
2
Security Mechanisms

This chapter deals with security mechanisms that can be used to realize infor-
mation security services. It first explains which cryptographic systems or
cryptosystems are suitable for implementation and then describes the most
widely used ones in detail.

2.1 Data Integrity Mechanisms

One way to protect data integrity is to use an encryption mechanism (e.g.,
DES in CBC mode, see Section 2.2). In this way both data integrity and data
confidentiality are ensured. Unfortunately, encryption alone is not secure
enough because of the possibility of bit flipping attacks [1]. If no authentica-
tion is provided, an attacker can flip bits in the ciphertext (i.e., exchange �0�
for �1� or vice versa) without being detected. If the encrypted plaintext is not
a human-readable message but a string automatically processed by a running
program, the result from decryption of the altered ciphertext can potentially
be interpreted in such a way as to cause serious damage to the program or the
receiving host. The protection is either to add some authentication informa-
tion to the plaintext before encryption or, if only integrity protection is
required, to send the original message together with the ciphertext.

Another way to ensure integrity is to use a digital signature mechanism
(see Section 2.3). Digital signatures provide not only data integrity but also

11

nonrepudiation. If only data integrity is desired, without confidentiality or
nonrepudiation, it can be achieved by applying a message authentication
code (MAC) based on a cryptographic hash function to the data to be pro-
tected (see Section 2.1.2). In general, cryptographic hash functions are very
fast�far faster than encryption mechanisms.

2.1.1 Cryptographic Hash Functions

If a cryptographic hash function is applied to an input value of any length
(up to a maximum possible length, for example 264 for SHA-1), the resulting
output value will always be of a constant length (for example, 160 bit for
SHA-1). This fixed-length output is referred to as the message digest or check-
sum, or hashsum. Since the set of all possible inputs is much larger than the
set of all possible outputs, many different input values will be mapped to the
same output value. However, it should be rendered computationally expen-
sive to find different inputs that are mapped to the same output. In other
words, the function must be made easy to compute in one direction (i.e., h:
input → output), but not in the opposite direction. For this reason, crypto-
graphic hash functions are often referred to as the one-way (hash) functions.
Strictly speaking, a cryptographic hash function y = h (x) must satisfy the fol-
lowing conditions:

It is computationally infeasible to find

(a) x such that h (x) = y, for any given y

(b) y ≠ x such that h (x) = h (y), for any given x

(c) (x,y) such that h (x) = h (y)

In general, there are two serious types of attacks against cryptographic
hash functions. The first consists in finding a message M� yielding the same
hashsum as the original message M. Such an attack can be very dangerous
where a digital signature is generated from the shorter hashsum instead of
from the longer message. This is usually done as a matter of convenience, for
generating a signature is a time- and resource-consuming task. As an exam-
ple, suppose that A edited a message M and signed the hashsum h(M), M
being a bank order to transfer 100 euros to B �s account. If condition (b)
were not satisfied, B could easily find another message M� so that h(M)
=h(M�), in which 10,000 euros instead of 100 euros would be transferred. If
condition (a) were satisfied, however, this type of attack would be extremely
time consuming even for short hashsums.

12 Security Fundamentals for E-Commerce

The second type of attack is much more serious. This is when B tries to
find two messages, M and M �, that yield the same hashsum but have
completely different meanings. Suppose B wants A to transfer 10,000 euros
to B �s account. B knows that A would never agree to transfer more than 100
euros, so it is necessary somehow for B to obtain A�s signature on the home-
banking order. Note that in this case B has much more freedom, since there
are many different ways to say that A wants to give B 100 euros, or 10,000
euros. Therefore the probability of finding two suitable messages is signifi-
cantly higher than in the first attack, in which one of the messages is given.
Actually, the probability is quite surprisingly higher, which is often referred
to as the birthday paradox.

2.1.1.1 Birthday Paradox

The birthday paradox can be explained in terms of a hash function with peo-
ple as inputs and birthdays as outputs�thus, h(person) = birthday.

There are over five billion people on our planet, and only 366 different
birthdays. The first type of attack goes as follows: Given a particular person
A, how many randomly chosen people must be asked for their birthdays until
there is a probability higher than 50% that one of them has the same birth-
day as A? The answer is 183. The second type of attack (birthday attack)
needs the smallest group of randomly chosen people for which there is a
probability higher than 50% that at least two people in the group have the
same birthday. This group needs only 23 people.

In terms of cryptographic hash functions, the first attack would require
hundreds of thousands of years of computing time, while the second attack
would be a matter of hours, at least for short (less than 100-bit) hashsums.
For this reason it is of crucial importance to use a cryptographic hash func-
tion that not only satisfies the conditions (a) - (b), but also produces outputs
that are long enough to make the birthday attack infeasible with current
technology.

The most popular cryptographic hash function family is the MD (mes-
sage digest) family developed by R. Rivest. MD5, which is specified in a
Request for Comments (RFC) document issued by the Internet Engineering
Task Force [2],1 is the latest member of the family. Since it has a 128-bit out-
put, it is potentially vulnerable to a birthday attack and therefore not consid-
ered secure enough for the latest technology (it also has some structural
problems).

Security Mechanisms 13

1. http://www.ieft.org

SHA-1 (Secure Hash Standard) is a much better choice since it pro-
duces a 160-bit output [3]. It is based on principles similar to those used by
R. Rivest when designing MD4 and MD5. The input message can be up to
264 bits long. It is divided into 512-bit blocks that are sequentially processed
in such a way that the hashsum depends on all input blocks. A block consists
of 16 words. Words are basic processing units on which the following opera-
tions are performed:

• Bitwise logical �and,� �inclusive-or,� �exclusive-or,� and �complement�;

• Addition modulo 232;

• Circular left shift.

SHA-1 additionally uses some carefully chosen constants. The compu-
tation requires two buffers with five 32-bit words each, and a sequence of
eighty 32-bit words. The standard describes two methods of computation,
one of which requires less memory than the other, but longer execution time.
Implementers can make use of these possibilities to trade off memory against
execution time.

2.1.2 Message Authentication Code

Cryptographic hash functions can be used to implement a data authentica-
tion mechanism. Data authentication is a combination of authentication and
data integrity. The so-called MAC is computed in the following way:

MAC(message) = f (Secret Key, message)

in which f () is a function based on a specific combination of the crypto-
graphic hash functions. If a sender and a receiver both know the secret key,
the receiver can check the sender authenticity and the message integrity by
applying the combination of known cryptographic hash functions to the
secret key and the message. The first proposal for MAC computation was
simply to apply a cryptographic hash function h() to the concatenation of the
secret key and the message, that is, to compute h(Secret Key, message) or
h(message, Secret Key). Unfortunately, that approach proved to be insecure
[4].2 A combined approach was to prefix and suffix two different secret keys

14 Security Fundamentals for E-Commerce

2. See CRYPTO/EUROCRYPT papers at http://www.cryptography.com/resources/papers/
index.htm

and compute h(Secret Key 1, message, Secret Key 2). This approach is much
more secure, but there is an attack, although impractical, that makes it possi-
ble to find the secret keys. The best approach so far is to apply an iterated
hash function [4], for example h[secret key, h(secret key, message)], and use
some padding. This approach was chosen as mandatory to implement for
many Internet security protocols [5], such as IPsec and SSL/TLS.

2.2 Encryption Mechanisms

A data confidentiality service can be implemented with encryption mecha-
nisms. A cryptographic system, or cryptosystem, is a single parameter family
{ }E K K ∈K

of invertible transformations

E M CK : →

from a space M of plaintext (or unencrypted) messages to a space C of cipher-
text (or encrypted) messages. The cryptographic key K is selected from a
finite set K called the keyspace. Basically, there are two types of cryptosystems,
namely symmetric or secret key systems, and asymmetric or public key systems.
The inverse transformation ()E K

−1 is denoted by D K . E K is referred to as
encryption and D K as decryption.

2.2.1 Symmetric Mechanisms

In a symmetric cryptosystem, the encryption and decryption transformations
are identical or easily derived from each other. If the message to be encrypted
(plaintext) is denoted by M, the encrypted message (cyphertext) by C, and
the cryptographic key by K, the symmetric encryption E and decryption D
can be defined as follows:

E M CK () =

D C MK () =

In a symmetric cryptosystem the same key is used for both encryption
and decryption. This key is called the secret key since it must remain secret to
everybody except the message sender(s) and the message receiver(s). Obvi-
ously, it is necessary that the receiver obtain not only the encrypted message,
but also the corresponding key. The encrypted message may be sent over an

Security Mechanisms 15

insecure communication channel�after all, that is why it needs to be
encrypted. The key, however, must not be sent over the same channel, and
this leads to a serious problem of symmetric cryptosystems: key management.
The secret key must either be sent over a separate, secure channel (e.g., a
sealed envelope), or it must be sent encrypted. For the encryption of
symmetric keys in transfer, a public key mechanism can be used (see
Section 2.2.2).

2.2.1.1 One-Time Pad

Encryption techniques are much older than computers. In fact, one of the
earliest known encryption techniques was used by the Roman dictator Julius
Caesar (100�44 B.C.). In the Caesar Cipher, each plaintext character of the
Latin alphabet is replaced by the character three positions to the right of it
(�A� is replaced by �D,� �B� by �E,� etc.). The one-time pad is also a classic
technique. Invented by Gilbert Vernam in 1917 and improved by Major
Joseph Mauborgne, it was originally used for spy messages.

The one-time pad is very important for cryptography because it is the
only perfect encryption scheme known. In other words, the ciphertext yields
absolutely no information about the plaintext except its length [6]. The defi-
nition of perfect secrecy given by C. E. Shannon in 1943 is actually younger
than the one-time pad. It turns out that perfect secrecy requires that

• The encryption key be at least as long as the message to be encrypted;

• Each key be used only once.

This is exactly the case with the one-time pad. Unfortunately, it makes
key management extremely difficult, since new keys must be exchanged each
time.

The one-time pad key is a large, nonrepeating set of truly random key
letters. The encryption is the addition modulo 26 of one plaintext character
and one one-time pad key character. Plaintext characters are mapped to
numbers corresponding to their positions in the English alphabet. The one-
time pad is a symmetric mechanism, since the same key is used for both
encryption and decryption. For example,

Plaintext: M E S S A G E
Key: T B F R G F A
Ciphertext: G G Y K H M F

16 Security Fundamentals for E-Commerce

because

M+T mod 26 = 13+20 mod 26 = 7 = G

E+B mod 26 = 5+2 mod 26 = 7 = G

S+F mod 26 = 19+6 mod 26 = 25 = Y

and so on.
Decryption works the other way around, that is by subtracting the let-

ters of the ciphertext and the letters of the key modulo 26:

G�T mod 26 = 7�20 mod 26 = −13 mod 26 = 13 = M

G�B mod 26 = 7�2 mod 26 = 5 = Ε
Y�F mod 26 = 25�6 mod 26 = 19 = S

and so on.

2.2.1.2 Data Encryption Standard

The Data Encryption Standard (DES) was developed in the United States by
IBM and NIST (the National Institute of Standards and Technology3) in
1976. DES is standardized as the Data Encryption Algorithm (DEA) by
ANSI (the American National Standards Institute4) [7], and as DEA-1 by
ISO5 [8]. Its main advantage, apart from not yet being broken by cryptoana-
lysts despite its age, is that it can be easily and efficiently implemented in
hardware. More information on the background of DES can be found in [6].

DES is a block cipher since it encrypts data in 64-bit blocks. If data is
longer, it must be divided into 64-bit blocks. It may happen that the last part
of some data is shorter than 64 bits. In such a case it is usual to fill the
remaining part of the block with zeros (padding). The result of DES encryp-
tion is also a 64-bit block. The key has 56 bits and 8 parity bits. The same
algorithm is used for both encryption and decryption, but with reverse key
ordering.

DES Techniques

The main cryptographic techniques applied in DES are confusion and diffusion.
Both techniques were known long before DES, but in DES they were

Security Mechanisms 17

3. http://www.csrc.nist.gov

4. http://www.ansi.org

5. http://www.iso.ch

combined for the first time in such a way as to result in an encryption algo-
rithm that has withstood all cryptoanalysts� attacks for twenty-four years now.

The purpose of confusion is to obscure the relationship between the
plaintext and the ciphertext. Substitution is an example of a confusion tech-
nique. However, if one encrypts an English text simply by substituting, for
example, letter K for letter A, then someone analyzing the ciphertext can eas-
ily conclude that K stands for A by comparing the relative frequency of K
in the ciphertext with the well-known relative letter frequencies for English.
There are better substitution techniques that can change the probabilities to
some extent, but in general, substitution alone is not sufficiently secure.

In DES, substitution is done not with letters, but with bit strings. DES
has eight different substitution tables called S-boxes. Each S-box uses a 6-bit
input and a 4-bit output. An S-box is a table with 4 rows (0�3) and 16
(0�15) columns. Each entry in the table is a 4-bit binary number. For exam-
ple, the S-box No.1 is shown in Table 2.1.

The substitution is defined as follows: To determine the row in an
S-box, take the first and the last bit of the input. The middle four bits yield
the column. The output (substitution result) is the entry at the intersection
of the row and the column. For example:

S-box No. 1

Input: 110011;

The first and the last bit are 11 ⇒ row 3;

The middle four bits are 1001 ⇒ column 9;

Output: the number in row 3, column 9 is 1110 = 10112.

18 Security Fundamentals for E-Commerce

Table 2.1
DES S-Box No. 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-boxes are crucial for DES security, although substitution is generally
a weak technique. The S-boxes are nonlinear and therefore very difficult to
analyze. It was not until 1992 that the design criteria for the S-boxes were
even published. Actually, it is possible to find better S-boxes than the DES
S-boxes, but it is not an easy task.

Diffusion dissipates the redundancy of the plaintext by spreading it
out over the ciphertext. An example of a diffusion technique is permutation.
A very simple permutation of the word MESSAGE is SMEEGAS. In this
example, the key is 2317654, meaning: Move the first letter to the second
position, move the second letter to the third position, etc. In DES there
are several permutations. The initial permutation, for example, begins as
follows:

58, 50, 42, 34, 26, 18, 10, 2, 60, 52�,

meaning:

move bit 58 of the plaintext to bit position 1,

move bit 50 of the plaintext to bit position 2,

and so on.
Another type of permutation used in DES is the expansion permutation,

which, as the name says, yields a longer output than the input. In this way
the dependency of the output bits on the input bits can occur at an earlier
stage in the DES computation. A small change in either the plaintext or the
key produces a significant change in the ciphertext, which is referred to as the
avalanche effect. Without this effect it would be easy to observe the propaga-
tion of changes from the plaintext to the ciphertext, which would make cryp-
toanalysis easier.

DES Rounds

DES has sixteen rounds. A simplified DES computation is shown in Figure 2.1.
In each round, a 48-bit subkey computed by the compression permutation is
XORed (i.e., added modulo 2) to the right half of the data expanded to 48 bits
by the expansion permutation. The result is fed into the S-boxes. The result of
the S-box substitution is permuted once more (P-box permutation). Before
the first round the data is permuted with the initial permutation. After the last
round, the intermediate result is permuted for the last time. This final permuta-
tion is the inverse of the initial permutation. These two permutations do not
affect DES�s security, however.

Security Mechanisms 19

Like many other symmetric block ciphers, DES is also a Feistel net-
work [6]. The name comes from Horst Feistel, who first proposed such a net-
work in the early 1970s. In a Feistel network the plaintext is divided into two
halves for the first round of computation, which is repeated a number of times
(i.e., in the subsequent rounds). Generally, the output of the ith round is
determined from the output of the previous round in the following way:

L Ri i= −1

R L f R Ki i i i= ⊕ −(,)1

where f () represents the round function, and Ki the key for the ith round.

Triple DES

Since DES is, in contrast to the one-time pad, not perfectly secure and thus
vulnerable to a brute-force attack (the trying of all possible keys), key length

20 Security Fundamentals for E-Commerce

Plaintext

Ciphertext

Initial Permutation

R0L0

Expansion Permutation
S-Boxes

P-Box Permutation

Key K1

R1L = R1 0

...

R15L15

⊕

⊕

Expansion Permutation
S-Boxes

P-Box Permutation

Key K16

L =R16 15R16

Final Permutation

Figure 2.1 DES.

plays a significant security role. Nowadays it is not recommended to use DES
with a 56-bit key. The algorithm itself does not allow varying key lengths,
but it can be applied more than once with different keys, which effectively
means using a longer key. This is possible because DES is not an algebraic
group, as was proven by Campbell and Wiener in 1992. If one takes a 64-bit
input and applies all possible DES keys to encrypt it, there will be 2 1056 17<
different 64-bit outputs. However, there are 264! > 101020

possible 64-bit out-
puts [9]. In other words, most of the outputs are �unused� by one DES key.
This effectively means that for the given keys K 1 and K 2 there is usually no
key K 3 such that E E M E MK K K2 1 3

(()) ()= . One can therefore conclude
that multiple DES encryption is stronger than single DES encryption. Sur-
prisingly, however, double DES is not much stronger than single DES
because of the meet-in-the-middle attack [9]. Triple DES was finally adopted
as a stronger variant of DES, even if only two different keys, K 1 and K 2 , are
used:

()()()C E D E MK K K=
1 2 1

D instead of E in the middle of the expression is introduced for
compatibility with single DES. In other words, if triple DES encryption is
defined as a new function with two parameters E K K3 1 2(,), then
E K K3 1 1(,) represents single DES encryption.

DES Modes

DES, like all other block ciphers, can be applied in several different modes,
for example

• Electronic codebook (ECB) mode;

• Cipher-block chaining (CBC) mode;

• Cipher feedback (CFB) mode;

• Output feedback (OFB) mode;

• Counter mode.

ECB is the fastest and easiest mode. In this mode each plaintext block
is encrypted independently from other blocks. It is, however, the least secure
mode, since identical plaintext blocks result in identical ciphertext blocks
such that block redundancies in the plaintext can easily be detected. CBC

Security Mechanisms 21

solves this problem by introducing feedback. Each plaintext block Pi is
�chained� to the encryption result Ci-1 of the previous plaintext block Pi-1:

Encryption:C E P Ci K i i= ⊕ −()1

Decryption: P C D Ci i K i= ⊕−1 ()

The first plaintext block is chained to an initialization vector (IV)
known to both the sender and the receiver (i.e., C E P IVK1 1= ⊕()). Some-
times it is necessary to encrypt data units smaller than the block size, for
example, if there is no time to wait for enough data to fill a block. In such
cases CFB is used, which also adds feedback and requires an IV. With OFB,
most of the encryption process can occur off-line, before the plaintext mes-
sage even exists. With both CFB and OFB, a block cipher is actually used
as a stream cipher. Unlike block ciphers, stream ciphers convert plaintext to
ciphertext one bit or byte at a time.

If it is necessary to encrypt data units smaller than the block size, block
ciphers can also be applied in counter mode. In counter mode, sequence
numbers or pseudorandom sequences are used as the input to the encryption
algorithm.

DES Today

The fastest DES chips today achieve an encryption speed of approximately 1
Gbps with a 56-bit key. The fastest software solutions are much slower,
about 10 Mbps.

The latest record in cracking DES (as of September 1999), set by
the Electronic Frontier Foundation�s �Deep Crack� is 22 hours and 15 min-
utes [10]. It involved about 100,000 PCs on the Internet. It was performed
as a �known ciphertext attack� based on a challenge from the RSA Laborato-
ries.6 The task was to find a 56-bit DES key for a given plaintext and a given
ciphertext.

2.2.1.3 Other Symmetric Encryption Algorithms

IDEA (International Data Encryption Algorithm), proposed in 1992, was
the �European answer to DES� and to the United States export restrictions
on cryptographic algorithms. IDEA is a block cipher that encrypts a 64-bit
plaintext block with a 128-bit key. It applies the same basic cryptographic
techniques as DES (confusion and diffusion), but is twice as fast. Its �disad-
vantages� are that it has not been cryptoanalyzed as long as DES, and that it

22 Security Fundamentals for E-Commerce

6. http://www.rsasecurity.com/rslabs/

is patented and must be licensed for commercial use. The patent holder is the
Swiss company ASCOM.7

RC (Rivest Cipher) is a family of symmetric algorithms. RC2 is a
variable-key-size 64-bit block cipher that was designed as a possible replace-
ment for DES. RC2 and RC4 with a 40-bit key were used in the Netscape
implementation of SSL (Secure Sockets Layer) since they were the first cryp-
tographic algorithms allowed for export from the United States. However, in
1995 Doligez successfully cracked RC4 (a stream cipher) with a 40-bit key in
less than 32 hours by a brute-force attack.8 RC5 is a block cipher with a vari-
able block size, key size, and number of rounds. The latest algorithm in the
series is RC6, an improved version of RC5, which was submitted by RSA
Laboratories, Inc. as a candidate for the Advanced Encryption Standard in
April 1998.

2.2.1.4 Advanced Encryption Standard

The designation Advanced Encryption Standard (AES,9 will replace DES.
RC6, MARS, Rijndael, Serpent, and Twofish are the five finalist AES candi-
date algorithms that are currently (as of November 1999) being analyzed by
the global cryptographic community.

RC610 by Rivest et al. is a parameterized family of encryption algo-
rithms. As DES, it is based on a Feistel network. The parameters are word
size, number of rounds, and key length. The version submitted as an AES
candidate operates with 32-bit words and has 20 rounds. Software imple-
mentations in ANSI C on a 200 MHz Pentium achieve a rate of about 45
Mbps. Hardware implementation estimates are about 1.3 Gbps.

MARS is a block cipher supporting 128-bit blocks and variable key size
developed at IBM Research.11 It is also a Feistel network, but offers better
security than triple DES. Hardware implementations are approximately 10
times faster than software implementations in C, which achieve about 65
Mbps on a 200 MHz Pentium-Pro.

Security Mechanisms 23

7. http://www.ascom.ch/infosec/idea/licensing.html

8. http://www.pauillac.inria.fr/~doligez/ssl/

9. http://www.csrc.nist.gov/encryption/aes/aes_home.htm

10. http://www.rsa.com/rsalabs.aes/rc6vll.pdf

11. http://www.research.ibm.com/security/mars.html

Rijndael, a block cipher by Joan Daemen and Vincent Rijmen12 has a
variable block length and key length. Currently (as of November 1999) it is
specified how to use keys with a length of 128, 192, or 256 bits to encrypt
blocks with a length of 128, 192 or 256 bits. Rijndael is not a Feistel
network, but defines a round as a composition of three distinct invertible
uniform transformations, called �layers.� A C implementation with a 128-bit
key and 128-bit block has a rate of about 30 to 70 Mbps on a 200 MHz Pen-
tium. In dedicated hardware, rates of 1 Gbps and higher could be achieved.

Serpent is a 128-bit block cipher designed by Ross Anderson, Eli
Biham, and Lars Knudsen.13 The currently fastest C version runs at about 26
Mbps on a 200 MHz Pentium, which is comparable to DES, but the design-
ers believe it to be more secure than triple DES. Serpent�s structure is very
similar to DES. It has 32 rounds and uses stronger S-boxes.

Twofish is a 128-bit block cipher (a 16-round Feistel network) pro-
posed by Schneier14 that accepts a variable-length key up to 256 bits. For a
256-bit key, the throughput achieved on a 200 MHz Pentium is about 45
Mbps for C implementations. The hardware performance is up to about 1.2
Gbps with a 150 MHz clock.

2.2.2 Public Key Mechanisms

The problem of key management in symmetric cryptosystems was success-
fully solved by the introduction of public key cryptosystems. These are often
explained with the mailbox analogy as illustrated in Figure 2.2. The mailbox
represents the public key, since anyone can throw a letter into it. However,
only the mailbox owner has the mailbox key�the private key�with which
she can open the mailbox and take out the letter.

In a public key cryptosystem, the encryption and decryption keys differ
in such a way that it is not computationally feasible to derive one key from
the other. One key is referred to as the private key and must be kept secret.
Another key is referred to as the public key and should be made public, which
eliminates the necessity of transmitting it in a secure way. The public key
encryption transformation E PuK and decryption transformation DPrK are
denoted as

24 Security Fundamentals for E-Commerce

12. http://www.esat.kuleuven.ac.be/~rijmen/rijndael/

13. http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf

14. http://www.counterpane.com/twofish/pdf

()E M CPuK =

() ()()D C D E M MK K PuKPr Pr= =

The encryption transformation E is uniquely determined through the public
key PuK, so it is usual to write EOwnerID (ID stands for �identity�). The same
applies to the decryption transformation, which is usually written DOwnerID.

The pioneers of public key cryptography are W. Diffie and M. E. Hell-
man [11], who invented one of the first two public key cryptosystems (the
second, by Merkle and Hellman, was based on the knapsack problem, but it
was cracked a long time ago).

2.2.2.1 RSA

RSA is the most famous and widely used public key system. It was invented
in 1978 by R. Rivest, A. Shamir, and L. Adleman [12], whose family names�
initials form the name of the algorithm. The difficulty of breaking RSA is
based on the factoring problem. However, it has never been mathematically
proven that it is equally difficult to factor a large composite number as to
break RSA.

In RSA, the large composite number is referred to as the modulus n =
pq, p and q being large primes. Public key or public exponent e can be chosen
as a prime number relatively prime to ()()p q− −1 1 . Private key or private
exponent d is then chosen to satisfy the following congruence:

ed n≡ 1mod ()f (Eq. 2.1)

Security Mechanisms 25

Public key Private key

Figure 2.2 Mailbox as an analogy to a public key cryptosystem.

To understand the congruence, we must first review some simple rules from
modular arithmetic and number theory in general. Modular arithmetic oper-
ates with residues (represented by r):

a n r a qn r r nmod ,= ⇒ = + ≤ <0 (Eq. 2.2)

For example, 35 mod 4 = 3 since 35 = 8∗4 + 3. All possible residues modulo
4 are {0,1,2,3}.

Like the nonmodular arithmetic everyone is familiar with, modular
arithmetic is commutative, associative, and distributive with respect to addi-
tion and multiplication, that is,

() () () ()
() ()() ()
a b n a n b n b a n

ab n a n b n ba

+ = + = +
= =

mod mod mod mod ;

mod mod mod mo

()[] () () ()
()[]

()[]

d ;

mod mod mod mod

mod ;

mod

n

a b c n a n b n c n

a b c n

ab c n a

+ + = + + =

+ +

= ()()() ()[]
()[]
() ()[]()

mod mod mod mod ;

mod

mod mod mod

n b n c n a bc n

a b c n

a n b n c n a

=

+ =

+ = () ()c n bc nmod mod+

Two integers a and b can be congruent (�≡�) modulo n, that is,

()a b n n a b≡ ⇒ −mod |

�a | b� means �a divides b,� or �b is a multiple of a� (for example, 2
divides 8). In other words, if two integers a and b have equal residues modulo
n, they are also congruent modulo n:

() ()a n b n a b nmod mod mod= ⇒ ≡ (Eq. 2.3)

For example, 35 and 59 are congruent modulo 4 since 35 mod 4 = 59 mod 4
= 3.

To determine the private RSA exponent d, one must compute the
modular inverse of the public exponent e. To find the modular inverse means
finding x such that

ax nmod = 1

26 Security Fundamentals for E-Commerce

However, if a and n are not relatively prime, there is no solution (gcd stands
for �greatest common divisor�):

2 14 1x mod = no solution for x since gcd(2,14) ≠1

To compute the modular inverse, the number of positive integers less
than the modulus and relatively prime to the modulus is needed. This
number is usually referred to as Euler�s Totient Function f(n). For p prime,
f(p) = p − 1. For the RSA modulus n = pq,

() ()()f n p q= − −1 1

Given f(n), the inverse modulo n of any number relatively prime to n can be
computed in the following way:

()ax n x a nnmod mod ,= ⇒ = −1 1f in which gcd()a n, = 1

()a nnf mod ,= 1 if ()gcd ,a n = 1 (Eq. 2.4)

For example, one can compute x from 5x mod 6 = 1 in the following
way:

() ()()
()

f n

x

= = × = − − =

= = × =−

6 2 3 2 1 3 1 2

5 6 5 5 5 6 12 1 mod mod

This result comes from Euler�s generalization of Fermat�s Little Theo-
rem (FLT). FLT gives the formula for computing inverses modulo a prime:

ax p x a npmod mod= ⇒ = −1 2 in which p prime and ()gcd ,a p = 1

a pp − =1 1mod if p prime and ()gcd ,a p = 1

To compute d in RSA, one must first find the inverse modulo f(n).
RSA encryption and decryption are defined as

encryptionC M ne= mod

Security Mechanisms 27

Decryption M C n M n Md ed= = =mod mod

M is the message to be encrypted (plaintext) and C is ciphertext. If the
decryption equation is divided by M, the result is

M n Med mod /= divide by M

Med-1mod n = 1

Comparing this equation with the formula for computing the modular
inverse from Euler�s generalization of FLT (2.4) shows that (ed � 1) must be
a multiple of f(n), or, in other words, that f(n) | (ed � 1). As we already
know from (2.2), this condition can be expressed as

()ed n≡ 1mod f

which is the RSA congruence from the beginning of this section (2.1).
There is one more confusing aspect to examine. That is, (2.4) requires

that M and n be relatively prime. How can that be guaranteed? It can happen
that a message does not satisfy this condition (i.e., that either gcd(M,n) = p or
gcd(M,n) = q). Luckily, the RSA formula holds even in such cases. The proof
for gcd(M,n) = p is as follows: Let M = cp. It holds that ()M qqf mod = 1
since gcd(M,q) = 1 (see FLT):

() ()M qq pf fmod /= 1

()[]
()

()M q M qq n
q

f f
f

mod mod= = ⇒1

()M kqnf = +1 /multiply by M = cp

()M M kcpq M kcnnf + = + = +1

()M M nnf + ≡1 mod

()M nnf ≡ 1mod

Since f(n) | (ed � 1), the following holds true:

28 Security Fundamentals for E-Commerce

M ned − ≡1 1mod

M ned − =1 1mod /multiply by M

M n Med mod =

and this is the RSA decryption.

Primality Test

For RSA it is of crucial importance that p and q, the factors of the modulus n,
be large primes. How can one find a large prime? It is not just a random
number, although when generating an RSA modulus one should try to pick
two large primes as randomly as possible. A simple primality test is based on
the following theorem: If there exist solutions to ()x p2 1≡ mod other than
±1, then p is not a prime. The test then goes thus:

If p > 2 prime, then ()x p2 1≡ mod has only two solutions,
()x p1 1≡ mod and ()x p2 1≡ − mod .

The proof of the theorem is very simple. It is necessary to find solutions
for

x p2 1 0− ≡ mod

()()x x p+ − ≡1 1 0mod

p can divide ()x + 1 or ()x − 1 or both. If p divides both, then it holds
that

x kp+ =1

x jp− =1

If these two equations are subtracted, it can be concluded that p
equals 2:

()2 2= − ⇒ =k j p p

This is a contradiction, since p must be greater than 2. Now assume
that p divides (x + 1). In this case it holds that

Security Mechanisms 29

x kp x p− = ⇒ ≡1 1mod

which is the first possible solution if p is a prime. Similarly, if p divides
()x − 1 , it also holds that

x jp x p− = ⇒ ≡ −1 1mod

which is the second possible solution for p prime.
This theorem is used in Lehmann�s primality test, but because the

probability of success in one pass is not higher than 50%, the Rabin-Miller
test is usually preferred in practice (see [6]).

RSA Today

In hardware, RSA is about a thousand times slower than DES: the RSA hard-
ware encryption speed with a 512-bit key is about 1 Mbps. In software, DES
is about a hundred times faster than RSA: the RSA software encryption speed
is about 10 Kbps. According to Moore�s law, computing power doubles
approximately every 18 months, and computing costs fall to 1/10 after five
years. Since RSA and DES are, unlike the one-time pad, not perfectly secure,
it is necessary to use longer keys as encryption technology improves. This
poses a major problem if RSA or any other nonperfect cryptosystem is used
for digital signatures (see Section 2.3) of legal documents. Let us suppose
somebody digitally signs a will today with a 512-bit RSA key and dies in
2020. In twenty years it will probably be quite cheap to break a 512-bit RSA
key, and that might prove an irresistible temptation for less preferred heirs.

Security of RSA depends on the difficulty of factoring the modulus n.
In August 1999, a team of scientists of the National Research Institute for
Mathematics and Computer Science in the Netherlands, led by Herman te
Riele, succeeded in factoring a 512-bit number [13]. About 300 fast worksta-
tions and PCs had spent about 35 years of computing time to find the prime
factors. They were running in parallel, mostly overnight and on weekends, so
the whole task was accomplished in about seven months. In practical terms,
this means that the key size of 512 bits is no longer safe against even a moder-
ately powerful attacker. Some 25 years ago it was estimated that 50 billion
years of computing time would be needed to factor a 512-bit number, so the
Dutch result is a major scientific breakthrough.

The latest news about breaking RSA (as of September 1999) is that the
famous Israeli cryptographer Adi Shamir has designed a factoring device
named �TWINKLE� (The Weizmann INstitute Key Locating Engine) that
can be used to break a 512-bit RSA key within a few days [14]. For this,

30 Security Fundamentals for E-Commerce

about 300 to 400 devices would be necessary, each costing about $5,000.
Although the use of TWINKLE would be quite expensive (approximately $2
million), it is a very good reason to abandon the use of 512-bit RSA encryp-
tion in all existing applications immediately.

2.2.2.2 Elliptic Curves

Elliptic curves have been studied extensively for the past 150 years, but their
application to cryptography was first proposed in 1985 by Neal Koblitz and
Victor Miller, independently. Elliptic curves can be used to define public key
cryptosystems that are close analogs of the existing schemes. However, only
those elliptic curve cryptosystems whose security depends on the elliptic curve
discrete logarithm problem are of special interest today, since the only available
algorithms for solving these problems need exponential time. In other words,
these methods become infeasible much faster than the methods for solving
the integer factorization problem that RSA is based upon (such methods
need subexponential time) [15]. This means that an elliptic curve cryptosys-
tem requires much shorter keys than RSA to achieve the same level of secu-
rity. For example, a 160-bit elliptic curve key is roughly as secure as a
1024-bit RSA key. This advantage is of crucial importance for devices with
limited storage and processing capacity, such as smart cards.

Elliptic curve cryptosystems are far more complicated to explain
than RSA. An excellent interactive Web tutorial on elliptic curves, which was
used as one of the sources for the following explanation, is published by
Certicom.15

Elliptic curve groups are additive groups; that is, their basic function is
addition: the sum of two points on an elliptic curve must also be a point on
the elliptic curve. The addition is defined geometrically. To illustrate how it
works, we will consider here elliptic curves over real numbers.

The negative of a point ()P x yP P= , is its reflection on the x-axis:
()− = −P x yP P, . To double a point P, that is, to add it to itself, one draws a

tangent line to the curve at point P. If y P ≠ 0, then the tangent line intersects
the elliptic curve at exactly one other point, ()−2P , which is reflected on the
x-axis to 2P (see Figure 2.3). It holds that ()P P O+ − = , the point at
infinity.

By the same principle one can compute 2P, 3P, etc. In general, to add
two distinct points P and ()Q P Q≠ − , one draws a line through them. The

Security Mechanisms 31

15. http://www.certicom.com/ecc

line intersects the elliptic curve at one point, -R, which is reflected on the
x-axis to the point R = P + Q.

Now the elliptic curve discrete logarithm problem can be defined: Given
points P and Q in the group, find a number k such that kP = Q. The
algorithms available for solving this problem need to be much longer than
the algorithms for solving the standard discrete logarithm problem (see
Section 2.3.2).

The slope s of the tangent line for an elliptic curve
F y x ax b= − + + +2 3 is computed as follows (∂ means derivation):

() () ()s F x F y x a y= − = +¶ ¶ ¶ ¶ 3 2/ / / / 2

For the point P = (1,1) from Figure 2.3 the slope s is

()s x yp P= − =3 3 2 02 /

It means that the tangent line at P is defined as y = 1. To find the coordinates
of Q = −2P one determines the point of intersection of the tangent line and
the elliptic curve. We already know that y Q = 1, so xQ can be computed
from the elliptic curve equation:

1 3 33= − +x xQ Q

32 Security Fundamentals for E-Commerce

P (1,1)=-2P (-2,1)=

2P (-2,-1)=

x
tangent line

-1 1 2 3 4 5

y

-10

-5

5

10

Figure 2.3 Elliptic curve y 2=x 3−3x+3.

()()x x x x xQ Q Q Q Q
3 2

3 2 0 2 1 2− + = = + − ⇒ = − (since x P already

equals 1)

In general, the coordinates of Q = 2P for an elliptic curve y x ax b2 3= + +
can be computed as follows:

() ()s x a yP P= +3 22 /

x s xQ P= −2 2

()y y s x xQ P P Q= − + −

For this type of elliptic curve it must hold that the discriminant of the cubic
x ax b3 + + is not zero, that is, 4 27 03 2a b+ ≠ . In other words, the cubic
must not have multiple roots [16].

Galois Fields

Elliptic curves over real numbers are not suitable for cryptographic purposes.
To define an elliptic curve cryptosystem, elliptic curves over finite fields are
used. In particular, the characteristic two finite fields are of special interest
since they lead to the most efficient implementations of elliptic curve arith-
metic. Such a finite field is the Galois Field (GF) of a polynomial, GF(2m).

GF is called finite because it has a finite number of elements (2m ele-
ments). GF(2m) can be defined by either polynomial representation or optimal
normal basis representation. Here the polynomial representation is preferred
for purposes of explanation. An element of GF(2m) is a polynomial of the
form

a x a x a x a x am
m

m
m

−
−

−
−+ + + + +1

1
2

2
2

2
1 0K , in which ai = 0 or 1

The coefficients of the polynomial ai are integers modulo 2 (i.e., they
are always reduced modulo 2). The elements of GF()2m can be expressed as
vectors of the form

()a a a a am m− −1 2 2 1 0, , , ,K

Security Mechanisms 33

To define GF()2m completely, one should reduce the polynomials as well.
For this purpose, an irreducible polynomial f (x) is needed, whose role is simi-
lar to that of a prime modulus in the standard discrete logarithm problem. Its
degree is m, and it must not be factorable into polynomials of degree less
than m, with coefficients 0 or 1. The leading coefficient must always equal 1:

x f x f x f x f x fm
m

m
m

m+ + + + + +−
−

−
−

1
1

2
2

2
2

1 0K , in which f i = 0 or 1

As an example, the elements of GF()2 4 are shown in Table 2.2.
Let the irreducible polynomial be ()f x x x= + +4 1. When two ele-

ments from GF()2 4 are added, the coefficients of the corresponding powers
are added modulo 2:

()()x x x x2 3 21+ + +

() () () ()= + + + = + +1 2 2 2 1 2 1 1 13 2 3mod mod mod modx x x x x

The same holds for subtraction. When two elements from GF()2 4 are
multiplied, the result of the multiplication must also be an element of GF

34 Security Fundamentals for E-Commerce

Table 2.2
Elements of GF()24

Polynomial Vector

0 0000

1 0001

x 0010

x + 1 0011

x 2 0100

x 2 1+ 0101

x x2 + 0110

... ...
x x x3 2+ + 1110

x x x3 2 1+ + + 1111

()2 4 , since it is a field (and therefore an algebraic group as well). However,
if the same elements as in the previous example are multiplied, the result will
be

()()x x x x2 3 21+ + +

() () () () ()= + + + +1 2 1 2 2 2 1 2 1 25 4 3 2mod mod mod mod modx x x x x

= + + +x x x x5 4 2

But this is not an element from GF()2 4 since its grade is higher than
m � 1. Now the irreducible polynomial is needed to reduce the grade of the
result:

() ()x x x x x x x5 4 2 4 41+ + + + + =mod

It works in the same way as for integers (2.2):

() ()x x x x x x x x5 4 2 4 41+ + + = + + +

For GF()2m the elliptic curves of a different general form are used (the con-
dition that there be no multiple roots is satisfied if b ≠ 0):

y xy x ax b2 3 2+ = + +

The principle of how to compute Q = 2P is the same as with elliptic curves
over real numbers. The slope of such an elliptic curve over GF(2m) can be
computed as follows:

() () () ()
()

s F x F y x ax y y x

x x ax y y

= − = − + − − − =

− + + − − −

¶ / ¶ / ¶ ¶/ /

/

3 2 2

2 2 2

2

2 2 ()x

Since all coefficients may be reduced modulo 2, it holds that

() () ()s x y x x y x x y x= − − − = − − + = −2 / / /

The negative sign may be ignored since (-1 mod 2) = (1 mod 2) = 1:

Security Mechanisms 35

s x y x= + /

The negative of a point ()x y, is the point ()x x y, + . The coordinates of the
point Q = 2P can be computed as follows:

s x y xP P P= + /

x s s aQ = + +2

()y x s xQ P Q= + + 1

Elliptic Curve Security

For the security of an elliptic curve cryptosystem it is of crucial importance
that the number of points on the curve (the order of the curve) have a
large prime factor if the cryptosystem used is an analog of Diffie-Hellman
(Section 3.1.2) or DSA (Section 2.3.3). There is a polynomial-time algo-
rithm by Schoof [17] for counting the number of points on an elliptic curve.

Additionally, the order of the point P used in the elliptic curve discrete
logarithm problem kP = Q must be a large prime number. P has the role of
the generator g in the finite-field Diffie-Hellman system (Section 3.1.1). The
order of P is defined similarly to that described in the section on DSA: If n is
the order of P, then n is the least element of the field (elliptic curve) such that
nP = O (the point at infinity). An elliptic curve with a point P whose order is
a 160-bit prime offers approximately the same level of security as DSA with a
1024-bit modulus p and RSA with a 1024-bit modulus n.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is being
adopted as both an ANSI X9.62 standard and an IEEE P1363 standard [18]16.
ISO has standardized a certificate-based digital signature mechanism based on
elliptic curves, and discrete logarithms in general [19]. Much more about ellip-
tic curves can be found in [16] and [20].

2.3 Digital Signature Mechanisms

The purpose of digital signature mechanisms is to make it possible to sign
digital documents. The digital signature cannot be a pure digital analogy to
the hand-written signature, for then it could easily be copied and attached to
any document. Also, signed documents could be changed after having been

36 Security Fundamentals for E-Commerce

16. http://www.certicom.com/ecc

digitally signed. As the RSA inventors realized, a digital signature must be
message-dependent as well as signer-dependent [12].

Public key cryptosystems in which the result of first decrypting (by
applying the private key) and then encrypting (by applying the public key)
the message is the message itself, that is,

()()E D M MPuK KPr =

can be used as digital signature mechanisms. Since only the owner of the
public key pair knows the private key, he is the only person that can produce
a valid signature. On the other hand, anyone can verify the signature, since
the public key is publicly available.

2.3.1 RSA Digital Signature

If RSA is used as a digital signature technique, generating a signature means
computing S as follows:

()() ()S D h M h M nd= = mod

in which h() is a cryptographic hash function as explained in Section 2.1.
The hash function output (hashsum) has a fixed length and is usually rather
short compared to the whole message. The process of generating a signature
is computationally expensive, so it is faster to decrypt the hashsum than the
original message.

To verify a signature it is necessary to receive M, S, and the signer�s
public key (e,n) as well as information about which hash function and which
signature algorithm were used to generate S. Then the verifier can compute
the message hashsum h(M) and compare it with the result of encrypting the
signature S:

Does ()[] ()[]E S S n h Me= =mod hold true?

If yes, the signature is valid;

If not, the signature is not valid.

Security Mechanisms 37

A signature is generated only once but usually verified more often. For
this reason it is helpful for the verification process to be fast, and with RSA
this can be achieved by choosing a small public exponent e. Like paper docu-
ments, digital documents should always bear a time stamp.

RSA (see Section 2.2.2.1) is the most frequently used digital signature
mechanism. However, for political reasons, some countries, such as the
United States, restrict the use of encryption. Until recently, it was not per-
mitted in the United States to use an algorithm for digital signatures that
could also be used for encryption. That is why the Digital Signature Algo-
rithm was originally developed.

2.3.2 Digital Signature Algorithm

DSA and RSA are the two algorithms for digital signature generation and
verification recommended by the Digital Signature Standard [21]. DSA
belongs to a family of signature algorithms [22], together with ElGamal�s sig-
nature algorithm and others, that are based on the discrete logarithm problem:
For known b, a, and p prime, compute x such that

b a px= mod

What looks very simple is a hard problem for large primes. DSA
requires the following public parameters:

• p large prime

• q large prime, ()q p q| ,− < <1 2 2159 160

• g, generator modulo p of order q,
i.e., ()g h p h pp q= > < < −−1 1 1 1/ mod

A signer�s key consists of two numbers:

• x randomly generated integer, 0 < <x q (private key);

• y g px= mod (public key).

With g, it is possible to generate a set of integers {a1, a2, … aq},
1<ai <p-1, ai ≠ aj if i ≠ j , in the following way:

a g p1
1 1= ≠mod

38 Security Fundamentals for E-Commerce

a g p2
2= mod

…

a g pq
q

−
−=1

1 mod

a g p h pq
q p= = =−mod mod1 1(see FLT in Section 2.2.2.1)

Each time the exponent is a multiple of q, the result will be equal to 1.
Therefore g is referred to as the generator of order q modulo p. Because g is
used to generate one of the private DSA keys, it must be able to generate a
large set of values; otherwise someone could easily guess the private key.
Consequently, p must be large as well.

Each time a signature is generated, an additional parameter k k q,0 < < ,
is randomly chosen. It must be kept secret. DSA and other similar digital
signature algorithms that use a random number for signature generation have
many opponents, since they can be used to pass information secretly to a
chosen verifier (i.e., to establish a subliminal channel between the signer and
the verifier). If the verifier knows the signer�s private key, the subliminal
channel can be established through the value of k [23]. For example, if a gov-
ernment digitally signs passports by such an algorithm, it can hide in the
signature information about the passport owner that is normally restricted
under data protection laws (e.g., criminal records).

The DSA signature of a message M is represented by a pair of numbers
()r s, computed in the following way:

()r g p qk= mod mod

()()[]s k h M xr q= +−1 mod

To verify the signature, the verifier computes

w s p= −1 mod

()u h M w q1 = mod

u rw q2 = mod

Security Mechanisms 39

()v g y p qu u= 1 2 mod mod

If v = r the signature is valid. From signature generation it is known that
()h M xr sk q+ = mod . Now it can be seen that v really must be equal to r:

() ()()v g y p q g g p qu u h M w q xrw q= =1 2 mod mod mod modmod mod

()() ()()()= =+ +g p q g p ph M w q xrw q w h M xr qmod mod modmod mod mod mod

() ()= = =
−

g p q g p q rs sk q k1 mod mod mod mod mod

2.3.3 Elliptic Curve Analog of DSA

ECDSA is being adopted as both an ANSI X9.62 standard and an IEEE
P1363 standard. ECDSA is based on the elliptic curve discrete logarithm
problem: Given points P and Q in the group, find a number k such that kP =
Q (see also Section 2.2.2.2).

ECDSA requires the following public parameters:

• q large prime, q > 2160 ;

• E elliptic curve over a finite field GF(2r) whose order is divisible
by q;

• P fixed point on E of order q.

P has the role of the generator g in DSA but does not have to be a gen-
erator of the group of points on E [16].

A signer�s key consists of two numbers, x and Q:

• x statistically unique and unpredictable generated integer, 0 < x < q
(private key);

• Q = xP (public key).

For each signature a unique and unpredictable integer k is chosen,
0 < <x q . k must be chosen in such a way that the integer obtained as the
binary representation of the x-coordinate of kP is not a multiple of q, that is

40 Security Fundamentals for E-Commerce

x P mod q ≠ 0. The ECDSA signature of a message M is represented by a pair
of integers ()r s, computed in the following way:

r x qP= mod

()()[]s k h M xr q= +−1 mod

If s = 0, the signature verification process has to be repeated by choos-
ing a new k. To verify the signature the verifier computes

w s q= −1 mod

()u h M w q1 = mod

u rw q2 = mod

()u P u Q x y1 2 0 0+ = ,

v x q= 0 mod

If v = r the signature is valid.

2.3.4 Public Key Management

Public key distribution centers are usually called certification authorities, since
their role is not only to make public keys broadly available but also to issue
certificates that bind a public key to the name of a particular principal. Public
key certificates are digitally signed by issuing of certification authority.
Implementing a public key infrastructure that provides generation and verifi-
cation of legally binding digital signatures is, both organizationally and tech-
nically, a very complex task. It is explained in Section 3.2.

2.4 Access Control Mechanisms

In order to access a protected resource in a system, a principal must first be
successfully authenticated (i.e., prove his identity). In many systems this is
not sufficient, however, because not all principals (or subjects) are granted
the same type of access to all resources (or objects). Consequently, each

Security Mechanisms 41

principal must be assigned implicit or explicit rights for accessing the object.
In other words, the principal (or subject) must be authorized to access the
object.

2.4.1 Identity-Based Access Control

Identity-based access control involves authorization criteria based on specific,
individualized attributes. It is sometimes referred to as discretionary access
control because authorization is performed at the discretion of the object
owner. It is usually expressed in the form of an access control matrix.

The rows of the access control matrix represent subjects (users,
processes), and the columns represent objects (files, programs, devices). The
intersection of a row and a column contains the type of access right (e.g.,
read, write, delete, copy) of the subject to the corresponding object. In prac-
tice, the access matrix is implemented in one of the following two ways (see
Figure 2.4):

• The row-wise implementation is referred to as a capability list, where
for each subject there is a list of objects and the subject�s access rights
to each object.

• The column-wise implementation is referred to as an access control
list, where for each object there is a list of subjects that have access to
it and their access rights.

42 Security Fundamentals for E-Commerce

Subject
Object

…

…

Type of
access right

Access control list

Capability list Subject A

Object A

Figure 2.4 Access control matrix.

2.4.2 Rule-Based Access Control

In an information system with many security levels, it is not possible to
enforce security with only an identity-based access control policy. Discre-
tionary controls regulate the accessing of objects, but do not control what
subjects might do with the information contained therein [24]. For this pur-
pose rule-based access control policies can be used. These are based on a small
number of general attributes or sensitivity classes that are universally
enforced. Thus, all objects of the protected system must be marked with secu-
rity labels. This type of access control is sometimes referred to as mandatory
access control or information flow control [24].

One of the oldest rule-based access control models, the Bell-La Padula
model [25], comes from the military world and is too restrictive for most
commercial applications. There are other models that concentrate on integ-
rity rather than confidentiality, such as the Chinese Wall model [26] or the
Clark and Wilson model [27], and are more suitable for nonmilitary applica-
tions. As of this writing, rule-based access control is not widely deployed in
practice.

2.5 Authentication Exchange Mechanisms

As shown in previous sections, symmetric or public key cryptosystems can be
used to realize authentication mechanisms. This section explains an addi-
tional authentication technique, zero-knowledge protocols. A more complex
authentication and key distribution system (Kerberos) will be explained in
Part 2.

Security Mechanisms 43

Figure 2.5 Zero-knowledge protocol with magic door.

2.5.1 Zero-Knowledge Protocols

As their name implies, zero-knowledge protocols allow a principal to prove
knowledge of a secret without revealing anything about the secret.

A noncryptographic example will explain how it works. (The example
is based on a description given in [28].) Suppose there is a building contain-
ing a passageway blocked by a magic door. Person A wants to prove to person
B that she knows the secret that opens the magic door, but without actually
telling B the secret (see Figure 2.5). They repeat the following protocol n
times:

Step 1: B waits in front of the entrance to the building while A enters
the building and goes to the right or the left (A�s random choice).

Step 2: B enters the building and calls to A to come out from the left
side or from the right side (B�s random choice).

Step 3: If A comes out from whichever side B requested, the protocol
run is considered successful. Otherwise it fails.

If all n protocol runs have been successful, the probability that A really
knows the secret is p n= −1 0 5. .

2.5.2 Guillou-Quisquater

In 1988 Guillou and Quisquater developed a zero-knowledge protocol that
can be used for authenticating smart cards [29]. Since smart cards have very
limited processing power and memory, it is important to minimize the
number of protocol runs required to give reasonable security that a card is
authentic. In fact, Guillou-Quisquater�s zero-knowledge protocol requires
only one run and minimizes storage requirements. Zero-knowledge proto-
cols are often referred to as challenge-response protocols: the verifier (e.g.,
bank terminal or automatic teller machine) sends a challenge to the card,
whereupon the card computes a response and sends it back to the verifier.

In the Guillou-Quisquater protocol, the smart card (SC) has the fol-
lowing parameters:

• J credentials (public);

• B private key.

The integer v and the modulus n (a composite number with secret fac-
tors generated by and known to an authentication authority only) are public

44 Security Fundamentals for E-Commerce

parameters. The public exponent v can be, for example, 217+1. B is chosen in
such a way that

JB nv ≡ 1mod

The verifier V knows J, v and n (they are all public). The protocol goes as
follows:

SC V→ : T r nv≡ mod witness

V SC→ : d random challenge

SC V→ : D rB nd≡ mod response

r is a random number, as well as ()d d v0 1< < − . Now V can compute T� :

T D J nv d' mod=

and verify whether the following congruence holds true:

T T n≡ 'mod

If the card is authentic, it must hold true because

()T D J n rB J n r B J nv d d v d v dv d' mod mod mod= = =

()= = =r JB n r n Tv v d vmod mod

since B is chosen in such a way that JB nv ≡ 1mod . If the protocol is success-
ful, the probability of the card�s being authentic is 1/v. This zero-knowledge
protocol was used as a base for a set of identity-based digital signature mecha-
nisms standardized by ISO [30].

2.6 Traffic Padding Mechanisms

Traffic padding mechanisms protect against traffic analysis. It is sometimes
possible for outsiders to draw conclusions based on the presence, absence,

Security Mechanisms 45

amount, or frequency of data exchange. Valuable information may also be
gleaned from a sudden change in the amount of data exchanged. Consider
the example of a company that wants to start selling its shares on the stock
market. It will most probably intensify communication with its bank during
the preparation phase shortly before going public. Someone interested in
buying up as many shares as possible may try watching the traffic between
the company and the bank to learn when the shares will be available.

Traffic padding mechanisms keep traffic approximately constant, so
that no one can gain information by observing it. Traffic padding can be
achieved by generating random data and sending it encrypted over the net-
work (see also Chapter 12).

2.7 Message Freshness

Message freshness is a mechanism that protects against replay attacks. One
simple replay attack goes as follows: Suppose A uses homebanking software
to send a digitally signed message to her bank with an order to transfer 1,000
euros to B�s account. B wants more, however, so he eavesdrops on A�s lines,
copies A�s banking order and sends it 10 more times to A�s bank. Instead of
1,000 euros he gets 11,000 euros, and A is surprised to see her account
emptied.

The protection against such attacks is to ensure that even messages with
identical contents are different in transfer. A has two possibilities: she can

• Generate a random number (nonce), add it to the original message,
and then sign it; or

• Add a time stamp (current date and time) to the original message,
and then sign it.

In the first case, A�s bank has to store A�s messages for some period of
time. Every time a message from A arrives, its nonce is compared to the pre-
viously stored nonces. If the nonce is not different from all the stored nonces,
the message is not considered fresh and the order is rejected. But because the
number of messages can grow very large, this solution has a scalability prob-
lem. Some homebanking programs use transaction numbers (TANs). Each
accountholder obtains a set of TANs and uses one TAN per transaction. The
TANs are stored in the bank database. As soon as a TAN is used, it can be
deleted from that database.

46 Security Fundamentals for E-Commerce

When time stamps are used, A�s computer clock and A�s bank�s com-
puter clock must be synchronized. It is possible to allow a small tolerance
interval, but that introduces additional insecurity because B can copy and
resend A�s order very quickly. Another possibility is to use both a nonce and a
time stamp, trading off scalability and security by limiting the number of
stored nonces, and allowing some tolerance interval for time stamps.

2.8 Random Numbers

Cryptographic applications demand much better random generators than do
other applications. Since it is very difficult to provide a real source of ran-
domness, the random generators in widespread use are in fact pseudorandom
sequence generators. Random generators are also subject to attack, so crypto-
graphically secure pseudorandom sequences must be unpredictable in such a
way that the sequences cannot be reliably reproduced (real random).

A simple randomness test is to try to compress a presumably random
sequence; if a significant compression rate can be achieved, the sequence is
not random enough. More on random generators can be found in [31].

References

[1] Schneier, B., and P. Mudge, �Cryptanalysis of Microsoft�s Point-to-Point Tunneling
Protocol (PPTP),� Proc. of the 5th ACM Conference on Communications and Computer
Security, San Francisco, CA, Nov. 2�5, 1998, pp. 132�141, http://www.counterpane
.com/pptp.html.

[2] Rivest, R.L., �The MD5 Message-Digest Algorithm,� The Internet Engineering Task
Force, RFC 1321, April 1992.

[3] The National Institute of Standards and Technology, �Secure Hash Standard,� FIPS
PUB 180-1, April 17, 1995.

[4] Bellare, M., R., Canetti, and H. Krawczyk, �Keying Hash Functions for Message
Authentication,� In Advances in Cryptology � Proc. CRYPTO �96, pp. 1�15, N. Koblitz
(ed.), LNCS 1109, Berlin: Springer-Verlag, 1996.

[5] Krawczyk, H., M. Bellare, and R. Canetti, �HMAC: Keyed-Hashing for Message
Authentication,� The Internet Engineering Task Force, RFC 2104, Feb. 1997.

[6] Schneier, B., Applied Cryptography, 2nd edition, New York, NY: John Wiley & Sons,
Inc., 1996.

[7] The American National Standards Institute, American National Standard for Data
Encryption Algorithm (DEA), ANSI X3.92, 1981.

Security Mechanisms 47

[8] International Organization for Standardization, Banking � Approved algorithms for
message authentication � Part 1: DEA, ISO 8731-1, 1987.

[9] Stallings, W., Network and Internetwork Security, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1995.

[10] RSA Data Security, �RSA Code-Breaking Contest Again Won by Distributed.Net and
Electronic Frontier Foundation (EFF),� http://www.rsa.com/pressbox/html
/990119-1.html.

[11] Diffie, W., M. E. Hellman, �New Directions in Cryptography,� IEEE Trans. on Infor-
mation Theory, Vol. IT-22, No. 6, 1976, pp. 644�654.

[12] Rivest, R. L., A. Shamir, and L. Adleman, �A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems,� Communications of the ACM, Vol. 21, No. 2,
1978, pp. 120�126.

[13] Centrum voor Wiskunde en Informatica, �Security of E-commerce threatened by
512-bit number factorization,� Press release, Amsterdam, Aug. 26, 1999,
http://www.cwi.nl/~kik/persb-UK.html.

[14] Silverman, R. D., �An Analysis of Shamir�s Factoring Device,� RSA Laboratories Bul-
letin, May 3, 1999, http://www.rsasecurity.com/rsalabs/bulletins/twinkle.html.

[15] Robshaw, M. J. B., and L. Y. Yiqun, �Elliptic Curve Cryptosystems, RSA Laboratories
Technical Note, � June 1997, http://www.rsa.com/rsalabs/ecc/html/elliptic_curve
.html

[16] Koblitz, N., A Course in Number Theory and Cryptography, Berlin: Springer-Verlag,
1994.

[17] Schoof, R., �Elliptic curves over finite fields and the computation of square roots mod
p,� Mathematics of Computation, Vol. 44, 1985, pp. 483�494.

[18] The Institute of Electrical and Electronics Engineers, Inc., �IEEE P1363: Standard
Specifications for Public Key Cryptography,� Draft Version 4, 1999.

[19] International Organization for Standardization, Information technology � Security tech-
niques � Digital signatures with appendix � Certificate-based mechanisms, ISO/IEC
14888-3, 1998.

[20] Menezes, A., Elliptic Curve Public Key Cryptosystems, Dordrecht: Kluwer Academic
Publishers, 1993.

[21] The National Institute of Standards and Technology, �Digital Signature Standard,�
FIPS PUB 186-1, Dec. 15, 1998.

[22] Horster, P., H. Petersen, and M. Michels, �Meta-ElGamal Signature Schemes,� Proc.
2nd Annual ACM Conference on Computer and Communications Security, Fairfax, VA,
Nov. 2�4, 1994, pp. 96�107.

48 Security Fundamentals for E-Commerce

[23] Simmons, G. J. (ed.), Contemporary Cryptology: The Science of Information Integrity,
Piscataway, NJ: IEEE Press, 1992.

[24] Denning, D. E., Cryptography and Data Security, Reading, MA: Addison-Wesley,
1982.

[25] Bell, D. E., and L. J. La Padula, �Secure Computer Systems: Unified Exposition and
Multics Interpretation,� MTR-2997, Mitre Corporation, Bedford, MA, 1975.

[26] Brewer, D. F. C., and M. J. Nash, �The Chinese Wall Security Policy,� Proc. IEEE
Symposium on Security and Privacy, Oakland, CA, May 1989, pp. 206�214.

[27] Clark, D. D., and D. R. Wilson, �A Comparison of Commercial and Military Com-
puter Security Policies,� Proc. 1987 Symposium on Research in Security and Privacy,
April 1987, pp. 184�194.

[28] Quisquater, J. J., et al., �How to Explain Zero-Knowledge Protocols to Your Chil-
dren,� In Advances in Cryptology � Proc. CRYPTO 89, pp. 628�631, G. Brassard (ed.),
LNCS 435, Berlin: Springer-Verlag, 1990.

[29] Guillou, L. C., and J. J. Quisquater, �A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory,� In Advances in
Cryptology � Proc. EUROCRYPT 88, pp. 123�128, C.G. Günther (ed.), LNCS 330,
Berlin: Springer-Verlag, 1988.

[30] International Organization for Standardization, Information technology � Security tech-
niques � Digital signatures with appendix � Identity-based mechanisms, ISO/IEC DIS
14888-2, 1999.

[31] Eastlake, D., S. Crocker, and J. Schiller, �Randomness Recommendations for Secu-
rity,� The Internet Engineering Task Force, RFC 1750, Dec. 1994.

Security Mechanisms 49

	2 Security Mechanisms 11
	2.1 Data Integrity Mechanisms 11
	2.2 Encryption Mechanisms 15
	2.3 Digital Signature Mechanisms 36
	2.4 Access Control Mechanisms 41
	2.5 Authentication Exchange Mechanisms 43
	2.6 Traffic Padding Mechanisms 45
	2.7 Message Freshness 46
	2.8 Random Numbers 47

