
Preface

Objectives and Audience

In the past three decades, we have witnessed the phenomenal growth in the trading
of financial derivatives and structured products in the financial markets around the
globe and the surge in research on derivative pricing theory. Leading financial insti-
tutions are hiring graduates with a science background who can use advanced ana-
lytical and numerical techniques to price financial derivatives and manage portfolio
risks, a phenomenon coined as Rocket Science on Wall Street. There are now more
than a hundred Master level degreed programs in Financial Engineering/Quantitative
Finance/Computational Finance in different continents. This book is written as an in-
troductory textbook on derivative pricing theory for students enrolled in these degree
programs. Another audience of the book may include practitioners in quantitative
teams in financial institutions who would like to acquire the knowledge of option
pricing techniques and explore the new development in pricing models of exotic
structured derivatives. The level of mathematics in this book is tailored to readers
with preparation at the advanced undergraduate level of science and engineering ma-
jors, in particular, basic proficiencies in probability and statistics, differential equa-
tions, numerical methods, and mathematical analysis. Advance knowledge in sto-
chastic processes that are relevant to the martingale pricing theory, like stochastic
differential calculus and theory of martingale, are introduced in this book.

The cornerstones of derivative pricing theory are the Black–Scholes–Merton
pricing model and the martingale pricing theory of financial derivatives. The
renowned risk neutral valuation principle states that the price of a derivative is given
by the expectation of the discounted terminal payoff under the risk neutral measure,
in accordance with the property that discounted security prices are martingales under
this measure in the financial world of absence of arbitrage opportunities. This second
edition presents a substantial revision of the first edition. The new edition presents
the theory behind modeling derivatives, with a strong focus on the martingale pric-
ing principle. The continuous time martingale pricing theory is motivated through
the analysis of the underlying financial economics principles within a discrete time
framework. A wide range of financial derivatives commonly traded in the equity and
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fixed income markets are analyzed, emphasizing on the aspects of pricing, hedging,
and their risk management. Starting from the Black–Scholes–Merton formulation of
the option pricing model, readers are guided through the book on the new advances in
the state-of-the-art derivative pricing models and interest rate models. Both analytic
techniques and numerical methods for solving various types of derivative pricing
models are emphasized. A large collection of closed form price formulas of various
exotic path dependent equity options (like barrier options, lookback options, Asian
options, and American options) and fixed income derivatives are documented.

Guide to the Chapters

This book contains eight chapters, with each chapter being ended with a comprehen-
sive set of well thought out exercises. These problems not only provide the stimulus
for refreshing the concepts and knowledge acquired from the text, they also help lead
the readers to new research results and concepts found scattered in recent journal ar-
ticles on the pricing theory of financial derivatives.

The first chapter serves as an introduction to the basic derivative instruments, like
the forward contracts, options, and swaps. Various definitions of terms in financial
economics, say, self-financing strategy, arbitrage, hedging strategy are presented. We
illustrate how to deduce the rational boundaries on option values without any distri-
bution assumptions on the dynamics of the price of the underlying asset.

In Chap. 2, the theory of financial economics is used to show that the absence of
arbitrage is equivalent to the existence of an equivalent martingale measure under the
discrete securities models. This important result is coined as the Fundamental Theo-
rem of Asset Pricing. This leads to the risk neutral valuation principle, which states
that the price of an attainable contingent claim is given by the expectation of the dis-
counted value of the claim under a risk neutral measure. The concepts of attainable
contingent claims, absence of arbitrage and risk neutrality form the cornerstones of
the modern option pricing theory. Brownian processes and basic analytic tools in
stochastic calculus are introduced. In particular, we discuss the Feynman–Kac rep-
resentation, Radon–Nikodym derivative between two probability measures and the
Girsanov theorem that effects the change of measure on an Ito process.

Some of the highlights of the book appear in Chap. 3, where the Black–Scholes–
Merton formulation of the option pricing model and the martingale pricing approach
of financial derivatives are introduced. We illustrate how to apply the pricing theory
to obtain the price formulas of different types of European options. Various exten-
sions of the Black–Scholes–Merton framework are discussed, including the transac-
tion costs model, jump-diffusion model, and stochastic volatility model.

Path dependent options are options with payoff structures that are related to the
path history of the asset price process during the option’s life. The common exam-
ples are the barrier options with the knock-out feature, the Asian options with the
averaging feature, and the lookback options whose payoff depends on the realized
extremum value of the asset price process. In Chap. 4, we derive the price formu-
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las of the various types of European path dependent options under the Geometric
Brownian process assumption of the underlying asset price.

Chapter 5 is concerned with the pricing of American options. We present the
characterization of the optimal exercise boundary associated with the American op-
tion models. In particular, we examine the behavior of the exercise boundary before
and after a discrete dividend payment, and immediately prior to expiry. The two
common pricing formulations of the American options, the linear complementarity
formulation and the optimal stopping formulation, are discussed. We show how to
express the early exercise premium in terms of the exercise boundary in the form of
an integral representation. Since analytic price formulas are in general not available
for American options, we present several analytic approximation methods for pric-
ing American options. We also consider the pricing models for the American barrier
options, the Russian option and the reset-strike options.

Since option models which have closed price formulas are rare, it is common to
resort to numerical methods for valuation of option prices. The usual numerical ap-
proaches in option valuation are the lattice tree methods, finite difference algorithms,
and Monte Carlo simulation. The primary essence of the lattice tree methods is the
simulation of the continuous asset price process by a discrete random walk model.
The finite difference approach seeks the discretization of the differential operators in
the Black–Scholes equation. The Monte Carlo simulation method provides a proba-
bilistic solution to the option pricing problems by simulating the random process of
the asset price. An account of option pricing algorithms using these approaches is
presented in Chap. 6.

Chapter 7 deals with the characterization of the various interest rate models and
pricing of bonds. We start our discussion with the class of one-factor short rate mod-
els, and extend to multi-factor models. The Heath–Jarrow–Morton (HJM) approach
of modeling the stochastic movement of the forward rates is discussed. The HJM
methodologies provide a uniform approach to modeling the instantaneous interest
rates. We also present the formulation of the forward LIBOR (London-Inter-Bank-
Offered-Rate) process under the Gaussian HJM framework.

The last chapter provides an exposition on the pricing models of several com-
monly traded interest rate derivatives, like the bond options, range notes, interest
rate caps, and swaptions. To facilitate the pricing of equity derivatives under sto-
chastic interest rates, the technique of the forward measure is introduced. Under
the forward measure, the bond price is used as the numeraire. In the pricing of the
class of LIBOR derivative products, it is more effective to use the LIBORs as the
underlying state variables in the pricing models. To each forward LIBOR process,
the Lognormal LIBOR model assigns a forward measure defined with respect to the
settlement date of the forward rate. Unlike the HJM approach which is based on
the non-observable instantaneous forward rates, the Lognormal LIBOR models are
based on the observable market interest rates. Similarly, the pricing of a swaption
can be effectively performed under the Lognormal Swap Rate model, where an an-
nuity (sum of bond prices) is used as the numeraire in the appropriate swap measure.
Lastly, we consider the hedging and pricing of cross-currency interest rate swaps
under an appropriate two-currency LIBOR model.
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Introduction to Derivative Instruments

The past few decades have witnessed a revolution in the trading of derivative
securities in world financial markets. A financial derivative may be defined as a se-
curity whose value depends on the values of more basic underlying variables, like
the prices of other traded securities, interest rates, commodity prices or stock in-
dices. The three most basic derivative securities are forwards, options and swaps.
A forward contract (called a futures contract if traded on an exchange) is an agree-
ment between two parties that one party will purchase an asset from the counterparty
on a certain date in the future for a predetermined price. An option gives the holder
the right (but not the obligation) to buy or sell an asset by a certain date for a pre-
determined price. A swap is a financial contract between two parties to exchange
cash flows in the future according to some prearranged format. There has been a
great proliferation in the variety of derivative securities traded and new derivative
products are being invented continually over the years. The development of pricing
methodologies of new derivative securities has been a major challenge in the field
of financial engineering. The theoretical studies on the use and risk management of
financial derivatives have become commonly known as the Rocket Science on Wall
Street.

In this book, we concentrate on the study of pricing models for financial deriv-
atives. Derivatives trading is an integrated part in portfolio management in financial
firms. Also, many financial strategies and decisions can be analyzed from the per-
spective of options. Throughout the book, we explore the characteristics of various
types of financial derivatives and discuss the theoretical framework within which the
fair prices of derivative instruments can be determined.

In Sect. 1.1, we discuss the payoff structures of forward contracts and options and
present various definitions of terms commonly used in financial economics theory,
such as self-financing strategy, arbitrage, hedging, etc. Also, we discuss various trad-
ing strategies associated with the use of options and their combinations. In Sect. 1.2,
we deduce the rational boundaries on option values without any assumptions on the
stochastic behavior of the prices of the underlying assets. We discuss how option
values are affected if an early exercise feature is embedded in the option contract
and dividend payments are paid by the underlying asset. In Sect. 1.3, we consider
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the pricing of forward contracts and analyze the relation between forward price and
futures price under a constant interest rate. The product nature and uses of interest
rate swaps and currency swaps are discussed in Sect. 1.4.

1.1 Financial Options and Their Trading Strategies

First, let us define the different terms in option trading. An option is classified either
as a call option or a put option. A call (or put) option is a contract which gives its
holder the right to buy (or sell) a prescribed asset, known as the underlying asset, by
a certain date (expiration date) for a predetermined price (commonly called the strike
price or exercise price). Since the holder is given the right but not the obligation to
buy or sell the asset, he or she will make the decision depending on whether the deal
is favorable to him or not. The option is said to be exercised when the holder chooses
to buy or sell the asset. If the option can only be exercised on the expiration date, then
the option is called a European option. Otherwise, if the exercise is allowed at any
time prior to the expiration date, then the option is called an American option (these
terms have nothing to do with their continental origins). The simple call and put
options with no special features are commonly called plain vanilla options. Also, we
have options coined with names like Asian option, lookback option, barrier option,
etc. The precise definitions of these exotic types of options will be given in Chap. 4.

The counterparty to the holder of the option contract is called the option writer.
The holder and writer are said to be, respectively, in the long and short positions of
the option contract. Unlike the holder, the writer does have an obligation with regard
to the option contract. For example, the writer of a call option must sell the asset if
the holder chooses in his or her favor to buy the asset. This is a zero-sum game as
the holder gains from the loss of the writer or vice versa.

An option is said to be in-the-money (out-of-the-money) if a positive (negative)
payoff would result from exercising the option immediately. For example, a call op-
tion is in-the-money (out-of-the-money) when the current asset price is above (be-
low) the strike price of the call. An at-the-money option refers to the situation where
the payoff is zero when the option is exercised immediately, that is, the current asset
price is exactly equal to the option’s strike price.

Terminal Payoffs of Forwards and Options
The holder of a forward contract is obligated to buy the underlying asset at the for-
ward price (also called delivery price) K on the expiration date of the contract. Let
ST denote the asset price at expiry T . Since the holder pays K dollars to buy an asset
worth ST , the terminal payoff to the holder (long position) is seen to be ST − K .
The seller (short position) of the forward faces the terminal payoff K − ST , which is
negative to that of the holder (by the zero-sum nature of the forward contract).

Next, we consider a European call option with strike price X. If ST > X, then
the holder of the call option will choose to exercise at expiry T since the holder can
buy the asset, which is worth ST dollars, at the cost of X dollars. The gain to the
holder from the call option is then ST −X. However, if ST ≤ X, then the holder will
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forfeit the right to exercise the option since he or she can buy the asset in the market
at a cost less than or equal to the predetermined strike price X. The terminal payoff
from the long position (holder’s position) of a European call is then given by

max(ST − X, 0).

Similarly, the terminal payoff from the long position in a European put can be shown
to be

max(X − ST , 0),

since the put will be exercised at expiry T only if ST < X. The asset worth ST can be
sold by the put’s holder at a higher price of X under the put option contract. In both
call and put options, the terminal payoffs are guaranteed to be nonnegative. These
properties reflect the very nature of options: they will not be exercised if a negative
payoff results.

Option Premium
Since the writer of an option is exposed to potential liabilities in the future, he must
be compensated with an up-front premium paid by the holder when they together
enter into the option contract. An alternative viewpoint is that since the holder is
guaranteed a nonnegative terminal payoff, he must pay a premium get into the option
game. The natural question is: What should be the fair option premium (called the
option price) so that the game is fair to both the writer and holder? Another but
deeper question: What should be the optimal strategy to exercise prior to expiration
date for an American option? At least, the option price is easily seen to depend on the
strike price, time to expiry and current asset price. The less obvious factors involved
in the pricing models are the prevailing interest rate and the degree of randomness of
the asset price (characterized by the volatility of the stochastic asset price process).

Self-Financing Strategy
Suppose an investor holds a portfolio of securities, such as a combination of options,
stocks and bonds. As time passes, the value of the portfolio changes because the
prices of the securities change. Besides, the trading strategy of the investor affects
the portfolio value by changing the proportions of the securities held in the portfo-
lio, say, and adding or withdrawing funds from the portfolio. An investment strategy
is said to be self-financing if no extra funds are added or withdrawn from the ini-
tial investment. The cost of acquiring more units of one security in the portfolio is
completely financed by the sale of some units of other securities within the same
portfolio.

Short Selling
Investors buy a stock when they expect the stock price to rise. How can an investor
profit from a fall of stock price? This can be achieved by short selling the stock. Short
selling refers to the trading practice of borrowing a stock and selling it immediately,
buying the stock later and returning it to the borrower. The short seller hopes to
profit from a price decline by selling the asset before the decline and buying it back
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afterwards. Usually, there are rules in stock exchanges that restrict the timing of the
short selling and the use of the short sale proceeds. For example, an exchange may
impose the rule that short selling of a security is allowed only when the most recent
movement in the security price is an uptick. When the stock pays dividends, the short
seller has to compensate the lender of the stock with the same amount of dividends.

No Arbitrage Principle
One of the fundamental concepts in the theory of option pricing is the absence of
arbitrage opportunities, is called the no arbitrage principle. As an illustrative exam-
ple of an arbitrage opportunity, suppose the prices of a given stock in Exchanges A

and B are listed at $99 and $101, respectively. Assuming there is no transaction cost,
one can lock in a riskless profit of $2 per share by buying at $99 in Exchange A and
selling at $101 in Exchange B. The trader who engages in such a transaction is called
an arbitrageur. If the financial market functions properly, such an arbitrage opportu-
nity cannot occur since traders are well aware of the differential in stock prices and
they immediately compete away the opportunity. However, when there is transaction
cost, which is a common form of market friction, the small difference in prices may
persist. For example, if the transaction costs for buying and selling per share in Ex-
changes A and B are both $1.50, then the total transaction costs of $3 per share will
discourage arbitrageurs.

More precisely, an arbitrage opportunity can be defined as a self-financing trad-
ing strategy requiring no initial investment, having zero probability of negative value
at expiration, and yet having some possibility of a positive terminal payoff. More
detailed discussions on the “no arbitrage principle” are given in Sect. 2.1.

No Arbitrage Price of a Forward
Here we discuss how the no arbitrage principle can be used to price a forward con-
tract on an underlying asset that provides the asset holder no income in the form of
dividends. The forward price is the price the holder of the forward pays to acquire
the underlying asset on the expiration date. In the absence of arbitrage opportunities,
the forward price F on a nondividend paying asset with spot price S is given by

F = Serτ , (1.1.1)

where r is the constant riskless interest rate and τ is the time to expiry of the for-
ward contract. Here, erτ is the growth factor of cash deposit that earns continuously
compounded interest over the period τ .

It can be shown that when either F > Serτ or F < Serτ , an arbitrageur can
lock in a risk-free profit. First, suppose F > Serτ , the arbitrage strategy is to borrow
S dollars from a bank and use the borrowed cash to buy the asset, and also take up
a short position in the forward contract. The loan with loan period τ will grow to
Serτ . At expiry, the arbitrageur will receive F dollars by selling the asset under the
forward contract. After paying back the loan amount of Serτ , the riskless profit is
then F − Serτ > 0. Otherwise, suppose F < Serτ , the above arbitrage strategy is
reversed, that is, short selling the asset and depositing the proceeds into a bank, and
taking up a long position in the forward contract. At expiry, the arbitrageur acquires
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the asset by paying F dollars under the forward contract and closing out the short
selling position by returning the asset. The riskless profit now becomes Serτ −F > 0.
Both cases represent arbitrage opportunities. By virtue of the no arbitrage principle,
the forward price formula (1.1.1) follows.

One may expect that the forward price should be set equal to the expectation of
the terminal asset price ST at expiry T . However, this expectation approach does
not enforce the forward price since the expectation value depends on the forward
holder’s view on the stochastic movement of the underlying asset’s price. The above
no arbitrage argument shows that the forward price can be enforced by adopting a
certain trading strategy. If the forward price deviates from this no arbitrage price,
then arbitrage opportunities arise and the market soon adjusts to trade at the “no
arbitrage price”.

Volatile Nature of Options
Option prices are known to respond in an exaggerated scale to changes in the un-
derlying asset price. To illustrate this claim, we consider a call option that is near
the time of expiration and the strike price is $100. Suppose the current asset price is
$98, then the call price is close to zero since it is quite unlikely for the asset price to
increase beyond $100 within a short period of time. However, when the asset price
is $102, then the call price near expiry is about $2. Though the asset price differs by
a small amount, between $98 to $102, the relative change in the option price can be
very significant. Hence, the option price is seen to be more volatile than the underly-
ing asset price. In other words, the trading of options leads to more price action per
dollar of investment than the trading of the underlying asset. A precise analysis of the
elasticity of the option price relative to the asset price requires detailed knowledge
of the relevant pricing model for the option (see Sect. 3.3).

Hedging
If the writer of a call does not simultaneously own a certain amount of the underlying
asset, then he or she is said to be in a naked position since he or she has no protection
if the asset price rises sharply. However, if the call writer owns some units of the
underlying asset, the loss in the short position of the call when the asset’s price
rises can be compensated by the gain in the long position of the underlying asset.
This strategy is called hedging, where the risk in a portfolio is monitored by taking
opposite directions in two securities which are highly negatively correlated. In a
perfect hedge situation, the hedger combines a risky option and the corresponding
underlying asset in an appropriate proportion to form a riskless portfolio. In Sect. 3.1,
we examine how the riskless hedging principle is employed to formulate the option
pricing theory.

1.1.1 Trading Strategies Involving Options

We have seen in the above simple hedging example how the combined use of an
option and the underlying asset can monitor risk exposure. Now, we would like to
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examine the various strategies of portfolio management using options and the un-
derlying asset as the basic financial instruments. Here, we confine our discussion
of portfolio strategies to the use of European vanilla call and put options. We also
assume that the underlying asset does not pay dividends within the investment time
horizon.

The simplest way to analyze a portfolio strategy is to construct a corresponding
terminal profit diagram. This shows the profit on the expiration date from holding
the options and the underlying asset as a function of the terminal asset price. This
simplified analysis is applicable only to a portfolio that contains options all with the
same date of expiration and on the same underlying asset.

Covered Calls and Protective Puts
Consider a portfolio that consists of a short position (writer) in one call option plus a
long holding of one unit of the underlying asset. This investment strategy is known as
writing a covered call. Let c denote the premium received by the writer when selling
the call and S0 denote the asset price at initiation of the option contract [note that
S0 > c, see (1.2.12)]. The initial value of the portfolio is then S0 − c. Recall that the
terminal payoff for the call is max(ST − X, 0), where ST is the asset price at expiry
and X is the strike price. Assuming the underlying asset to be nondividend paying,
the portfolio value at expiry is ST − max(ST − X, 0), so the profit of a covered call
at expiry is given by

ST − max(ST − X, 0) − (S0 − c)

=
{

(c − S0) + X when ST ≥ X

(c − S0) + ST when ST < X.

(1.1.2)

Observe that when ST ≥ X, the profit is capped at the constant value (c − S0) + X,
and when ST < X, the profit grows linearly with ST . The corresponding terminal
profit diagram for a covered call is illustrated in Fig. 1.1. Readers may wonder why
c − S0 + X > 0? For hints, see (1.2.3a).

Fig. 1.1. Terminal profit diagram of a covered call.
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The investment portfolio that involves a long position in one put option and one
unit of the underlying asset is called a protective put. Let p denote the premium paid
for the acquisition of the put. It can be shown similarly that the profit of the protective
put at expiry is given by

ST + max(X − ST , 0) − (p + S0)

=
{−(p + S0) + ST when ST ≥ X

−(p + S0) + X when ST < X.

(1.1.3)

Do we always have X − (p + S0) < 0?
Is it meaningful to create a portfolio that involves the long holding of a put and

short selling of the asset? This portfolio strategy will have no hedging effect because
both positions in the put option and the underlying asset are in the same direction in
risk exposure—both positions lose when the asset price increases.

Spreads
A spread strategy refers to a portfolio which consists of options of the same type (that
is, two or more calls, or two or more puts) with some options in the long position and
others in the short position in order to achieve a certain level of hedging effect. The
two most basic spread strategies are the price spread and the calendar spread. In a
price spread, one option is bought while another is sold, both on the same underlying
asset and the same date of expiration but with different strike prices. A calendar
spread is similar to a price spread except that the strike prices of the options are the
same but the dates of expiration are different.

Price Spreads
Price spreads can be classified as either bullish or bearish. The term bullish (bearish)
means the holder of the spread benefits from an increase (decrease) in the asset price.
A bullish price spread can be created by forming a portfolio which consists of a call
option in the long position and another call option with a higher strike price in the
short position. Since the call price is a decreasing function of the strike price [see
(1.2.6a)], the portfolio requires an up-front premium for its creation. Let X1 and
X2 (X2 > X1) be the strike prices of the calls and c1 and c2 (c2 < c1) be their
respective premiums. The sum of terminal payoffs from the two calls is shown to be

max(ST − X1, 0) − max(ST − X2, 0)

=
⎧⎨
⎩

0 ST < X1
ST − X1 X1 ≤ ST ≤ X2

X2 − X1 ST > X2.

(1.1.4)

The terminal payoff stays at the zero value until ST reaches X1, it then grows
linearly with ST when X1 ≤ ST ≤ X2 and it is capped at the constant value X2 −X1
when ST > X2. The bullish price spread has its maximum gain at expiry when both
calls expire in-the-money. When both calls expire out-of-the-money, corresponding
to ST < X1, the overall loss would be the initial set up cost for the bullish spread.
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Suppose we form a new portfolio with two calls, where the call bought has a
higher strike price than the call sold, both with the same date of expiration, then a
bearish price spread is created. Unlike its bullish counterpart, the bearish price spread
leads to an up front positive cash flow to the investor. The terminal profit of a bearish
price spread using two calls of different strike prices is exactly negative to that of
its bullish counterpart. Note that the bullish and bearish price spreads can also be
created by portfolios of puts.

Butterfly Spreads
Consider a portfolio created by buying a call option at strike price X1 and another
call option at strike price X3 (say, X3 > X1) and selling two call options at strike
price X2 = X1+X3

2 . This is called a butterfly spread, which can be considered as the
combination of one bullish price spread and one bearish price spread. The creation
of the butterfly spread requires the set up premium of c1 +c3 −2c2, where ci denotes
the price of the call option with strike price Xi , i = 1, 2, 3. Since the call price is a
convex function of the strike price [see (1.2.13a)], we have 2c2 < c1 + c3. Hence,
the butterfly spread requires a positive set-up cost. The sum of payoffs from the four
call options at expiry is found to be

max(ST − X1, 0) + max(ST − X3, 0) − 2 max(ST − X2, 0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ST ≤ X1

ST − X1 X1 < ST ≤ X2

X3 − ST X2 < ST ≤ X3

0 ST > X3

.
(1.1.5)

The terminal payoff attains the maximum value at ST = X2 and declines linearly on
both sides of X2 until it reaches the zero value at ST = X1 or ST = X3. Beyond the
interval (X1, X3), the payoff of the butterfly spread becomes zero. By subtracting
the initial set-up cost of c1 + c3 − 2c2 from the terminal payoff, we get the terminal
profit diagram of the butterfly spread shown in Fig. 1.2.

Fig. 1.2. Terminal profit diagram of a butterfly spread with four calls.
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The butterfly spread is an appropriate strategy for an investor who believes that
large asset price movements during the life of the spread are unlikely. Note that the
terminal payoff of a butterfly spread with a wider interval (X1, X3) dominates that
of the counterpart with a narrower interval. Using the no arbitrage argument, one
deduces that the initial set-up cost of the butterfly spread increases with the width of
the interval (X1, X3). If otherwise, an arbitrageur can lock in riskless profit by buying
the presumably cheaper butterfly spread with the wider interval and selling the more
expensive butterfly spread with the narrower interval. The strategy guarantees a non-
negative terminal payoff while having the possibility of a positive terminal payoff.

Calendar Spreads
Consider a calendar spread that consists of two calls with the same strike price but
different dates of expiration T1 and T2 (T2 > T1), where the shorter-lived and longer-
lived options are in the short and long positions, respectively. Since the longer-lived
call is normally more expensive,1 an up-front set-up cost for the calendar spread is
required. In our subsequent discussion, we consider the usual situation where the
longer-lived call is more expensive. The two calls with different expiration dates
decrease in value at different rates, with the shorter-lived call decreasing in value
at a faster rate. Also, the rate of decrease is higher when the asset price is closer
to the strike price (see Sect. 3.3). The gain from holding the calendar spread comes
from the difference between the rates of decrease in value of the shorter-lived call
and longer-lived call. When the asset price at T1 (expiry date of the shorter-lived
call) comes closer to the common strike price of the two calls, a higher gain of the
calendar spread at T1 is realized because the rates of decrease in call value are higher
when the call options come closer to being at-the-money. The profit at T1 is given
by this gain minus the initial set-up cost. In other words, the profit of the calendar
spread at T1 becomes higher when the asset price at T1 comes closer to the common
strike price.

Combinations
Combinations are portfolios that contain options of different types but on the same
underlying asset. A popular example is a bottom straddle, which involves buying a
call and a put with the same strike price X and expiration time T . The payoff at
expiry from the bottom straddle is given by

max(ST − X, 0) + max(X − ST , 0)

=
{

X − ST when ST ≤ X

ST − X when ST > X.

(1.1.6)

Since both options are in the long position, an up-front premium of c + p is required
for the creation of the bottom straddle, where c and p are the option premium of the
European call and put. As revealed from the terminal payoff as stated in (1.1.6), the

1 Longer-lived European call may become less expensive than the shorter-lived counterpart
only when the underlying asset is paying dividend and the call option is sufficiently deep-in-
the-money (see Sect. 3.3).
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terminal profit diagram of the bottom straddle resembles the letter “V ”. The terminal
profit achieves its lowest value of −(c+p) at ST = X (negative profit value actually
means loss). The bottom straddle holder loses when ST stays close to X at expiry,
but receives substantial gain when ST moves further away from X in either direction.

The other popular examples of combinations include strip, strap, strangle, box
spread, etc. Readers are invited to explore the characteristics of their terminal profits
through Problems 1.1–1.4.

There are many other possibilities to create spread positions and combinations
that approximate a desired pattern of payoff at expiry. Indeed, this is one of the ma-
jor advantages of trading options rather than the underlying asset alone. In particular,
the terminal payoff of a butterfly spread resembles a triangular “spike” so one can ap-
proximate the payoff according to an investor’s preference by forming an appropriate
combination of these spikes. As a reminder, the terminal profit diagrams presented
above show the profits of these portfolio strategies when the positions of the options
are held to expiration. Prior to expiration, the profit diagrams are more complicated
and relevant option valuation models are required to find the value of the portfolio at
a particular instant.

1.2 Rational Boundaries for Option Values

In this section, we establish some rational boundaries for the values of options with
respect to the price of the underlying asset. At this point, we do not specify the
probability distribution of the asset price process so we cannot derive the fair option
value. Rather, we attempt to deduce reasonable limits between which any acceptable
equilibrium price falls. The basic assumptions are that investors prefer more wealth
to less and there are no arbitrage opportunities.

First, we present the rational boundaries for the values of both European and
American options on an underlying asset that pays no dividend. We derive mathe-
matical properties of the option values as functions of the strike price X, asset price S

and time to expiry τ . Next, we study the impact of dividends on these rational bound-
aries for the option values. The optimal early exercise policies of American options
on a non-dividend paying asset can be inferred from the analysis of these bounds
on option values. The relations between put and call prices (called the put-call par-
ity relations) are also deduced. As an illustrative and important example, we extend
the analysis of rational boundaries and put-call parity relations to foreign currency
options.

Here, we introduce the concept of time value of cash. It is common sense that
$1 at present is worth more than $1 at a later instant since the cash can earn posi-
tive interest, or conversely, an amount less than $1 will eventually grow to $1 after
a sufficiently long interest-earning period. In the simplest form of a bond with zero
coupon, the bond contract promises to pay the par value at maturity to the bond-
holder, provided that the bond issuer does not default prior to maturity. Let B(τ) be
the current price of a zero coupon default-free bond with the par value of $1 at ma-
turity, where τ is the time to maturity (we commonly use “maturity” for bonds and
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“expiry” for options). When the riskless interest rate r is taken to be constant and
interest is compounded continuously, the bond value B(τ) is given by e−rτ . When r

is nonconstant but a deterministic function of τ, B(τ) is found to be e−∫ τ
0 r(u) du. The

formula for B(τ) becomes more complicated when the interest rate is assumed to
be stochastic (see Sect. 7.2). The bond price B(τ) can be interpreted as the discount
factor over the τ -period.

Throughout this book, we adopt the notation where capitalized letters C and P

denote American call and put values, respectively, and small letters c and p for their
European counterparts.

Nonnegativity of Option Prices
All option prices are nonnegative, that is,

C ≥ 0, P ≥ 0, c ≥ 0, p ≥ 0. (1.2.1)

These relations are derived from the nonnegativity of the payoff structure of option
contracts. If the price of an option were negative, this would mean an option buyer
receives cash up front while being guaranteed a nonnegative terminal payoff. In this
way, he can always lock in a riskless profit.

Intrinsic Values
Let C(S, τ ; X) denote the price function of an American call option with current
asset price S, time to expiry τ and strike price X; similar notation will be used for
other American option price functions. At expiry time τ = 0, the terminal payoffs
are

C(S, 0; X) = c(S, 0; X) = max(S − X, 0) (1.2.2a)

P(S, 0; X) = p(S, 0; X) = max(X − S, 0). (1.2.2b)

The quantities max(S − X, 0) and max(X − S, 0) are commonly called the intrinsic
value of a call and a put, respectively. One argues that since American options can
be exercised at any time before expiration, their values must be worth at least their
intrinsic values, that is,

C(S, τ ; X) ≥ max(S − X, 0) (1.2.3a)

P(S, τ ; X) ≥ max(X − S, 0). (1.2.3b)

Since C ≥ 0, it suffices to consider the case S > X, where the American call is in-
the-money. Suppose C is less than S − X when S > X, then an arbitrageur can lock
in a riskless profit by borrowing C + X dollars to purchase the American call and
exercise it immediately to receive the asset worth S. The riskless profit would be S −
X −C > 0. The same no arbitrage argument can be used to show condition (1.2.3b).

However, as there is no early exercise privilege for European options, condi-
tions (1.2.3a,b) do not necessarily hold for European calls and puts, respectively.
Indeed, the European put value can be below the intrinsic value X − S at sufficiently
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low asset value and the value of a European call on a dividend paying asset can be
below the intrinsic value S − X at sufficiently high asset value.

American Options Are Worth at Least Their European Counterparts
An American option confers all the rights of its European counterpart plus the privi-
lege of early exercise. Obviously, the additional privilege cannot have negative value.
Therefore, American options must be worth at least their European counterparts, that
is,

C(S, τ ; X) ≥ c(S, τ ; X) (1.2.4a)

P(S, τ ; X) ≥ p(S, τ ; X). (1.2.4b)

Values of Options with Different Dates of Expiration
Consider two American options with different times to expiry τ2 and τ1 (τ2 > τ1),
the one with the longer time to expiry must be worth at least that of the shorter-lived
counterpart since the longer-lived option has the additional right to exercise between
the two expiration dates. This additional right should have a positive value; so we
have

C(S, τ2; X) > C(S, τ1; X), τ2 > τ1, (1.2.5a)

P(S, τ2; X) > P(S, τ1; X), τ2 > τ1. (1.2.5b)

The above argument cannot be applied to European options because the early exer-
cise privilege is absent.

Values of Options with Different Strike Prices
Consider two call options, either European or American, the one with the higher
strike price has a lower expected profit than the one with the lower strike. This is
because the call option with the higher strike has strictly less opportunity to exer-
cise a positive payoff, and even when exercised, it induces a smaller cash inflow.
Hence, the call option price functions are decreasing functions of their strike prices,
that is,

c(S, τ ; X2) < c(S, τ ; X1), X1 < X2, (1.2.6a)

C(S, τ ; X2) < C(S, τ ; X1), X1 < X2. (1.2.6b)

By reversing the above argument, the European and American put price functions
are increasing functions of their strike prices, that is,

p(S, τ ; X2) > p(S, τ ; X1), X1 < X2, (1.2.7a)

P(S, τ ; X2) > P (S, τ ; X1), X1 < X2. (1.2.7b)
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Values of Options at Different Asset Price Levels
For a call (put) option, either European or American, when the current asset price is
higher, it has a strictly higher (lower) chance to be exercised and when exercised it
induces higher (lower) cash inflow. Therefore, the call (put) option price functions
are increasing (decreasing) functions of the asset price, that is,

c(S2, τ ; X) > c(S1, τ ; X), S2 > S1, (1.2.8a)

C(S2, τ ; X) > C(S1, τ ; X), S2 > S1; (1.2.8b)

and

p(S2, τ ; X) < p(S1, τ ; X), S2 > S1, (1.2.9a)

P(S2, τ ; X) < P(S1, τ ; X), S2 > S1. (1.2.9b)

Upper Bounds on Call and Put Values
A call option is said to be a perpetual call if its date of expiration is infinitely far
away. The asset itself can be considered an American perpetual call with zero strike
price plus additional privileges such as voting rights and receipt of dividends, so we
deduce that S ≥ C(S,∞; 0). By applying conditions (1.2.4a) and (1.2.5a), we can
establish

S ≥ C(S,∞; 0) ≥ C(S, τ ; X) ≥ c(S, τ ; X). (1.2.10)

Hence, American and European call values are bounded above by the asset value.
Furthermore, by setting S = 0 in condition (1.2.10) and applying the nonnegativity
property of option prices, we obtain

0 = C(0, τ ; X) = c(0, τ ; X),

that is, call values become zero at zero asset value.
The price of an American put equals its strike price when the asset value is zero;

otherwise, it is bounded above by the strike price. Together with condition (1.2.4b),
we have

X ≥ P(S, τ ; X) ≥ p(S, τ ; X). (1.2.11)

Lower Bounds on Values of Call Options on a Nondividend Paying Asset
A lower bound on the value of a European call on a nondividend paying asset is found
to be at least equal to or above the underlying asset value minus the present value
of the strike price. To illustrate the claim, we compare the values of two portfolios,
A and B. Portfolio A consists of a European call on a nondividend paying asset
plus a discount bond with a par value of X whose date of maturity coincides with
the expiration date of the call. Portfolio B contains one unit of the underlying asset.
Table 1.1 lists the payoffs at expiry of the two portfolios under the two scenarios
ST < X and ST ≥ X, where ST is the asset price at expiry.

At expiry, the value of Portfolio A, denoted by VA, is either greater than or at least
equal to the value of Portfolio B, denoted by VB . Portfolio A is said to be dominant
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Table 1.1. Payoffs at expiry of Portfolios A and B

Asset value at expiry ST < X ST ≥ X

Portfolio A X (ST − X) + X = ST

Portfolio B ST ST

Result of comparison VA > VB VA = VB

Fig. 1.3. The upper and lower bounds of the option value of a European call on a nondividend
paying asset are Vup = S and Vlow = max(S − XB(τ), 0), respectively.

over Portfolio B. The present value of Portfolio A (dominant portfolio) must be equal
to or greater than that of Portfolio B (dominated portfolio). If otherwise, arbitrage
opportunity can be secured by buying Portfolio A and selling Portfolio B. The above
result can be represented by

c(S, τ ; X) + XB(τ) ≥ S.

Together with the nonnegativity property of option value, the lower bound on the
value of the European call is found to be

c(S, τ ; X) ≥ max(S − XB(τ), 0).

Combining with condition (1.2.10), the upper and lower bounds of the value of a
European call on a nondividend paying asset are given by (see Fig. 1.3)

S ≥ c(S, τ ; X) ≥ max(S − XB(τ), 0). (1.2.12)

Furthermore, as deduced from condition (1.2.10) again, the above lower and up-
per bounds are also valid for the value of an American call on a nondividend paying
asset. The above results on the rational boundaries of European option values have
to be modified when the underlying asset pays dividends [see (1.2.14), (1.2.23)].

Early Exercise Polices of American Options
First, we consider an American call on a nondividend paying asset. An American
call is exercised only if it is in-the-money, where S > X. At any moment when
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an American call is exercised, its exercise payoff becomes S − X, which ought to
be positive. However, the exercise value is less than max(S − XB(τ), 0), the lower
bound of the call value given that the call remains alive. Thus the act of exercising
prior to expiry causes a decline in value of the American call. To the benefit of the
holder, an American call on a nondividend paying asset will not be exercised prior
to expiry. Since the early exercise privilege is forfeited, the American and European
call values should be the same.

When the underlying asset pays dividends, the early exercise of an American
call prior to expiry may become optimal when the asset value is very high and the
dividends are sizable. Under these circumstances, it then becomes more attractive
for the investor to acquire the asset through early exercise rather than holding the
option. When the American call is deep-in-the-money, S � X, the chance of regret
of early exercise (loss of insurance protection against downside move of the asset
price) is low. On the other hand, the earlier acquisition of the underlying asset allows
receipt of the dividends paid by the asset. For American puts, irrespective whether
the asset is paying dividends or not, it can be shown [see (1.2.16)] that it is always
optimal to exercise prior to expiry when the asset value is low enough. More details
on the effects of dividends on the early exercise policies of American options will be
discussed later in this section.

Convexity Properties of the Option Price Functions
The call prices are convex functions of the strike price. Write X2 = λX3 +(1−λ)X1
where 0 ≤ λ ≤ 1, X1 ≤ X2 ≤ X3. Mathematically, the convexity properties are
depicted by the following inequalities:

c(S, τ ; X2) ≤ λc(S, τ ; X3) + (1 − λ)c(S, τ ; X1) (1.2.13a)

C(S, τ ; X2) ≤ λC(S, τ ; X3) + (1 − λ)C(S, τ ; X1). (1.2.13b)

Figure 1.4 gives a graphical representation of the above inequalities.

Fig. 1.4. The call price is a convex function of the strike price X. The call price equals S when
X = 0 and tends to zero at large value of X.
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Table 1.2. Payoff at expiry of Portfolios C and D

Asset value ST ≤ X1 X1 ≤ ST ≤ X2 X2 ≤ ST ≤ X3 X3 ≤ ST

at expiry
Portfolio C 0 (1 − λ)(ST − X1) (1 − λ)(ST − X1) λ(ST − X3)+

(1 − λ)(ST − X1)

Portfolio D 0 0 ST − X2 ST − X2
Result of VC = VD VC ≥ VD VC ≥ VD VC = VD

comparison

To show that inequality (1.2.13a) holds for European calls, we consider the pay-
offs of the following two portfolios at expiry. Portfolio C contains λ units of call
with strike price X3 and (1 − λ) units of call with strike price X1, and Portfolio D

contains one call with strike price X2. In Table 1.2, we list the payoffs of the two
portfolios at expiry for all possible values of ST .

Since VC ≥ VD for all possible values of ST , Portfolio C is dominant over Port-
folio D. Therefore, the present value of Portfolio C must be equal to or greater than
that of Portfolio D; so this leads to inequality (1.2.13a). In the above argument, there
is no factor involving τ , so the result also holds even when the calls in the two port-
folios are allowed to be exercised prematurely. Hence, the convexity property also
holds for American calls. By changing the call options in the above two portfolios to
the corresponding put options, it can be shown by a similar argument that European
and American put prices are also convex functions of the strike price.

Furthermore, by using the linear homogeneity property of the call and put option
functions with respect to the asset price and strike price, one can show that the call
and put prices (both European and American) are convex functions of the asset price
(see Problem 1.7).

1.2.1 Effects of Dividend Payments

Now we examine the effects of dividends on the rational boundaries for option val-
ues. In the forthcoming discussion, we assume the size and payment date of the div-
idends to be known. One important result is that the early exercise of an American
call option may become optimal if dividends are paid during the life of the option.

First, we consider the impact of dividends on the asset price. When an asset pays
a certain amount of dividend, no arbitrage argument dictates that the asset price is ex-
pected to fall by the same amount (assuming there exist no other factors affecting the
income proceeds, like taxation and transaction costs). Suppose the asset price falls by
an amount less than the dividend, an arbitrageur can lock in a riskless profit by bor-
rowing money to buy the asset right before the dividend date, selling the asset right
after the dividend payment and returning the loan. The net gain to the arbitrageur is
the amount that the dividend income exceeds the loss caused by the difference in the
asset price in the buying and selling transactions. If the asset price falls by an amount
greater than the dividend, then the above strategical transactions are reversed in order
to catch the arbitrage profit.
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Let D1,D2, · · · ,Dn be the dividend amount paid at τ1, τ2, · · · , τn periods from
the current time. Let D denote the present value of all known discrete dividends paid
between now and the expiration date. Assuming constant interest rate, we then have

D = D1e
−rτ1 + D2e

−rτ2 + · · · + Dne
−rτn ,

where r is the riskless interest rate and e−rτ1, e−rτ2, · · · , e−rτn are the respective
discount factors. We examine the impact of dividends on the lower bound on the
European call value and the early exercise feature of an American call option, with
dependence on the lumped dividend D. Similar to the two portfolios shown in Ta-
ble 1.1, we modify Portfolio B to contain one unit of the underlying asset and a loan
of D dollars (in the form of a portfolio of bonds with par value Di and time to ex-
piry τi , i = 1, 2, · · · , n). At expiry, the value of Portfolio B will always become ST

since the loan of D will be paid back during the life of the option using the dividends
received. One observes again VA ≥ VB at expiry so that the present value of Portfo-
lio A must be at least as much as that of Portfolio B. Together with the nonnegativity
property of option values, we obtain

c(S, τ ; X,D) ≥ max(S − XB(τ) − D, 0). (1.2.14)

This gives us the new lower bound on the price of a European call option on a div-
idend paying asset. Since the call price becomes lower due to the dividends of the
underlying asset, it may be possible that the call price falls below the intrinsic value
S − X when the lumped dividend D is deep enough. Accordingly, the condition on
D such that c(S, τ ; X,D) may fall below the intrinsic value S − X is given by

S − X > S − XB(τ) − D or D > X[1 − B(τ)]. (1.2.15)

If D does not satisfy the above condition, it is never optimal to exercise the American
call prematurely. In addition to the necessary condition (1.2.15) on the size of D, the
American call must be sufficiently deep in-the-money so that the chance of regret
on early exercise is low (see Sect. 5.1). Since there will be an expected decline in
asset price right after a discrete dividend payment, the optimal strategy is to exercise
right before the dividend payment so as to capture the dividend paid by the asset.
The behavior of the American call price right before and after the dividend dates are
examined in detail in Sect. 5.1.

Unlike holding a call, the holder of a put option gains when the asset price drops
after a discrete dividend is paid because put value is a decreasing function of the
asset price. Using an argument similar to that above (considering two portfolios), the
bounds for American and European puts can be shown as

P(S, τ ; X,D) ≥ p(S, τ ; X,D) ≥ max(XB(τ) + D − S, 0). (1.2.16)

Even without dividend (D = 0), the lower bound XB(τ) − S may become less than
the intrinsic value X−S when the put is sufficiently deep in-the-money (correspond-
ing to a low value for S). Since the holder of an American put option would not toler-
ate the value falling below the intrinsic value, the American put should be exercised
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prematurely. The presence of dividends makes the early exercise of an American put
option less likely since the holder loses the future dividends when the asset is sold
upon exercising the put. Using an argument similar to that used in (1.2.15), one can
show that when D ≥ X[1 − B(τ)], the American put should never be exercised pre-
maturely. The effects of dividends on the early exercise policies of American puts
are in general more complicated than those for American calls (see Sect. 5.1).

The underlying asset may incur a cost of carry for the holder, like the storage
and spoilage costs for holding a physical commodity. The effect of the cost of carry
on the early exercise policies of American options appears to be opposite to that of
dividends received through holding the asset.

1.2.2 Put-Call Parity Relations

Put-call parity states the relation between the prices of a pair of call and put options.
For a pair of European put and call options on the same underlying asset and with
the same expiration date and strike price, we have

p = c − S + D + XB(τ). (1.2.17)

When the underlying asset is nondividend paying, we set D = 0.
The proof of the above put-call parity relation is quite straightforward. We con-

sider the following two portfolios. The first portfolio involves long holding of a Eu-
ropean call, a portfolio of bonds: τ1-maturity discount bond with par D1, · · · , τn-
maturity discount bond with par Dn and τ -maturity discount bond with par X, and
short selling of one unit of the asset. The second portfolio contains only one Euro-
pean put. The sum of the present values of the bonds in the first portfolio is

D1B(τ1) + · · · + DnB(τn) + XB(τ) = D + XB(τ).

The bond par values are taken to match with the sizes of the dividends and they
are used to compensate the dividends due to the short position of one unit of the
asset. At expiry, both portfolios have the same value max(X − ST , 0). Since both
European options cannot be exercised prior to expiry, both portfolios have the same
value throughout the life of the options. By equating the values of the two portfolios,
we obtain the parity relation (1.2.17).

The above parity relation cannot be applied to a pair of American call and put
options due to their early exercise feature. However, we can deduce the lower and
upper bounds on the difference of the prices of American call and put options. First,
we assume the underlying asset is nondividend paying. Since P > p and C = c, we
deduce from (1.2.17) (putting D = 0) that

C − P < S − XB(τ),

giving the upper bound on C − P . Let us consider the following two portfolios: one
contains a European call plus cash of amount X, and the other contains an American
put together with one unit of underlying asset. The first portfolio can be shown to be
dominant over the second portfolio, so we have
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c + X > P + S.

Further, since c = C when the asset does not pay dividends, the lower bound on
C − P is given by

S − X < C − P.

Combining the two bounds, the difference of the American call and put option values
on a nondividend paying asset is bounded by

S − X < C − P < S − XB(τ). (1.2.18)

The right side inequality, C − P < S − XB(τ), also holds for options on a dividend
paying asset since dividends decrease call value and increase put value. However, the
left side inequality has to be modified as S − D − X < C − P (see Problem 1.8).
Combining the results, the difference of the American call and put option values on
a dividend paying asset is bounded by

S − D − X < C − P < S − XB(τ). (1.2.19)

1.2.3 Foreign Currency Options

The above techniques of analysis are now extended to foreign currency options. Here,
the underlying asset is a foreign currency and all prices are denominated in domestic
currency. As an illustration, we take the domestic currency to be the U.S. dollar and
the foreign currency to be the Japanese yen. In this case, the spot domestic currency
price S of one unit of foreign currency refers to the spot value of one Japanese yen in
U.S. dollars, say, � 1 for U.S.$0.01. Now both domestic and foreign interest rates are
involved. Let Bf (τ) denote the foreign currency price of a default-free zero coupon
bond, which has unit par and time to maturity τ . Since the underlying asset, which
is a foreign currency, earns the riskless foreign interest rate rf continuously, it is
analogous to an asset that pays continuous dividend yield. The rational boundaries
for the European and American foreign currency option values have to be modified
accordingly.

Lower and Upper Bounds on Foreign Currency Call and Put Values
First, we consider the lower bound on the value of a European foreign currency call.
Consider the following two portfolios: Portfolio A contains the European foreign
currency call with strike price X and a domestic discount bond with par value of
X whose maturity date coincides with the expiration date of the call. Portfolio B

contains a foreign discount bond with par value of unity in the foreign currency,
which also matures on the expiration date of the call. Portfolio B is worth the foreign
currency price of Bf (τ), so the domestic currency price of SBf (τ). On expiry of the
call, Portfolio B becomes one unit of foreign currency and this equals ST in domestic
currency. The value of Portfolio A equals max(ST ,X) in domestic currency, thus
Portfolio A is dominant over Portfolio B. Together with the nonnegativity property
of option value, we obtain
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c ≥ max(SBf (τ) − XB(τ), 0).

As mentioned earlier, premature exercise of the American call on a dividend pay-
ing asset may become optimal. Recall that a necessary (but not sufficient) condition
for optimal early exercise is that the lower bound SBf (τ) − XB(τ) is less than the
intrinsic value S − X. In the present context, the necessary condition is seen to be

SBf (τ) − XB(τ) < S − X or S > X
1 − B(τ)

1 − Bf (τ)
. (1.2.20)

When condition (1.2.20) is not satisfied, we then have C > S − X. The premature
early exercise of the American foreign currency call would give C = S−X, resulting
in a drop in value. Therefore, it is not optimal to exercise the American foreign
currency call prematurely. In summary, the lower and upper bounds for the American
and European foreign currency call values are given by

S ≥ C ≥ c ≥ max(SBf (τ) − XB(τ), 0). (1.2.21)

Using similar arguments, the necessary condition for the optimal early exercise
of an American foreign currency put option is given by

S < X
1 − B(τ)

1 − Bf (τ)
. (1.2.22)

The lower and upper bounds on the values of American and European foreign cur-
rency put options can be shown to be

X ≥ P ≥ p ≥ max(XB(τ) − SBf (τ), 0). (1.2.23)

The corresponding put-call parity relation for the European foreign currency put and
call options is given by

p = c − SBf (τ) + XB(τ), (1.2.24)

and the bounds on the difference of the prices of American call and put options on a
foreign currency are given by (see Problem 1.11)

SBf (τ) − X < C − P < S − XB(τ). (1.2.25)

In conclusion, we have deduced the rational boundaries for the option values of
calls and puts and their put-call parity relations. The impact of the early exercise priv-
ilege and dividend payment on option values have also been analyzed. An important
result is that it is never optimal to exercise prematurely an American call option on a
nondividend paying asset. More comprehensive discussion of the analytic properties
of option price functions can be found in the seminal paper by Merton (1973) and
the review article by Smith (1976).
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1.3 Forward and Futures Contracts

Recall that a forward contract is an agreement between two parties that the holder
agrees to buy an asset from the writer at the delivery time T in the future for a
predetermined delivery price K . Unlike an option contract where the holder pays the
writer an up-front option premium, no up-front payment is involved when a forward
contract is transacted. The delivery price of a forward is chosen so that the value of
the forward contract to both parties is zero at the time when the contract is initiated.
The forward price is defined as the delivery price which makes the initial value of
the forward contract zero. The forward price in a new forward contract is liable to
change due to the subsequent fluctuation of the price of the underlying asset while
the delivery price of the already transacted forward contract is held fixed.

Suppose that on July 1 the forward price of silver with maturity date on October
31 is quoted at $30. This means that $30 is the price (paid upon delivery) at which
the person in long (short) position of the forward contract agrees to buy (sell) the
contracted amount and quality of silver on the maturity date. A week later (July 8),
the quoted forward price of silver for October 31 delivery changes to a new value
due to price fluctuation of silver during the week. Say, the forward price moves up
to $35. The forward contract entered on July 1 earlier now has positive value since
the delivery price has been fixed at $30 while the new forward price for the same
maturity date has been increased to $35. Imagine that while holding the earlier for-
ward, the holder can short another forward on the same commodity and maturity
date. The opposite positions of the two forward contracts will be exactly canceled
off on the October 31 delivery date. The holder will pay $30 to buy the asset but
will receive $35 from selling the asset. Hence, the holder will be secured to receive
$35 − $30 = $5 on the delivery date. Recall that the holder pays nothing on both
July 1 and July 8 when the two forward contracts are transacted. Obviously, there is
some value associated with the holding of the earlier forward contract. This value is
related to the spot forward price and the fixed delivery price. While we have been
using the terms “price” and “value” interchangeably for options, but “forward price”
and “forward value” are different quantities for forward contracts.

1.3.1 Values and Prices of Forward Contracts

We would like to consider the pricing formulas for forward contracts under three
separate cases of dividend behaviors of the underlying asset, namely, no dividend,
known discrete dividends and known continuous dividend yields.

Nondividend Paying Asset
Let f (S, τ ) and F(S, τ) denote, respectively, the value and the price of a forward
contract with current asset value S and time to maturity τ , and let r denote the con-
stant riskless interest rate. Consider a portfolio that contains one long forward con-
tract and a bond with the same maturity date and par value as the delivery price. The
bond price is Ke−rτ , where K is the delivery price at maturity. The other portfolio
contains one unit of the underlying asset. At maturity, the par received from holding
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the bond could be used to pay for the purchase of one unit of the asset to honor the
forward contract. Both portfolios become one unit of the asset at maturity. Assuming
that the asset does not pay any dividend, by the principle of no arbitrage, both port-
folios should have the same value at all times prior to maturity. It then follows that
the value of the forward contract is given by

f = S − Ke−rτ . (1.3.1)

Recall that we have defined the forward price to be the delivery price which
makes the value of the forward contract zero. In (1.3.1), the value of K which makes
f = 0 is given by K = Serτ . The forward price is then F = Serτ , which agrees
with formula (1.1.1). Together with the put-call parity relation for a pair of European
call and put options, we obtain

f = (F − K)e−rτ = c(S, τ ; K) − p(S, τ ; K), (1.3.2)

where the strike prices of the call and put options are set equal to the delivery price
of the forward contract. The put-call parity relation reveals that holding a call is
equivalent to holding a put and a forward.

Discrete Dividend Paying Asset
Now, suppose the asset pays discrete dividends to the holder during the life of the
forward contract. Let D denote the present value of all dividends paid by the asset
within the life of the forward. To find the value of the forward contract, we modify the
above second portfolio to contain one unit of the asset plus borrowing of D dollars.
At maturity, the second portfolio again becomes worth one unit of the asset since
the loan of D dollars will be repaid by the dividends received by holding the asset.
Hence, the value of the forward contract on a discrete dividend paying asset is found
to be

f = S − D − Ke−rτ .

By finding the value of K such that f = 0, we obtain the forward price to be given
by

F = (S − D)erτ . (1.3.3)

Continuous Dividend Paying Asset
Next, suppose the asset pays a continuous dividend yield at the rate q. The dividend
is paid continuously throughout the whole time period and the dividend amount over
a differential time interval dt is qS dt , where S is the spot asset price. Under this
dividend behavior, we choose the second portfolio to contain e−qτ units of asset
with all dividends being reinvested to acquire additional units of asset. At maturity,
the second portfolio will be worth one unit of the asset since the number of units
of asset can be considered to have the continuous compounded growth at the rate q.
It follows from the equality of the values of the two portfolios that the value of the
forward contract on a continuous dividend paying asset is

f = Se−qτ − Ke−rτ ,
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and the corresponding forward price is

F = Se(r−q)τ . (1.3.4)

Since an investor is not entitled to receive any dividends through holding a put,
call or forward, the put-call parity relation (1.3.2) also holds for put, call and forward
on assets that pay either discrete dividends or continuous dividend yield.

Interest Rate Parity Relation
When we consider forward contracts on foreign currencies, the value of the underly-
ing asset S is the price in the domestic currency of one unit of the foreign currency.
The foreign currency considered as an asset can earn interest at the foreign riskless
rate rf . This is equivalent to a continuous dividend yield at the rate rf . Therefore,
the delivery price of a forward contract on the domestic currency price of one unit of
foreign currency is given by

F = Se(r−rf )τ . (1.3.5)

Equation (1.3.5) is called the Interest Rate Parity Relation.

Cost of Carry and Convenience Yield
For commodities like grain and livestock, there may be additional costs to hold the
assets such as storage, insurance, spoilage, etc. In simple terms, these additional costs
can be considered as negative dividends paid by the asset. Suppose we let U denote
the present value of all additional costs that will be incurred during the life of the
forward contract, then the forward price can be obtained by replacing −D in (1.3.3)
by U . The forward price is then given by

F = (S + U)erτ . (1.3.6)

If the additional holding costs incurred at any time is proportional to the price of the
commodity, they can be considered as negative dividend yield. If u denotes the cost
per annum as a proportion of the spot commodity price, then the forward price is

F = Se(r+u)τ , (1.3.7)

which is obtained by replacing −q in (1.3.4) by u.
We may interpret r + u as the cost of carry that must be incurred to maintain the

commodity inventory. The cost consists of two parts: one part is the cost of funds
tied up in the asset which requires interest for borrowing and the other part is the
holding costs due to storage, insurance, spoilage, etc. It is convenient to denote the
cost of carry by b. When the underlying asset pays a continuous dividend yield at the
rate q, then b = r − q. In general, the forward price is given by

F = Sebτ . (1.3.8)

There may be some advantages to users who hold the commodity, like the avoid-
ance of temporary shortages of supply and the ensurance of production process run-
ning. These holding advantages may be visualized as negative holding costs. Sup-
pose the market forward price F is below the cost of ownership of the commodity
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Se(r+u)τ , the difference gives a measure of the benefits realized from actual owner-
ship. We define the convenience yield y (benefit per annum) as a proportion of the
spot commodity price. In this way, y has the effect negative to that of u. By netting
the costs and benefits, the forward price is then given by

F = Se(r+u−y)τ . (1.3.9)

With the presence of convenience yield, F is seen to be less than Se(r+u)τ . This is
due to the multiplicative factor e−yτ , whose magnitude is less than one.

1.3.2 Relation between Forward and Futures Prices

Forward contracts and futures are much alike, except that the former are traded over-
the-counter and the latter are traded in exchanges. Since the exchanges would like
to organize trading such that contract defaults are minimized, an investor who buy
a futures in an exchange is requested to deposit funds in a margin account to safe-
guard against the possibility of default (the futures agreement is not honored at ma-
turity). At the end of each trading day, the futures holder will pay to or receive from
the writer the full amount of the change in the futures price from the previous day
through the margin account. This process is called marking to market the account.
Therefore, the payment required on the maturity date to buy the underlying asset is
simply the spot price at that time. However, for a forward contract traded outside the
exchanges, no money changes hands initially or during the life-time of the contract.
Cash transactions occur only on the maturity date. Such difference in the payment
schedules may lead to differences in the prices of a forward contract and a futures on
the same underlying asset and date of maturity. This is attributed to the possibility of
different interest rates applied on the intermediate payments. In Sect. 8.1, we show
how the forward price and futures price differ when the interest rate is stochastic and
exhibiting positive correlation with the underlying asset price process.

Here, we present the argument to illustrate the equality of the two prices when the
interest rate is constant. First, consider one forward contract and one futures which
both last for n days. Let Fi and Gi denote the forward price and the futures price
at the end of the ith day, respectively, i = 0, 1, · · · , n. We would like to show that
F0 = G0. Let Sn denote the asset price at maturity. Let the constant interest rate per
day be δ. Suppose we initiate the long position of one unit of the futures on day 0.
The gain/loss of the futures on the ith day is (Gi − Gi−1) and this amount grows
to the dollar value (Gi − Gi−1) eδ(n−i) at maturity, which is the end of the nth day
(n ≥ i). Therefore, the value of this one long futures position at the end of the nth
day is the summation of (Gi −Gi−1) eδ(n−i), where i runs from 1 to n. The sum can
be expressed as

n∑
i=1

(Gi − Gi−1) eδ(n−i).

The summation of gain/loss of each day reflects the daily settlement nature of a
futures.
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Instead of holding one unit of futures throughout the whole period, the investor
now keeps changing the amount of futures to be held on each day. Suppose he holds
αi units at the end of the (i − 1)th day, i = 1, 2, · · · , n, αi to be determined. Since
there is no cost incurred when a futures is transacted, the investor’s portfolio value at
the end of the nth day becomes

n∑
i=1

αi(Gi − Gi−1) eδ(n−i).

On the other hand, since the holder of one unit of the forward contract initiated
on day 0 can purchase the underlying asset which is worth Sn using F0 dollars at
maturity, the value of the long position of one forward at maturity is Sn − F0. Now,
we consider the following two portfolios:

Portfolio A : long position of a bond with par value F0 maturing on the

nth day

long position of one unit of forward contract

Portfolio B : long position of a bond with par value G0 maturing on the

nth day

long position of e−δ(n−i) units of futures held at the end of

the (i − 1)th day, i = 1, 2, · · · n.

At maturity (end of the nth day), the values of the bond and the forward contract
in Portfolio A become F0 and Sn − F0, respectively, so that the total value of the
portfolio is Sn. For Portfolio B, the bond value is G0 at maturity. The value of the
long position of the futures (number of units of futures held is kept changing on each
day) is obtained by setting αi = e−δ(n−i). This gives

n∑
i=1

e−δ(n−i) (Gi − Gi−1) eδ(n−i) =
n∑

i=1

(Gi − Gi−1) = Gn − G0.

Hence, the total value of Portfolio B at maturity is G0 + (Gn − G0) = Gn. Since
the futures price must be equal to the asset price Sn at maturity, we have Gn = Sn.
The two portfolios have the same value at maturity, while Portfolio A and Portfolio
B require an initial investment of F0e

−δn and G0e
−δn dollars, respectively. In the

absence of arbitrage opportunities, the initial values of the two portfolios must be the
same. We then obtain F0 = G0, that is, the current forward and futures prices are
equal.

1.4 Swap Contracts

A swap is a financial contract between two counterparties who agree to exchange
one cash flow stream for another according to some prearranged rules. Two important
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types of swaps are considered in this section: interest rate swaps and currency swaps.
Interest rate swaps have the effect of transforming a floating-rate loan into a fixed-
rate loan or vice versa. A currency swap can be used to transform a loan in one
currency into a loan in another currency. One may regard a swap as a package of
forward contracts. It would be interesting to examine how two firms may benefit by
entering into a swap and the financial rationales that determine the prearranged rules
for the exchange of cash flows.

1.4.1 Interest Rate Swaps

The most common form of an interest rate swap is a fixed-for-floating swap, where
a series of payments, calculated by applying a fixed rate of interest to a notional
principal amount, are exchanged for a stream of payments calculated using a floating
rate of interest. The exchange of cash flows in net amount occurs on designated
swap dates during the life of the swap contract. In the simplest form, all payments
are made in the same currency. The principal amount is said to be notional since no
exchange of principal will occur and the principal is used only to compute the actual
cash amounts to be exchanged periodically on the swap dates.

The floating rate in an interest rate swap is chosen from one of the money market
rates, like the London interbank offer rate (LIBOR), Treasury bill rate, federal funds
rate, etc. Among them, the most common choice is the LIBOR. It is the interest rate at
which prime banks offer to pay on Eurodollar deposits available to other prime banks
for a given maturity. A Eurodollar is a U.S. dollar deposited in a U.S. or foreign
bank outside the United States. The LIBOR comes with different maturities, say,
one-month LIBOR is the rate offered on one-month deposits, etc. In the floating-for-
floating interest rate swaps, two different reference floating rates are used to calculate
the exchange payments.

As an example, consider a five-year fixed-for-floating interest rate swap. The
fixed rate payer agrees to pay 8% per year (quoted with semi-annual compounding)
to the counterparty while the floating rate payer agrees to pay in return six-month
LIBOR. Assume that payments are exchanged every six months throughout the life
of the swap and the notional amount is $10 million. This means for every six months,
the fixed rate payer pays out fixed rate interest of amount $10 million× 8% ÷ 2 =
$0.4 million but receives floating rate interest of amount that equals $10 million
times half of the six-month LIBOR prevailing six months before the payment. For
example, suppose April 1, 2008, is the initiation date of the swap and the prevailing
six-month LIBOR on that date is 6.2%. The floating rate interest payment on the first
swap date (scheduled on October 1, 2008) will be $10 million× 6.2% ÷ 2 = $0.31
million. In this way, the fixed rate payer will pay a net amount of ($0.4 − $0.31)

million = $0.09 million to the floating rate payer on the first swap date.
The interest payments paid by the floating rate payer resemble those of a floating

rate loan, where the interest rate is set at the beginning of the period over which the
rate will be applied and the interest amount is paid at the end of the period. This
class of swaps is known as plain vanilla interest rate swaps. Assuming no default of
either swap counterparty, a plain vanilla interest rate swap can be characterized as the
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difference between a fixed rate bond and a floating rate bond. This property naturally
leads to an efficient valuation approach for plain vanilla interest rate swaps.

Valuation of Plain Vanilla Interest Rate Swaps
Consider the fixed rate payer of the above five-year fixed-for-floating plain vanilla
interest rate swap. The fixed rate payer will receive floating rate interest payments
semi-annually according to the six-month LIBOR. This cash stream of interest pay-
ments will be identical to those generated by a floating rate bond having the same
maturity, par value and reference interest rate as those of the swap. Unlike the holder
of the floating rate bond, the fixed rate payer will not receive the notional principal
on the maturity date of the swap. On the other hand, he or she will pay out, fixed
rate interest rate payment semi-annually, like the issuer of a fixed rate bond with the
same fixed interest rate, maturity and par value as those of the swap.

We observe that the position of the fixed rate payer of the plain vanilla interest
swap can be replicated by long holding of the floating rate bond underlying the swap
and short holding of the fixed rate bond underlying the swap. The two underlying
bonds have the same maturity, par value and corresponding reference interest rates
as those of the swap. Hence, the value of the swap to the fixed rate payer is the value
of the underlying floating rate bond minus the value of the underlying fixed rate bond.
Since the position of the floating rate payer of the fixed-for-floating swap is exactly
opposite to that of the fixed rate payer, so the value of the swap to the floating rate
payer is negative that of the fixed rate payer. In summary, we have

Vf ix = Bf � − Bf ix

Vf � = Bf ix − Bf �,

where Vf ix and Vf � denote the value of the interest rate swap to the fixed rate payer
and floating rate payer, respectively; Bf ix and Bf � denote the value of the underlying
fixed rate bond and floating rate bond, respectively.

Uses of Interest Rate Swaps in Asset and Liability Management
Financial institutions often use an interest rate swap to alter the cash flow characteris-
tics of their assets or liabilities to meet certain management goals or lock in a spread.
As an example, suppose a bank is holding an asset (say, a loan or a bond) that earns
semi-annually a fixed rate of interest of 8% (annual rate). To fund the holding of this
asset, the bank issues six-month certificates of deposit that pay six-month LIBOR
plus 60 basis points (1 basis point = 0.01%). How can the bank lock in a spread
over the cost of its funds? This can be achieved by converting the fixed rate interests
generated from the asset into floating rate interest incomes. This type of transaction
is called an asset swap, which consists of a simultaneous asset purchase and entry
into an interest rate swap. Suppose that the following interest rate swap is available
to the bank:

Every six months the bank pays 7% (annual rate) and receives

LIBOR.
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By entering into this interest rate swap, for every six months, the bank receives
8% − 7% = 1% of net fixed rate interest payments and pays (LIBOR + 60 bps) −
LIBOR = 0.6% of net floating rate interest payments. In this way, the bank can lock
in a spread of 40 basis points over the funding costs.

On the other hand, suppose the bank has issued a fixed rate loan that pays every
six months at the annual rate of 7%. Through a liability swap, the bank can transform
this fixed rate liability into a floating rate liability by serving as the floating rate payer
in an interest rate swap. Say, for every six months, the bank pays LIBOR + 50 basis
points and receives 7.2% (annual rate). Now, the bank then applies the loan capital to
purchase a floating rate bond so that the floating rate coupons received may be used
to cover the floating rate interest payments under the interest rate swap. Through
simple calculations, if the floating coupon rate is higher than LIBOR + 30 basis
points, then the bank again locks in a positive spread on funding costs.

1.4.2 Currency Swaps

A currency swap is used to transform a loan in one currency into a loan of another
currency. Suppose a U.S. company wishes to borrow British sterling to finance a
project in the United Kingdom. On the other hand, a British company wants to raise
U.S. dollars. Both companies would suffer comparative disadvantages in raising for-
eign capitals as compared to raising domestic capitals in their own country. As an
example, we consider the following fixed borrowing rates for the two companies on
the two currencies.

The above borrowing rates indicate that the U.S. company has better creditwor-
thiness so that it enjoys lower borrowing rates at both currencies as compared to the
UK company. Note that the difference between the borrowing rates in U.S. dollars is
2% while that in UK sterling is only 1.2%. With a spread of 2% − 1.2% = 0.8% on
the borrowing rates in the two currencies, it seems possible to construct a currency
swap so that both companies receive the desired types of capital and take advantage
of the lower borrowing rates on their domestic currencies.

Let the current exchange rate be £1 = $1.4, and assume the notional principals
to be £1 million and $1.4 million. First, both companies borrow the principals from
their domestic borrowers in their respective currencies. That is, the U.S. company
enters into a loan of $1.4 million at the borrowing rate of 9.0% while the UK com-
pany enters into a loan of £1 million at the borrowing rate of 13.6%. Next, a currency
swap is structured as follows. At initiation of the swap, the U.S. company exchanges
the capital of $1.4 million for £1 million with the UK company. In this way, both
companies obtain the types of capital that they desire. Within the swap period, the

Table 1.3. Borrowing at fixed rates for the U.S. and UK companies

U.S. dollars UK sterling
U.S. company 9.0% 12.4%
UK company 11.0% 13.6%
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Fig. 1.5. Cash flow streams between the two counterparties in a currency swap.

US company pays periodically fixed sterling interest rate of 12.4% to the UK com-
pany, and in return, receives fixed dollar interest rate of 9.4% from the UK company.
At maturity of the currency swap, the U.S. company returns the loan capital of £1
million to the UK company and receives $1.4 million back from the UK company.
Both companies can pay back the loans to their respective domestic borrowers. The
cash flow streams between the two companies are summarized in Fig. 1.5.

What would be the gains to both counterparties in the above currency swap?
The U.S. company pays the same fixed sterling interest rate of 12.4%, but gains
9.4% − 9.0% = 0.4% on the dollar interest rate. This is because it pays 9.0% to the
domestic borrower but receives 9.4% from the UK company through the currency
swap. On the other hand, the UK company pays only 9.4% on the dollar interest rate
instead of 11.0%. This represents a gain on the spread of 11.0% − 9.4% = 1.6%
on the dollar interest rate, though it loses 13.6% − 12.4% = 1.2% on the spread in
the sterling interest rate. Note that the net gains and losses on the interest payments
are in different currencies, so the parties in a currency swap face the exchange rate
exposure.

1.5 Problems

1.1 How can we construct the portfolio of a butterfly spread that involves put op-
tions with different strike prices but the same date of expiration and on the
same underlying asset? Draw the corresponding profit diagram of the spread at
expiry.

1.2 A strip is a portfolio created by buying one call and writing two puts with the
same strike price and expiration date. A strap is similar to a strip except it
involves long holding of two calls and short selling of one put instead. Sketch
the terminal profit diagrams for the strip and the strap and comment on their
roles in monitoring risk exposure. How are they compared to a bottom straddle?
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1.3 A strangle is a trading strategy where an investor buys a call and a put with
the same expiration date but different strike prices. The strike price of the call
may be higher or lower than that of the put (when the strike prices are equal,
it reduces to a straddle). Sketch the terminal profit diagrams for both cases and
discuss the characteristics of the payoffs at expiry.

1.4 A box spread is a combination of a bullish call spread with strike prices X1
and X2 and a bearish put spread with the same strike price. All four options are
on the same underlying asset and have the same date of expiration. Discuss the
characteristics of a box spread.

1.5 Suppose the strike prices X1 and X2 satisfy X2 > X1, show that for European
calls on a nondividend paying asset, the difference in the call values satisfies

−B(τ)(X2 − X1) ≤ c(S, τ ; X2) − c(S, τ ; X1) ≤ 0,

where B(τ) is the value of a pure discount bond with par value of unity and
time to maturity τ . Furthermore, deduce that

−B(τ) ≤ ∂c

∂X
(S, τ ; X) ≤ 0.

In other words, suppose the call price can be expressed as a differentiable func-
tion of the strike price, then the derivative must be nonpositive and not greater
in absolute value than the price of a pure discount bond of the same matu-
rity. Do the above results also hold for European/American calls on a dividend
paying asset?

1.6 Show that a portfolio of holding various single-asset options with the same date
of expiration is worth at least as much as a single option on the portfolio of the
same number of units of each of the underlying assets. The single option is
called a basket option. In mathematical representation, say for European call
options, we have

N∑
i=1

nici(Si, τ ; Xi) ≥ c

(
N∑

i=1

niSi, τ ;
N∑

i=1

niXi

)
, ni > 0,

where N is the total number of options in the portfolio, and ni is the number of
units of asset i in the basket.

1.7 Show that the put prices (European and American) are convex functions of the
asset price, that is,

p(λS1 + (1 − λ)S2, X) ≤ λp(S1, X) + (1 − λ)p(S2, X), 0 ≤ λ ≤ 1,

where S1 and S2 denote the asset prices and X denotes the strike price.
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Hint: Let S1 = h1X and S2 = h2X, and note that the put price function is
homogeneous of degree one in the asset price and the strike price, the
above inequality can be expressed as

[λh1 + (1 − λ)h2]p
(

X,
X

λh1 + (1 − λ)h2

)

≤ λh1p

(
X,

X

h1

)
+ (1 − λ)h2p

(
X,

X

h2

)
.

Apply the property that the put prices are convex functions of the strike
price.

1.8 Consider the following two portfolios:

Portfolio A: One European call option plus X dollars of money market ac-
count.

Portfolio B: One American put option, one unit of the underlying asset and
borrowing of loan amount D. The loan is in the form of a portfolio
of bonds whose par values and dates of maturity match with the
sizes and dates of the discrete dividends.

Assume the underlying asset pays dividends and D denotes the present value of
the dividends paid by the underlying asset during the life of the option. Show
that if the American put is not exercised early, Portfolio B is worth max(ST ,X),
which is less than the value of Portfolio A. Even when the American put is
exercised prior to expiry, show that Portfolio A is always worth more than
Portfolio B at the moment of exercise. Hence, deduce that

S − D − X < C − P.

Hint: c < C for calls on a dividend paying asset and the loan (bond) value in
Portfolio A grows with time.

1.9 Deduce from the put-call parity relation that the price of a European put on a
nondividend paying asset is bounded above by

p ≤ XB(τ).

Then deduce that the value of a perpetual European put option is zero. When
does equality hold in the above inequality?

1.10 Consider a European call option on a foreign currency. Show that

c(S, τ ) ∼ SBf (τ) − XB(τ) as S → ∞.

Give a financial interpretation of the result. Deduce the conditions under which
the value of a shorter-lived European foreign currency call option is worth more
than that of the longer-lived counterpart.
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Hint: Use the put-call parity relation (1.2.24). At exceedingly high exchange
rates, the European call is almost sure to be in-the-money at expiry.

1.11 Show that the lower and upper bounds on the difference between the prices of
the American call and put options on a foreign currency are given by

SBf (τ) − X < C − P < S − XB(τ),

where Bf (τ) and B(τ) are bond prices in the foreign and domestic currencies,
respectively, both with par value of unity in the respective currency and time to
maturity τ, S is the spot domestic currency price of one unit of foreign currency.
Hint: To show the left inequality, consider the values of the following two

portfolios: the first one contains a European currency call option plus X

dollars of domestic currency, the second portfolio contains an American
currency put option plus Bf (τ) units of foreign currency. To show the
right inequality, we choose the first portfolio to contain an American
currency call option plus XB(τ) dollars of domestic currency, and the
second portfolio to contain a European currency put option plus one unit
of the foreign currency.

1.12 Suppose the strike price is growing at the riskless interest rate, show that the
price of an American put option is the same as that of the corresponding Euro-
pean counterpart.
Hint: Show that the early exercise privilege of the American put is rendered

useless.

1.13 Consider a forward contract whose underlying asset has a holding cost of cj

paid at time tj , j = 1, 2, · · · ,M − 1, where time tM is taken to be the maturity
date of the forward. For notational simplicity, we take the initiation date of the
swap contract to be time t0. Assume that the asset can be sold short. Let S

denote the spot price of the asset at the initiation date, and we use dj to denote
the discount factor at time tj for cash received on the expiration date. Show
that the forward price F of this forward contract is given by

F = S

d0
+

M−1∑
j=1

cj

dj

.

1.14 Consider a one-year forward contract whose underlying asset is a coupon pay-
ing bond with maturity date beyond the forward’s expiration date. Assume the
bond pays coupon semi-annually at the coupon rate of 8%, and the face value
of the bond is $100 (that is, each coupon payment is $4). The current market
price of the bond is $94.6, and the previous coupon has just been paid. Taking
the riskless interest rate to be at the constant value of 10% per annum, find the
forward price of this bond forward.
Hint: The coupon payments may be considered as negative costs of carry.
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1.15 Consider an interest rate swap of notional principal $1 million and remain-
ing life of nine months, the terms of the swap specify that six-month LIBOR
is exchanged for the fixed rate of 10% per annum (quoted with semi-annual
compounding). The market prices of unit par zero coupon bonds with maturity
dates three months and nine months from now are $0.972 and $0.918, respec-
tively, while the market price of unit par floating rate bond with maturity date
three months from now is $0.992. Find the value of the interest rate swap to the
fixed-rate payer, assuming no default risk of the swap counterparty.

1.16 A financial institution X has entered into a five-year currency swap with an-
other institution Y . The swap specifies that X receives fixed interest rate at 4%
per annum in euros and pays fixed interest rate at 6% per annum in U.S. dollars.
The principal amounts are 10 million U.S. dollars and 13 million euros, and in-
terest payments are exchanged semi-annually. Suppose that Y defaults at the
end of Year 3 after the initiation of the swap. Find the replacement cost to the
counterparty X. Assume that the exchange rate at the time of default is $1.32
per euro and the prevailing interest rates for all maturities for U.S. dollars and
euros are 5.5% and 3.2%, respectively.

1.17 Suppose two financial institutions X and Y are faced with the following bor-
rowing rates

X Y

U.S. dollars floating rate LIBOR + 2.5% LIBOR + 4.0%
British sterling fixed rate 4.0% 5.0%

Suppose X wants to borrow British sterling at a fixed rate and Y wants to
borrow U.S. dollars at a floating rate. How can a currency swape be arranged
that benefits both parties.

1.18 Consider an airlines company that has to purchase oil regularly (say, every three
months) for its operations. To avoid the fluctuation of oil prices on the spot
market, the company may wish to enter into a commodity swap with a financial
institution. The following schematic diagram shows the flows of payment in
the commodity swap:

Under the terms of the commodity swap, the airline company receives spot
price for a certain number units of oil at each swap date while paying a fixed
amount K per unit. Let ti , i = 1, 2, · · · ,M , denote the swap dates and di be the
discount factor at the swap initiation date for cash received at ti . Let Fi denote
the forward price of one unit of oil to be received at time ti , and K be the
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fixed payment per unit paid by the airline company to the swap counterparty.
Suppose K is chosen such that the initial value of the commodity swap is zero,
show that

K = ∑M
i=1 diFi∑M

i=1 di.

That is, the fixed rate is a weighted average of the prices of the forward con-
tracts maturing on the swap dates with the corresponding discount factors as
weights.

1.19 This problem examines the role of a financial intermediary in arranging two
separate interest rate swaps with two companies that would like to transform a
floating rate loan into a fixed rate loan and vice versa. Consider the following
situation:

Company A aims at transforming a fixed rate loan paying 6.2% per
annum into a floating rate loan paying LIBOR + 0.2%.
Company B aims at transforming a floating rate loan paying LIBOR
+ 2.2% into a fixed rate loan paying 8.4% per annum.

Instead of having these two companies getting in touch directly to arrange an
interest rate swap, how can a financial intermediary design separate interest
swaps with the two companies and secure a profit on the spread of the borrow-
ing rates?


