router A

Minicomputer A

Transaction
server A

Minicomputer B

Router B

Figure 4.6 Reference connection showing multiple paths with different TOS.

Window size tuning minimizes to some extent the impact of the collision.
TOS routing avoids the collision altogether by routing the different applica-
tions’ data onto different buffers and WAN facilities out of the LAN gateway.
As discussed, the TOS routing capability requires the routers to identify
the different TOS requests and routes these requests appropriately. Another
mechanism, which has the potential to greatly minimize the collision of the
various applications traffic, is priority queuing.

Like TOS routing, suppose that a mechanism exists for communicating
to the gateway the type of application data being carried within a given data
packet. It would then be possible for the router to favor one application’s data
over the other by moving it “to the head of the line” so to speak. If the trans-
action application data were placed at the front of the queue holding the file
transfer traffic, then the transaction data would only have to wait for the inser-
tion of the current file transfer packet onto the facility to complete before it was
transmitted onto the same WAN facility.

In this case (that of a single transaction packet), the maximum queuing
delay would be a single file transfer packet insertion delay. And the average
queuing delay would be one-half the file transfer packet insertion delay.2 This
mechanism is termed priority queuing.

As an example, for a WAN facility running at 56 Kbps and a file transfer
packet size of 560 bytes, one-half the insertion delay of the file transfer packet is
roughly 40 msec. This would not be noticeable to the end user of the transac-
tion application.

Strictly speaking, it is not necessary to communicate the nature or type of
application data being carried within the data packet. It is only necessary to
communicate the priority level of the data. One could easily imagine a need
for several priority levels. One example would be to have high-, medium-, and
low-delay TOS priority levels. Packet level headers would then only be required
to indicate the priority level of the packet.

A typical implementation would allocate separate data buffers for each
interface on a gateway, router, or switch; there would be one queue per priority
level. When the router has to insert the next data packet onto the facility, it
takes the first packet from the highest priority queue containing data. This type

116 Wide-Area Data Network Performance Engineering

2. If the transaction packet arrives to the router buffer just prior to the completion of the cur-
rent file transfer packet insertion onto the facility, its queuing time will be essentially zero. If
it arrives just following the start of the current file transfer insertion onto the facility, its
queuing time will be essentially a full file transfer packet insertion time. Then, assuming
that the transaction packet arrives independently of the state of the file transfer packet inser-
tion, its average queuing time will be one-half the file transfer packet insertion time.

of priority queuing mechanism is referred to as nonpreemptive priority queuing.
This is shown in Figure 4.7.

Conversely, a preemptive priority queuing implementation allows for
the server to halt (or suspend) the insertion of the lower priority packet on the
arrival of a higher priority packet. Once the higher priority packet (and all
other subsequent higher priority packets) is serviced, then the service of the
preempted packet can start over (or resume).

In practice, the majority of the priority queuing implementations are
of the nonpreemptive priority case. However, there are cases, especially on
low-speed serial links where routers will support a form of preemptive priority,
based on a packet fragmentation scheme. This is necessary when the high-
priority traffic has very stringent delays and/or delay variation requirements
and is being run over relatively slow links. One such example would be when
attempting to carry packet voice over an enterprise data network.

As for the case of implementing a TOS routing capability, priority
queuing schemes require that information on the nature (e.g., the priority level)
of the application be passed down to the entity building the packet level data
header. It is the packet header that must carry the indication of the priority
level of the application. In a single, end-to-end, networking protocol

Techniques for Performance Engineering 117

Output pattern

High

Medium

Low

Figure 4.7 A three-level priority queuing system.

environment this could be indicated through an application programming
interface (API) and then down to the appropriate protocol level.

However, in most of the implementations of priority queuing in multi-
protocol networks, the priority level of the data packets is usually inferred based
on some higher level indication of the application. This is usually satisfactory,
but it sometimes may not be granular enough for the needs of the application
and end users.

The priority queuing schemes generally base the decision of the priority
level of the data packets on one of the indicators discussed next (the spe-
cific implementation depends on the particular type and manufacturer of the
networking equipment).

Priority Level ID
Some packet level protocol headers carry explicit priority level bits. For exam-
ple, the IPv4 packet headers carry a TOS field indicating special packet han-
dling. The first three bits were designated as precedence bits and the next five
indicated the type of service requested by the hosts (low delay, high through-
put, and so on).

Until recently, this field has usually been ignored, however its use is
beginning to gain popularity within the differential services architecture being
proposed within the IETF. In this architecture, the TOS field is referred to as
the DS octet and the first five bits are used to indicate priority packet handling
at the network edge, with the sixth bit indicating whether this packet is
conforming to a traffic contract or not. The rest of the bits are not used at
this time. This, however, still requires that an entity (in this case the IP packet
header processing entity) infer or be told the priority level to set. This can be
done by other methods discussed later or could have been indicated through
an API.

This method, where the priority level is directly indicated in the packet
header, offers simplicity of protocol processing for the intermediate routers
along the data path. Some of the schemes identified later require that the queu-
ing entity search far into the higher level protocol headers to infer a priority
level, and this can have a detrimental impact on the protocol processing entity
(increase the processing delays at this location in the network).

Protocol ID
Packet level headers contain a field to indicate the higher level protocol carried
within it. For example, in an IP header this is the protocol ID indicating TCP,
UDP, ICMP, and so on. This works for our purpose in some situations, but it
relies on a rather low-level protocol type in order to base priority queuing deci-
sions for particular applications. For example, if it is desirable to give telnet

118 Wide-Area Data Network Performance Engineering

terminal traffic a higher priority than file transfer protocol (FTP) traffic, then
this scheme will not work because both of these higher level protocols are
carried over a TCP transport-level connection. Hence, both telnet and FTP
would receive the same priority level treatment under this method.

High-Level Protocol Identifier
Switches and routers can be programmed to look deeper into the protocol
headers within the packet. One popular approach is to configure a router view
the TCP or UDP port numbers, which identify the protocols riding over these
transport-level protocols. Recently, this has been referred to as level 4 switch-
ing, to indicate the protocol level at which the routers are required to process in
order to make switching or filtering decisions.

TCP port numbers indicate whether the data are from a telnet application
or an FTP application. The router can then rely on the port numbers as an
indication of the type of priority to be given to the data packet. This is valuable
in that the higher level protocol indications are “closer” in some sense to the
application and thus they give a better capability to discriminate file applica-
tions from transaction applications.

The price for this type of approach is that it is relatively more difficult for
most high-speed switches or routers to search this deep into the protocol head-
ers. This consumes more processing capabilities in the router and will, in turn,
negatively impact the overall packet throughput on the router.

Protocol Encapsulation Type
Devices that operate at the link level, for example, FRADs or ATM switches,
could conceivably rely on the protocol encapsulation type indication within the
link level encapsulation protocols. An example is the encapsulation for frame
relay networks defined in RFC 1490 (and discussed in Chapter 2). This would
base the prioritization on the NLPID. Basing priority levels on the protocol
encapsulation type would allow switches to prioritize based on the type of pro-
tocol. This is useful when, for example, you want to give all of your Novell
NetWare Inter-Packet eXchange (IPX) traffic priority over TCP/IP applica-
tions (primarily carrying e-mail). The downside of this method is that you
cannot prioritize, for example, telnet traffic over FTP transfers. Although this
technique is occasionally discussed, it is not implemented in practice. One
strong criticism of this approach is that it would violate the requirement that
virtual circuits do not reorder the packets on the individual circuits.

Incoming Port or Interface
Suppose a router has two LAN interfaces, such as an Ethernet and a token ring.
The token ring LAN carries primarily SNA traffic, and the Ethernet carries
primarily native, non-real-time TCP/IP applications such as e-mail. Then, it

Techniques for Performance Engineering 119

would be useful for the router to give all packets incoming from the token ring
LAN a high priority level and all packets incoming from the Ethernet LAN a
low priority level.

However, like the case of basing priority levels on encapsulation types,
this is a relatively nondiscriminating method for assigning priority levels. Also,
unless there is some method of indicating the priority level on the packet, this
method provides only local priority service; this does not extend across to the
rest of the network.

Source/Destination Address Pair
Often traffic from a given source or traffic between a given source/destination
pair is to be given priority handling. This can be accomplished in the routers
by examining, for example, the IP addresses of the source and the destination
indicated on the IP packet header. This is a fairly flexible form of identifying
high-priority traffic in router networks.

Circuit ID
Virtual circuit switches base switching decisions on a circuit ID. They could
just as well base a priority-level decision on a circuit ID. If the access device
(for example, a FRAD) applied one of the other methods for assigning priority
levels to packets and ran multiple virtual circuits to all other end points, then
it could place the higher priority packets on one virtual circuit and the lower
priority packets on another virtual circuit. This would extend the priority treat-
ment of the data packet beyond the access facility and across the entire virtual
circuit network.

Packet Length
Some systems have been known to assign priority levels based on packet size.
The theory here is that terminal traffic is comprised of generally small packets
while file transfer traffic is comprised of larger packets. This is not always true.
Further, extreme care must be taken to ensure that the wrong packets are not
reordered along the network connection. This could cause high levels of end-
to-end retransmissions and greatly degrade the perceived performance of the
network. In general, avoid these techniques for “guessing” at the priority level
of the traffic.

The methods discussed for determining priority can be categorized by the
type of discrimination, that is, explicit versus implicit, and the level in the pro-
tocol stack at which the discrimination occurs, for example, layer 2, layer 3, and
so on. We summarize these in the Table 4.1.

As a rule of thumb, priority queuing methods are useful when access-
ing relatively low-speed facilities, for example, analog lines or 56-Kbps to
fractional-T1 digital lines. At high speeds the relative benefits of priority

120 Wide-Area Data Network Performance Engineering

queuing are diminished (and sometimes are detrimental if the processing over-
head incurred by enabling priority queuing greatly reduces the overall through-
put of the networking device). Also, attempts should be made to ensure that
the total amount of high-priority traffic is small relative to the amount of low-
priority traffic. A good rule is to keep the high-priority traffic to less than 10%
of the low-priority traffic. After all, if all the traffic were treated as high priority
then the system would degenerate to a simple, single queue system.

Low-priority queue “starvation” can also occur if the higher priority traf-
fic load becomes too great. This may cause retransmit timers associated
with low-priority traffic to expire and greatly degrade the performance of these
applications.

4.4.4 Processor Sharing

Suppose that routers were to put packets into different buckets (depending on
some criteria), and then transmit one packet at a time from each bucket onto
the transmission facility. If a given bucket were empty, then it would simply
jump to the next bucket containing a data packet. We refer to this type of
packet transmission system as a processor sharing system. (A related system is

Techniques for Performance Engineering 121

Table 4.1
Categories of the Priority Discrimination Schemes

Priority
Determination

Discrimination
Type

Discrimination
Layer Comments

Packet length Implicit Not applicable Rarely implemented (thank goodness)

Port or interface Implicit Layer 1 Can prioritize one token ring versus
Ethernet, or one department versus
another

Source/destination
address pair

Explicit Layer 1 Prioritize all traffic from a given source
or between a source/destination pair

Encapsulation
indicator

Explicit Layer 2 Can prioritize, for example, SNA over IP,
however causes packet reordering on a
VC, not implemented (thank
goodness)

Protocol ID Explicit Layer 3 Can prioritize, for example, IPX over IP

High-level protocol
ID

Explicit Layer 4 (plus) Can prioritize, for example, telnet over
FTP

referred to as a weighted fair queuing algorithm; see the discussion in the follow-
ing paragraphs.)

A processor sharing system is fundamentally different from a priority
queuing system in that a processor sharing system treats all types of packets (or
traffic) equally in some sense. A priority queuing system, however, explicitly
favors one type of packet (or traffic) over other, lower priority traffic type.3 This
is shown in Figure 4.8. Notice the predicted output pattern for this processor
sharing system and compare it to the predicted output pattern in Figure 4.7 for
the priority queuing system.

Here, the processor sharing server effectively interleaves the packets from
the various packet buffers. In this sense it behaves differently from a priority
queuing system. The processor sharing system treats all queues equally by
transmitting a packet from each occupied queue in a round-robin fashion. The

122 Wide-Area Data Network Performance Engineering

Output pattern

Buffer 1

Buffer 2

Buffer 3

Figure 4.8 A three-bucket, packet-level processor sharing system.

3. Other types of processor sharing systems exist where the data from each bucket are essen-
tially transmitted a byte at a time. These are referred to as byte-interleaving, processor shar-
ing schemes, as opposed to the packet-interleaving, processor sharing schemes discussed
earlier.

priority queuing system explicitly favors those packets in the queue designated
high priority.

Some processor sharing schemes allow for a weight to be assigned to spe-
cific flows. This gives a larger proportion of the bandwidth to some flows over
others. For example, flow A can be assigned twice the bandwidth as the other
flows by serving two packets from flow A’s queue versus one packet for each
visit to the other queues. Various schemes like these exist, for example, pro-
portional round-robin, weighted processor sharing, or weighted fair queuing
algorithms, which are variations on the processor sharing algorithm.

Assume that a single transaction packet arrives at a processor sharing
system and is placed into an empty bucket.4 In this case (that of a single transac-
tion packet), the maximum queuing delay would be a file transfer packet inser-
tion delay of N − 1 packets, where N is the number of active, separate queues in
the processor system.

In contrast, the maximal delay in the priority queuing system would be a
single file transfer packet insertion delay. The factor of N – 1 arises because the
processor sharing system treats all queues equally. This maximal delay for active
queues would occur if all the other queues were occupied and the transaction
packet is queued just following its “turn” in the processor cycle. If the transac-
tion packet arrived to its queue just prior to its turn, then its delay would be
roughly zero. Hence, the average delay would be one-half the maximum delay:
(N − 1) × (Insertion delay) / 2.

As an example, for a WAN facility running at 56 Kbps and a single active
file transfer with a packet size of 560 bytes, the average delay, under processor
sharing, for a packet belonging to an interactive traffic stream that is queued
separately is roughly 40 msec (that is, half of 80 msec, the insertion delay of a
560-byte packet on a 56-Kbps link). This would not be noticeable to the end
user of the transaction application. For two simultaneously active file transfers
this delay would double; for three, it would triple; and so on. On the other
hand, if interactive traffic is explicitly given highest priority, then the maxi-
mum queuing delay (due to packets from other traffic streams) for an interac-
tive packet will be half the full insertion delay, no matter how many queues are
maintained and active.

Although processor sharing is not as effective at reducing the transaction
delays as a priority queuing scheme, it does have several advantages. Like prior-
ity queuing schemes, a processor sharing scheme can be implemented based on
very low-level indications, for example, virtual circuit identifiers, packet level

Techniques for Performance Engineering 123

4. In the case where the transaction arrives at a nonempty queue, the delay bounds discussed
in this paragraph are increased by the number of transaction packets in queue ahead of the
transaction in question times (N – 1) packet insertion delays.

flow identifiers, or packet destination or source/destination pairs. Processor
sharing is effective at sharing bandwidth across all active circuits or flows, and
avoids “starvation” effects, which can occur in priority queuing systems. Also,
by assigning unequal weights to the different buffers, a form of favoritism can
be assigned to “higher priority” traffic.

4.4.5 Adaptive Controls

Adaptive controls attempt to minimize the length of the queues at the resource
in contention by monitoring, either implicitly or explicitly, the state of the
buffers. In our example, where a large file transfer and a small transaction
are contending for a common communication facility, a large queue develops
when the file source is sending too much data into the network at any given
time. These data end up sitting in the buffers for access to the common
network facility, which causes an excessive delay for a small, delay-sensitive
transaction. By minimizing the length of this queue, an adaptive control
scheme can improve the transaction delays.

There are basically two mechanisms that adaptive controls can apply
to manage queue buildup: dynamically adjusting the rate at which the source
transmits into the network (commonly referred to as traffic shaping) or dynami-
cally adjusting the transmission window size of the source. When the queue is
determined to be building up too large, then the rate or the window can be
decreased. In the event that the queue is determined to be extremely small, then
the rate or the window of the transmitter can be increased. By constantly moni-
toring and adjusting the rate or window size, the system can achieve a reason-
able trade-off between high throughputs and low delays.

The adaptive source requires some form of feedback on the state of the
network path in order to make the appropriate changes to the transmitter. The
form of the feedback can vary, being either explicit or implicit. This is shown in
Figure 4.9.

The lower path shows an explicit congestion indication being sent to the
source. Receipt of this message would then allow the transmitter to either
decrease its transmission rate (either by spacing out its packets or decreasing its
transport window) or increase it depending on the nature of the message.

Several methods exist to implement this explicit notification. One
method would have the congested resource generate a signaling message and
transmit it to the source of the traffic. Another method would have the con-
gested resource setting a bit (or bits) in the protocol header of the data packets
as they traverse the congested resource. The receiver would then pass this back
to the transmitter through a similar indication on the packet headers.

124 Wide-Area Data Network Performance Engineering

The upper loop refers to an implicit method of sensing network conges-
tion. One example of this method is to base adaptive decisions on a round-trip
time measurement. Here the “probe” could be a single data packet in the
forward direction and the acknowledgment in the reverse direction. Then, the
onset of congestion in the data path would cause delays in queuing and increase
the measured round-trip time. The transmitter could then slow down its trans-
mission rate or decrease the size of its transport window. This would help to
alleviate the congested resource. Another method of implicitly sensing network
problems is to rely on packet loss to indicate congestion.

An example is the TCP slow start adaptive algorithm (see the discussion
in [1]). Here, the transmitter would sense a lost packet through the windowing
acknowledgments (or lack thereof) and would infer that the packet was
dropped due to congestion. The transmitter would then decrease its trans-
mission rate (through one of several methods already discussed). This is not a
direct measure of network congestion because packet loss can occur in net-
works due to other reasons, for example, bit errors on transmission facilities or
misrouted packets.

By adapting the transmission rate based on some form of feedback from
the network on its congestion state, transmitters attempt to keep packet buffers
from growing too large. As we have discussed, this will help in reducing the net-
work delays for all data including transaction-oriented application data. This
will help to reduce the negative, cross impact of file transfer traffic on transac-
tion data. We have already discussed similar algorithms in Chapter 2 on frame
relay congestion control methods.

Techniques for Performance Engineering 125

Congestion
notification

Workstation B

Router A

Minicomputer A

Transaction
server A

Minicomputer B

Router BRouter HRouter G

Probe

Congested resource

Figure 4.9 Implicit and explicit feedback on network congestion.

4.4.6 Selective Discards

Selective discard mechanisms discriminate among various sources of traffic dur-
ing periods of extreme resource congestion by discarding packets from select
sources while not discarding from other sources. It is argued that this is a
method of reserving critical network resources during congestion periods for
time-sensitive or high-priority applications.

This reservation mechanism implicitly reserves resources for critical appli-
cations by explicitly denying access to noncritical applications. This scheme
relies on the same methods to identify those applications deemed noncritical as
the other schemes discussed in the previous sections. Often noncritical applica-
tions are considered to be those utilizing certain TCP port numbers, for exam-
ple, FTP is deemed noncritical, while telnet is deemed critical.

Some implementations of selective discard rely on the specific switching
equipment to look deep into the packet headers to determine the nature of the
applications and to determine which packets to discard during resource over-
load. Other schemes have end systems tagging the packets as discard eligible
through some network protocol-specific indication. Others tag packets based
on a bandwidth contract as measured at the access control point into a net-
work. One such implementation, known as discard eligibility, is found within
the frame relay network standards as discussed in Chapter 2.

The selective discard strategy is fundamentally different than the other
methods discussed within this chapter. The trigger for the selective discard
action to begin is usually a buffer congestion threshold. These thresholds
are usually set to a significant fraction of the total buffer space allocated
to the resource. Otherwise, the majority of this buffer space is wasted. Once
the threshold is reached, the selective discard mechanism is initiated until the
buffer utilization drops below a lower level congestion threshold (in order
to prevent thrashing). What is different with this scheme is that it is responding
to large buffer utilization, instead of responding to delay and bandwidth
considerations. Long before the time the buffers have reached their threshold,
the delays for the time-sensitive applications have exceeded reasonable limits.
Therefore, this should not be considered a useful mechanism to ensure good
transaction application performance in multiprotocol networks.

Often heard in discussions of packet discard techniques is the random
early detection (RED) strategy implemented in many IP-based router net-
works. This is a technique in which routers attempt to mitigate the onset of
router congestion by initiating a limited level of random packet discards based
on buffer threshold settings. By performing a low level of packet discards, the
router is relying on throttling back TCP slow start implementations and damp-
ing the load somewhat on the router. This has been shown to be a very effective

126 Wide-Area Data Network Performance Engineering

technique in maintaining high network utilization while mitigating the effects
of congestion. From an Internet provider perspective, RED provides signifi-
cant benefits to their overall customer base. However, from a critical end-
applications perspective (which is the focus of this section and, in fact, this
book), RED does not significantly benefit particular applications by providing
significant differentiated service. These are fundamentally different goals.

4.5 Data Collection

We have discussed application characteristics, load engineering and capacity
management, and methods to give preferential treatment of one application
type over another when designing and implementing data networks. However,
to deliver on a capacity management plan and to maintain the desired perform-
ance engineering, one needs to collect data on various aspects of the network.
Data collection techniques are discussed in this section. Here we identify vari-
ous types of data collection tools.

To help accomplish the tasks that arise only occasionally, specialized
monitoring equipment, such as LAN/WAN analyzers or protocol traces, can be
utilized. However, for ongoing tasks, such as capacity management, one needs
to rely primarily on the existing measurement capabilities of the networking
equipment and network management systems employed. We briefly discuss
three types of collection tools: LAN/WAN analyzers, SNMP management
tools, and RMON2 probes. We end this section with a brief classification of
commercially available tools that are useful in this context.

4.5.1 LAN/WAN Analyzers

LAN/WAN analyzers are devices that can tap into the LAN/WAN and capture
the data being transmitted over the LAN/WAN segment. These devices store
some aspects of the data onto disk to be retrieved at a later date. Sniffers capture
all the data, but usually one applies filters to look at some particular aspect of
the information of use in characterizing the traffic load and in developing
an understanding of the protocol models required for trouble shooting.
LAN/WAN analyzers typically store the link level (and can be configured
to capture higher level protocol information such as the IP or IPX) packet
formats, the byte count of the data fields, whether the packets were received
in error, and time stamps showing the time at which the packet data were
captured.

From this, the analyst can compute the interesting statistics associated
with the data traffic, for example, average and standard deviation of the packet

Techniques for Performance Engineering 127

sizes, the traffic loads, and even the point-to-point requirements by mapping
end-system addresses in the packet headers to the destination locations.

Another important use of LAN/WAN analyzers is traffic characterization
of specific applications, particularly client/server applications. This is of great
utility as discussed in Section 4.3.

This equipment tends to be rather specialized and therefore relatively
expensive. However, it is not necessary to widely deploy this equipment, and it
is mostly used on an individual case basis for specific reasons. These are typi-
cally used to help resolve problems, to help build an understanding of traffic
load over a given, finite period of time, or to characterize specific applications
prior to generally deploying the application on the enterprise network.

4.5.2 Network Management Systems and RMON Probes

Here we focus on those aspects of management systems that capture and store
traffic data in networks on an ongoing basis. This is a distributed functionality,
in that individual network components are required to collect local informa-
tion, then periodically transmit this information to a centralized network man-
agement system that can process this information into quantities of utility to
the network analysts and administrators.

Local information typically collected on the individual network compo-
nents includes the following:

• Serial trunk interfaces: the number of bytes and frames transmitted and
received, the number of errored frames transmitted and received, the
number of frames discarded due to buffer overflows, and so on;

• Multiplexed interfaces (such as frame relay or ATM): the number of
bytes and frames transmitted and received, the number of errored
frames transmitted and received, the number of frames discarded
due to buffer overflow on an individual virtual connection basis, the
number of established switched connections on an interface basis, and
so on;

• Switch processors: the number of frames or cells forwarded over the
switch fabric, the utilization of call processors, the size of the run queue
in the processor, and so on;

• Routers: the number of packets forwarded as a function of the protocol
type, for example, IP, IPX, AppleTalk, the utilization of the routing
processor, the size of the routing tables, and so on; and

• Network servers: the utilization of the processor and disk, the number
of simultaneous sessions established, and so on.

128 Wide-Area Data Network Performance Engineering

These parameters are stored locally and are periodically (in periods ranging
from 5 min to 1 h) transmitted to a centralized management system when
prompted by the management station. The management system will process
and summarize the information and archive the results for trend analyses by the
network analysts. Useful trend analyses might include the weekly variations in
the utilization of a trunk interface into the WAN or the monthly increase on
the peak utilization or the variation in the utilization of a network server, as dis-
cussed in Section 4.2. Useful troubleshooting information includes the number
of frames or packets received in error or the number of frames discarded due to
buffer overflows on a particular hour of a given day.

The trend today is to try to standardize the type of information to be col-
lected and stored by the network management systems. The type of informa-
tion to be collected is found in an SNMP management information base (MIB)
for the particular device or technology in question. Many of the MIB defi-
nitions are standard, but many vendors have developed proprietary extensions
that are specific to their particular equipment.

The types of information identified in the preceding list are local to par-
ticular devices comprising the network. As mentioned in the preceding para-
graph, this type of information is captured within the MIB for the device. A
standard MIB common across all SNMP manageable devices is defined and
referred to as MIB II [2]. Because this type of information is local to a specific
device, it is up to a central management system to correlate these individual
pictures into a view across a specific subnet or LAN segment.

To eliminate this burden on a central management system, and to pro-
vide a richer set of subnet-based statistics, the RMON MIB was developed. The
IETF has developed a set of recommendations for a standard remote monitor-
ing capability. Hardware devices that implement these recommendations for a
standard set of subnetwork monitors are referred to as RMON probes. RMON2
extends the monitoring capabilities of the RMON above the MAC layer.

We prefer to think of these additional RMON2 capabilities in terms of
three different levels of traffic analysis. Level 1 of the traffic analysis is overall
byte count and average packet sizes. Level 2 of the traffic analysis is a break-
down via layer 3 protocols, for example, IP versus IPX, DECnet, AppleTalk.
Level 3 of the traffic analysis is a detailed analysis of IP traffic into TCP
and UDP components along with further breakdown of TCP traffic according
to port numbers and so on. This information, collected from networks and
stored within the probes can be communicated to a central management system
through the SNMP [3].

For these reasons, RMON2 probes offer a rich set of collection capabili-
ties, which are extremely useful in capacity engineering. For more information
on RMON2 probes see [2].

Techniques for Performance Engineering 129

It is the job of the analyst to develop a capacity management strategy that
relies primarily on the information types and statistics collected as identified in
the MIBs available in the components deployed within their data network. As
such, the MIBs must necessarily contain the required local information that the
analyst uses to develop an understanding of the important end-to-end perform-
ance requirements of the applications riding over the multiprotocol network.

The capabilities provided by these activities in the IETF and afforded to a
network management tool by RMON2 (or similar function) probes have led to
the development of a host of monitoring, trending, and performance manage-
ment tools. These tools can help the analyst by delivering much of the capabili-
ties required in their capacity management needs. These are discussed next.

For an excellent discussion of IP management standards and MIBs, refer
to [3], and [2] for RMON.

4.5.3 A Taxonomy of Commercially Available Tools for Performance
Engineering Data Networks

As mentioned in this section on data collection, several commercially available
tools cover all aspects of data networking: configuration management, equip-
ment inventory, capacity planning, application analysis, performance model-
ing, troubleshooting, and traffic generation.

Although all of these tools are important in their own right, we focus
below on a set of tools that we think is indispensable in performance engineer-
ing data networks, especially WANs. The objective is to provide the reader
with a high-level view of the tool’s capabilities and strengths. In this process, it
is likely that some important aspects of the tools may not be mentioned. For
more details, the reader is referred to vendors’ Web sites.

We classify tools for performance engineering as follows:

• Sniffers;

• Capacity management tools;

• Application analysis tools;

• Predictive modeling tools.

We discuss each type separately next and give some examples of each.

Sniffers
Sniffers are passive devices that can be placed on a LAN or WAN segment
to collect traffic statistics and packet-level information on the segment. They
can be set up with various filters to selectively collect data. For instance, one

130 Wide-Area Data Network Performance Engineering

can isolate specific conversations between a client and a server by filtering on
their MAC or IP addresses.

Sniffers are indispensable for performance engineering for two reasons:
troubleshooting and application characterization. Many examples in the later
chapters of this book contain descriptions of how sniffer protocol traces were
used to troubleshoot performance problems and to characterize application
behavior over WANs. Some tools even have the capability of directly reading
sniffer protocol traces for performance modeling purposes.

The flagship tools in this category are the Network Associates Sniffer

and Wandel & Goltermann’s Domino.

Capacity Management Tools
Tools in this category are primarily software based. They rely on network
components (routers, bridges, hubs, CSU/DSUs, servers, and so on) to collect
measurement data in accordance with the IETF’s SNMP/RMON/RMON2
standards and MIBs. Centralized network management stations poll the net-
work components for information on the MIB variables and report on all
aspects of network capacity, network congestion, application usage, and so on.

Examples of such tools are Concord Communications’ Network/Router
Health/Traffic Accountant, INS’s E-Pro, Cabletron’s Spectrum, and Net-
Scout Systems RMON2 probes and NetScout Manager.

Some tools from vendors such as Visual Networks and Paradyne can be
used for capacity planning and troubleshooting. However, they are hardware
and software based. The hardware is in the form of a “smart” DSU interfacing
with the WAN.

Application Analysis Tools
These tools use self-generated measurements and probes to estimate
application-level performance. They rely on various application profiles that
capture the essence of the application-level traffic flows to measure expected
application performance.

These tools require a centralized management server as well as the deploy-
ment of distributed software clients at the remote locations from which
performance measurements are desired. Examples of this type of tool include
Ganymede’s Pegasus tool.

Predictive Modeling Tools
These tools are either simulation tools or analytical modeling tools. Simulation
tools build a logical model of the network and the applications in question,
and run a simulation collecting the performance metrics of interest. Examples
of these tools include MIL 3’s OPNET and IT Decision Guru. Analytical
modeling builds reference connections in the network and, along with an

Techniques for Performance Engineering 131

application profile input, provides answers to “what if ” scenarios such as
increased bandwidth and protocol tuning. A prime example of analytical tools
is the Application Expert from Optimal Networks.

Other predictive tools have or build application profiles and deploy these
profiles on remote software clients. These profiles are then run from the remote
client over the existing network and performance metrics of interest are
collected. Ganymede’s Chariot tool is a good example of such a tool.

4.6 An Example: Deploying New Applications

We end this chapter by providing a high-level discussion of the necessary steps
that one should take before deploying a new critical application over an existing
WAN. This discussion ties together all of the techniques presented within this
chapter.

The analysis and design of data networks and their performance evalua-
tions are only as good as the inputs to the design and the ongoing monitoring
of the implemented network. Similarly, when developing the engineering rules
for the data network to support the rollout of a new application, the effective-
ness of the engineering rules is only as good as the input to the engineering
models.

We recommend the following four steps in the context of deploying new
applications over a WAN.

Application Characterization
Characterize the new application to be carried over the network and its per-
formance requirements, for example, delay and throughputs. When entering
into the process of redesigning a network to support a new application, it is
important to have first built up an understanding of the nature of the specific
application in question.

We are strong proponents of a top-down approach, as far as possible, to
design, engineer, and maintain data networks. This begins with time spent in
defining the performance requirements of this application. Networks are built
to support a variety of applications and application types.

Applications range from highly transactional, or latency-sensitive,
applications where delay is critical, to bulk data transfer, or bandwidth-
sensitive, applications where throughput is critical, or hybrid applications,
which share the characteristics of sensitivity to latency and bandwidth. Various
tools are available to the engineer to help in characterizing the behavior of the
application. These include sniffers, product literature, and vendor support.

132 Wide-Area Data Network Performance Engineering

Ideally, at the conclusion of this first phase, the network engineer should
be able to draw a timing diagram for the important network applications. This
level of detail will aid in (1) the redesign phase in determining if the design
will meet the application-level performance requirements and (2) the capacity
management phase in developing a component-level performance allocation.
However, it is not always possible to develop this level of detail, depending on
the specific application in question.

Traffic Matrix
Identify the traffic loads and develop a point-to-point traffic matrix related
to the new application. Once the application characterization is complete, the
next stage is the characterization of the traffic, including its arrival patterns, its
point-to-point flows, and its offered load.

This information should be presented in terms of the point-to-point traf-
fic loads between the data sources and the data sinks. This is best built up from
the volume of traffic a given application transaction or file transfer produces
and the frequency of the transmissions of these transactions between all sources
and destinations during the busiest period of the day. Often these traffic
volumes must be estimated based on issues such as (1) assumptions regarding
number of users at a given location, (2) assumptions regarding usage concur-
rence, and (3) best case and worst case bounds.

The sum total of this information is the traffic matrix. The traffic matrix
is used to determine the additional network connectivity and bandwidth
requirements during the network redesign phase.

Network Redesign
Redesign the network and identify the affected network components to support
the new application characteristics and traffic. The first step in the network
redesign phase is to determine the specific network components that will
be affected by the deployment of the new application. At a minimum, the
engineer must identify the components whose capacity must be increased
to support the bandwidth and connectivity requirements specified in the new
traffic matrix.

At this point, the engineer should have a network layout, including the
expected loads on each of the network components, for example, links and
PVCs. The engineer can now develop the expected delays and throughputs for
the dominant applications to be carried over the design. This is accomplished
by developing the appropriate timing diagrams for these applications over
typical reference connections within the network layout. From the timing
diagrams, one can determine the realizable end-to-end delays and throughputs.
If these realizable delay and throughput estimates meet the initial set of

Techniques for Performance Engineering 133

performance requirements for the applications, then the initial design is final-
ized. If the realizable performance estimates do not meet the initial require-
ments, then the design must be modified until the performance objectives
are met.

If the new applications are characterized as latency sensitive, and must
compete for network resources with various bandwidth-sensitive applications,
then the engineer should consider the various methods of traffic discrimina-
tion, which were discussed in Section 4.4.

Capacity Management
Modify the existing capacity management tactics to maintain acceptable
network performance for the existing and new applications. Redesigning a net-
work in this a priori fashion is useful but is never sufficient. New users and serv-
ers are constantly added to existing networks. This has the effect of changing
the nature of the traffic flows over the network and hence changing the
network performance characteristics. Also often it is impossible to fully charac-
terize the new application being deployed to the level of detail suggested earlier.
Therefore the network analyst/network administrator must design a strategy to
continuously monitor the network and plan its growth in order to maintain the
desired level of performance as changes to traffic occur or as an understanding
of the nature of the traffic improves.

Ideally, the capacity management strategy is devised by reverse engineer-
ing the desired end-to-end delays or throughputs into the individual network
component metrics that can be monitored effectively. This is accomplished in
two parts.

First, the end-to-end delays must be mapped into the individual com-
ponent delays. We refer to this as component allocation. Next, the component
delays must be mapped to component metrics, which are measurable. It is gen-
erally not possible to directly measure component delays. Therefore, these must
be mapped to directly measurable quantities, such as the component utiliza-
tion. This relies on load engineering and associated load engineering models.

Consider these four steps as a recipe for performance engineering when
deploying a new application. Each step is as important as the next and none
should be skipped when designing an enterprise network from scratch or when
deploying a new application onto an existing network. However, it must be
remembered that these guidelines cannot be fully realized for all applications
being deployed. Consider the rollout of a company-wide Microsoft Exchange

e-mail platform, or an IBM/Lotus Notes deployment, or an Intranet Web-
based application. For these applications, it will be very hard, if not impossible,
to obtain traffic matrices, usage patterns, and performance requirements prior

134 Wide-Area Data Network Performance Engineering

to their deployment. For other applications, for example, the deployment of
client/server applications, this approach may be more fully realized.

4.7 Summary

In this chapter, we covered several topics regarding general performance engi-
neering techniques. The first topic was load engineering where we discussed the
definition of directly measurable component thresholds and their relationship
to maintaining acceptable network performance. We next discussed latency-
and bandwidth-sensitive applications and the problems of simultaneously sup-
porting both on a common enterprise network. This led us to list the various
traffic discrimination techniques available to minimize negative cross-
application effects. Following this we presented a section on tools for maintain-
ing data networks. This touched on tools for monitoring, capacity manage-
ment, network planning, and troubleshooting. We ended this section with a
brief discussion of a method to follow for the deployment of a new application
over an existing data network.

References

[1] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

[2] Stallings, W., SNMP, SNMPv2 and RMON, Reading, MA: Addison-Wesley, 1996.

[3] Rose, M. T., The Simple Book: An Introduction to Management of TCP/IP-Based Internets,
Englewood Cliffs, NJ: Prentice Hall, 1989.

Techniques for Performance Engineering 135

	4 Techniques for Performance Engineering 101
	4.1 Introduction 101
	4.2 Load Engineering 102
	4.3 Latency-Sensitive and Bandwidth-Sensitive Applications 106
	4.4 Methods to Discriminate Traffic in a Multiprotocol Network 108
	4.5 Data Collection 127
	4.6 An Example: Deploying New Applications 132
	4.7 Summary 135
	References 135

