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Mathematical Simulation
of Particle-Laden Gas Flows

2.1 Preliminary Remarks

In studying the processes of motion of disperse impurity in the form of solid
particles and its inverse effect on the characteristics of turbulence of the car-
rier continuum, an important part is played by methods of mathematical
simulation. Numerous modes of flow of gas suspension, an attempt at clas-
sifying which is described in Sect. 1.5, served a basis for the development of
a large number of mathematical models of such flows. In constructing mod-
els of heterogeneous flows of the most diverse classes, investigators always
face an alternative. On the one hand, it is necessary to take into account as
many as possible physical processes occurring in heterogeneous flows, which
often brings about an undue complication of mathematical formalization of
the phenomena being treated. On the other hand, the detailing of a large
number of processes the information about each one of these processes is
not always indisputable may result in a lower reliability of the model being
developed.

It is the objective of this chapter to describe the presently available meth-
ods of mathematical simulation of heterogeneous flows. The models of hetero-
geneous flows of the main types and the characteristic features of simulation
of turbulent particle-laden flows of different classes are treated in Sect. 2.2.
Section 2.3 is devoted to the description of the possibilities of studying the
behavior of solid particles in a turbulent gas flow using two different app-
roaches, namely, stochastic Lagrangian approach and Eulerian continuum
approach. The characteristic features of mathematical simulation of gas flow
in view of the inverse effect of particles on the flow characteristics are treated
in Sect. 2.4.
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2.2 Special Features of Simulation
of Heterogeneous Flows of Different Types

The wide range of presently existing mathematical models of heterogeneous
flows may be divided into two major classes (types). The models of the first
class describe the motion of the carrier gas phase and the motion of a plural-
ity of suspended particles and are based on the Eulerian continuum approach.
The models of the other type are those based on the Eulerian–Lagrangian
description of motion of heterogeneous medium, namely, the equations of mo-
tion of the gas phase are solved in the Eulerian formulation, while the motion
of particles is described by Lagrangian equations which are integrated along
their trajectories.

It is clear that attempts at making an adequate description of the entire
diversity of heterogeneous flows using models of both types mentioned earlier
are hardly justified. Therefore, for certain classes of flows (see Sect. 1.5), which
are first of all characterized by the concentration of disperse impurity and its
inertia (Stokes number), models of one or the other type must be preferred.

We will consider briefly the advantages and limitations of the Eulerian
(two-fluid) and Eulerian–Lagrangian models of description of gas–solid flows
[28,52,58].

The advantage of two-fluid models is the use of like equations for the
description of the gas and dispersed phases. This enables one to utilize the rich
experience of simulation of single-phase turbulent flows and apply the same
numerical methods of solving the entire set of equations. The disadvantages of
such models include some “loss” of information about the motion of individual
particles, as well as the difficulties in the formulation of boundary conditions
for the dispersed phase on surfaces which bound the flow.

We will now turn to the Eulerian–Lagrangian models. The advantage of
these models consists in the possibility of obtaining detailed statistical infor-
mation about the motion of individual particles as a result of integration of
equations of motion (heat transfer) of particles in a known (pre-calculated)
velocity (temperature) field of carrier gas. However, as the concentration of
the dispersed phase increases, difficulties arise which are associated with the
use of the Eulerian–Lagrangian models. Two aspects may be identified in this
respect. First, the concentration increase leads to the inverse effect of parti-
cles on the carrier gas parameters, and the calculations need to be performed
in several iterations; as a result, the computation procedure is complicated.
Second, the concentration increase causes a rise of the probability of particle
collisions with one another, which brings about entanglement of their trajec-
tories. As the particle size decreases, the use of trajectory methods for the
calculation of particle motion is also complicated. This is associated with the
fact that it is necessary to take into account the interaction between the parti-
cles and turbulent eddies of ever smaller dimensions in order to obtain correct
information about the averaged characteristics of the dispersed phase. The
latter fact further complicates the computations.
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Flows of two extreme classes exist (see Sect. 1.5), namely, flows with par-
ticles of extremely low inertia (the case of equilibrium flow) and flows with
an extremely low concentration of the dispersed phase (the mode with single
particles, in which their presence has no effect on the carrier gas flow). Simpli-
fied mathematical models may be employed for flows of these classes, namely,
a one-velocity one-temperature diffusion model (Eulerian approach) for low-
inertia particles and a single-particle approximation (Lagrangian approach)
for a low-concentration flow.

In the case of increasing concentration and inertia of particles, it is not
a simple problem to choose between two types of models of heterogeneous
flows. Therefore, the types of heterogeneous flows which are most complex
from the standpoint of mathematical simulation are flows of “intermediate”
classes. According to the classification given earlier (see Sect. 1.5), such flows
are nonequilibrium flows and flows with large particles at moderate values of
volume concentration of the dispersed phase, when the presence of particles
affects all (without exception) characteristics of carrier gas.

Treating the hydrodynamics of flows of a special class such as the flow
past a stationary “frozen” particle (see Sect. 1.5), a peculiar analog of which
is the flow of a single-phase liquid (gas) past tube bundles, falls outside of the
scope of this monograph.

When one tries to use two-fluid models, the question arises first of all
whether it is possible to use the methods of continuum dynamics to describe
the motion of a plurality of particles [39]. A continual description for an
ensemble of particles is possible in the case where a geometric scale may
be indicated which, on the one hand, is negligible compared to the scale of
variation of the flow parameters and, on the other hand, is large enough to
contain a significant number of particles which permits a correct determina-
tion of their averaged parameters [10]. We will make the simplest estimates
which enable one to determine such a geometric scale for a heterogeneous flow
with particles of diameter dp and volume concentration Φ. For this purpose,
we will treat an element of flow in the form of a cube with edge a, which con-
tains Np particles. The expression for the volume concentration of particles
will be written as:

Φ =
πd3

pNp

6a3
. (2.1)

We use (2.1) to find the formula for the ratio of the cube edge to the
particle diameter,

a

dp
= 3

√
πNp

6Φ
. (2.2)

The dependence of the relative dimension of the edge of a cube containing
Np particles on the value of the volume concentration of the dispersed phase,
obtained by relation (2.2), is given in Fig. 2.1. The calculations were performed
for two values of the number of particles in the flow volume of interest to us,



30 2 Mathematical Simulation of Particle-Laden Gas Flows

10–6
0

100

200

300

400

1
2

F

a/
d p

10–210–4

Fig. 2.1. The relative dimension of the edge of a cube as a function of the value of
the volume concentration of particles: (1) Np = 10, (2) Np = 100

Np = 10 and 100. Obviously, the relative fluctuation of distributed density
of the dispersed phase in the volume being treated increases with decreasing
number of particles and reaches several percent at Np = 100. If the foregoing
error in determining the particle density is inadequate, a plurality of particles
cannot be regarded as a continuum on scales comparable to a or lower. In this
case, the motion of particles cannot be described by the methods of continuum
dynamics.

The data given in Fig. 2.1 indicate that the scale a increases with decreas-
ing volume concentration of particles and with increasing particle size. For
example, for particles 50 µm in diameter (Φ = 10−3), the scale is a ≈ 1.9mm,
and for particles 100 µm in diameter (Φ = 10−4) − a ≈ 8mm.

Therefore, the general tendency is as follows: as the concentration of par-
ticles increases and their inertia decreases, the Eulerian continuum approach
turns out to be preferable for use in describing the dynamics of disperse
impurity.

2.3 Description of Motion of Solid Particles
Suspended in Turbulent Flow

The motion of particles suspended in a turbulent gas flow may be calculated
both within the frame of stochastic Lagrangian approach and using Eulerian
continuum approach.

2.3.1 Lagrangian Approach

The study of regularities of the behavior of particles in the known velocity
field of the carrier phase is of interest per se when calculating weakly dusty
flows without the inverse effect of the dispersed phase on the characteristics
of gas and may also be an integral part of the process of construction of
complex mathematical models for the description of heterogeneous flows of
most diverse classes.
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The Lagrangian equation of instantaneous motion of a single solid particle
in a turbulent gas flow has the form:

ρp

πd3
p

6
dvi

dτ
=
∑

i

fi(rp, τ), (2.3)

where fi(rp, τ) denotes the external forces acting on the particle, and rp is
the particle coordinate.

The main force factors affecting the motion of the dispersed phase will be
treated later.

Aerodynamic Drag Force

This force arises due to the difference between the velocity of gas and the veloc-
ity of a particle moving in this gas (see Fig. 2.2). The effect of the aerodynamic
drag force causes the particle acceleration if U > V and, on the contrary, the
deceleration in the case of U < V . The expression for aerodynamic force has
the form:

−→
F A = CDρ

πd2
p

4
|−→U −−→

V |(−→U −−→
V )

2
, (2.4)

where the particle drag coefficient in the case of incompressible flow is a
function of the Reynolds number, i.e., CD = CD(Rep). The graph of this
dependence is often referred to as standard drag curve. Numerous formu-
las are available in the literature, which approximate this curve for different
ranges of the Reynolds number [39,46]. For low values of the Reynolds number
(Rep < 1), the well-known Stokes formula is valid,

CD =
24

Rep
, Rep =

|−→U −−→
V |dp

ν
. (2.5)

The equation of averaged motion of a Stokesian particle has the form

dVi

dτ
=

Ui − Vi

τp0
(2.6)

U
V
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Fig. 2.2. A scheme of particle motion under the effect of the aerodynamic drag
force
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where τp0 is the time of dynamic relaxation of the Stokesian particle (see
Sect. 1.4).

As the Reynolds number increases (Rep ≥ 1), the value of the particle
drag coefficient deviates from the Stokes law toward higher values, while the
particle relaxation time, on the contrary, decreases. For taking this fact into
account, the correction function C = C(Rep) is introduced. The values of this
function are given in Sect. 1.4. Expression (2.6) takes the following form for a
non-Stokesian particle:

dVi

dτ
=

Ui − Vi

τp
, (2.7)

where τp = τp0/C.
Equation (2.7) of averaged motion of a non-Stokesian particle is very

approximate, because it does not include the effect of turbulent fluctuations
of the carrier phase.

Note that the standard curve describes the drag of single smooth spherical
particles during their uniform motion in a laminar flow of liquid (gas). The
problems associated with the inclusion of the effect made on the drag of the
dispersed phase by the asphericity of particles, by the state of their surface, by
the degree of flow turbulence, by the concentration and geometric constraint
of motion, and by other factors, were treated in [39,46].

Gravity Force

Along with the aerodynamic drag force, this force is one of the most important
force factors defining the dynamics of particles. The expression for gravity
force has the form:

−→
F g = ρp

πd3
p

6
−→g . (2.8)

The effect of gravity force on particle motion will be significant, and its
inclusion is necessary in the case where the free-fall velocity of particles and
the velocity of flow in which they are suspended are quantities of the same
order of magnitude.

Saffman Force

This force arises because of the nonuniformity of the profile of averaged velo-
city of carrier gas. The difference between the relative velocities of flow past
a particle on different sides results in the emergence of a pressure difference.
The particle will move toward lower pressure (see Fig. 2.3). The value of the
Saffman force acting on a particle during its motion in a laminar flow with a
linear velocity profile is determined as follows [38]:

FS = kSν1/2ρd2
p(Ux − Vx)

(
dUx

dr

)1/2

. (2.9)
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Fig. 2.3. A scheme of transverse migration of a particle in a nonuniform flow under
the effect of the Saffman force
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Fig. 2.4. A scheme of migration of a rotating particle under the effect of the Magnus
force

In the case of Ux/(ν dUx/dr)1/2 � 1, the value of the coefficient in (2.9)
is kS = 1.61.

The Saffman force may have a significant effect on the particle motion in
the wall region where high gradients of averaged velocity of carrier gas are
observed.

Magnus Force

Its emergence is due to the particle rotation. During their motion in a gas
flow, particles of complex shape (aspherical) always rotate. As to spherical
particles, they will also rotate in a flow with a nonuniform velocity profile.
A rotating particle entrains the gas. As a result, the pressure on the side
where the directions of flow past the particle and rotation of gas elements
coincide becomes lower compared to the region in which these directions
are opposite. Therefore, the particle will move toward lower pressure (see
Fig. 2.4). The magnitude of the force acting on a particle during its rotation
in a laminar flow with a uniform velocity profile at Rep = |−→W |dp/ν � 1 and
Reω = |−→ω p|d2

p/ν � 1 is defined by the following expression [37]:

−→
F M = kMρ

(
dp

2

)3

(
−→
W ×−→ω p). (2.10)

Here, ωp is the rotational velocity of the particle. For the foregoing values
of the Reynolds number, the coefficient in (2.10) is kM = π. For the other
limiting case of high values of the Reynolds number (Rep → ∞, Reω → ∞),
this coefficient becomes kM = 8π/3 [34].
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For the range of moderate values of the Reynolds number, the following
expression may be recommended for the calculation of the coefficient [55]:

kM = 0.534Re−0.64
ω Re0.715

p . (2.11)

The use of relation (2.11) enables one to describe the majority of available
calculation and experimental data in the Reynolds number range of 590 <
Reω < 45, 000 and 360 < Rep < 13, 500.

Shraiber et al. [39] analyzed the effect of the Magnus force on the par-
ticle motion. They showed the Magnus force to be almost always less than
the Saffman force. Nevertheless, it is wrong to ignore the transverse shift of
particles due to the effect of the Magnus force in high-velocity flows in which
high gradients of gas velocity are realized and, consequently, high rotational
velocities of particles.

Turbophoresis Force

This force arises because of the nonuniformity of the profile of fluctuation velo-
city of carrier gas. The gradient of the profile of the transverse component of
fluctuation velocity of gas (see Sect. 1.3) leads to a directional shift of a particle
toward decreasing intensity of fluctuations (see Fig. 2.5). The expression for
the turbophoresis force acting on a particle has the form [31]

FTu = −1
2
ρp

πd3
p

6
∂u′2

r

∂r
. (2.12)

This force may bring about a significant transverse displacement of a
particle during its motion in the wall region.

Thermophoresis Force

This force arises as a result of the nonuniformity of the temperature profile of
carrier gas. The gas molecules make a more intense force effect on a particle
on its higher-temperature side. Therefore, the particle tends to move from

FTu FTu

ur
′ 2ur

′ 2

Fig. 2.5. A scheme of displacement of a particle in a nonuniform field of fluctuation
velocity of gas under the effect of the turbophoresis force
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Fig. 2.6. A scheme of motion of a particle in a nonuniform temperature field under
the effect of the thermophoresis force

the more heated to less heated regions (see Fig. 2.6). The expression for the
thermophoresis force acting on a particle of low thermal conductivity has the
form [19]:

FT = − 4.5ρν2dpλ

T (2λ + λp)
∂T

∂r
. (2.13)

More theoretical formulas have been suggested for determining the value of
thermophoretic force. The most complete inventory of the available relations
is found in [31,43].

Note a very important point. One must know the instantaneous values
of forces in order to calculate the actual velocity of particles in accordance
with (2.3). The foregoing formulas make it possible to determine only some
averaged values of the force factors acting on the particles, because they fully
ignore the turbulent fluctuations of gas velocity (temperature). The question
of the effect of turbulence of the dispersed phase on magnitude of the forces
remains open.

Shraiber et al. [39] and Gavin and Shraiber [22] tried to determine the
fluctuation values of forces by applying the Reynolds procedure and using the
thus derived expressions to construct equations of fluctuation motion and heat
transfer of particles. However, the expressions obtained for the averaged and
fluctuation values of forces are, in my opinion, too cumbersome and cannot
be recommended for use.

Lagrangian Equations of Fluctuation Motion
and Heat Transfer for Particles

For the case where the main effect on the particle motion is made by the
aerodynamic drag and gravity forces, the Lagrangian equations of motion
and heat transfer have the form

dvi

dτ
=

ui − vi

τp
± g, (2.14)

dtp
dτ

=
t − tp

τt
. (2.15)
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We will derive equations of fluctuation motion and heat transfer for inertial
particles. The difficulties associated with the construction of such equations
for the case of nonlinear law of aerodynamic drag were treated in detail by
Shraiber et al. [39]. The developed approach to the derivation of fluctuation
equations for the dispersed phase is based on the application of the Reynolds
procedure to actual Lagrangian equations for particles. The results given later
were borrowed from [48, 51], where the method described earlier was used to
derive and analyze the approximate one-dimensional equations for fluctuations
of velocity and temperature of the dispersed phase during the realization of
heterogeneous flows of different classes.

We will make the following assumptions for analysis (1) the case of weakly
dusty flows is treated, where the particles have little effect on one another;
(2) the particles have a spherical shape; (3) the particle motion is defined
by the effect of only two force factors, namely, the aerodynamic drag and
gravity forces; (4) the fluctuations of the physical properties of carrier gas
are ignored; (5) assumption is made of the additivity of the averaged and
fluctuation dynamic slip between the phases in determining the instantaneous
value of the particle drag coefficient; (6) the heat transfer between the particles
and the carrier phase is defined by the convection component alone; and (7)
the temperature gradient within a particle is negligible.

We will rewrite the equations of one-dimensional motion and heat transfer
of a particle (2.14) and (2.15) in instantaneous (actual) variables as:

dvx

dτ
=

ux − vx

τp
± g, (2.16)

dtp
dτ

=
t − tp

τt
, (2.17)

where

τp =
τp0

C
=

ρpd2
p

18µC
, C = 1 +

1
6
R̃e

2/3

p ,

R̃ep =
|ux − vx|dp

ν
, τt =

τt0

C1
=

Cpρpd2
p

12λC1
,

C1 = 1 + 0.3 R̃e
1/2

p Pr1/3, R̃ep ≤ 103.

We will represent the actual velocities and temperatures of the particle
and carrier gas in the form of sums of respective averaged and fluctuation
components,

vx = Vx + v′
x, (2.18)

ux = Ux + u′
x, (2.19)

tp = Tp + t′p, (2.20)
t = T + t′. (2.21)
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We will treat the instantaneous Reynolds number of the particle similarly,

R̃ep = Rep + Re′p, (2.22)

where Rep = |Ux−Vx|dp
ν and Re′p = |u′

x−v′
x|dp

ν .
We will substitute (2.18)–(2.22) into (2.16) and (2.17) and perform the

averaging procedure on the resultant equations. The equations of averaged
motion and heat transfer of the dispersed phase will take the form:

dVx

dτ
=

Ux − Vx

τp0
+

1
6τp0

[
(Ux − Vx)(Rep + Re′p)2/3

+(u′
x − v′

x)(Rep + Re′p)2/3
]
± g, (2.23)

dTp

dτ
=

T − Tp

τt0
+

0.3Pr1/3

τt0

[
(T − Tp)(Rep + Re′p)1/2

+(t′ − t′p)(Rep + Re′p)1/2
]
. (2.24)

We will subtract (2.23) and (2.24) term-by-term from (2.16) and (2.17),
respectively, in view of the substitution of (2.18)–(2.22) into the latter equa-
tions, to derive equations of fluctuation motion and fluctuation heat transfer
for particles,

dv′
x

dτ
=

u′
x − v′

x

τp0
+

Ux − Vx

6τp0

[
(Rep + Re′p)2/3 − (Rep + Re′p)2/3

]

+
1

6τp0

[
(u′

x − v′
x)(Rep + Re′p)2/3 − (u′

x − v′
x)(Rep + Re′p)2/3

]
,

(2.25)

dt′p
dτ

=
t′ − t′p

τt0
+

0.3Pr1/3

τt0

{
(T − Tp)

[
(Rep + Re′p)1/2 − (Rep + Re′p)1/2

]

+
[
(t′ − t′p)(Rep + Re′p)1/2 − (t′ − t′p)(Rep + Re′p)1/2

]}
. (2.26)

It is difficult to use the resultant equations of fluctuation motion and heat
transfer for particles (2.25) and (2.26), as well as the respective averaged
equations (2.23) and (2.24), for calculations by virtue of indeterminacy of
the correlation terms. In [48, 51], (2.25) and (2.26) for particle-laden flows of
different classes were analyzed (see Sect. 1.5). The results obtained in [48,51]
will be given later.

Quasiequilibrium flow. We will treat two possible versions of realization of
quasiequilibrium flow. The first version involves a flow with a low fluctuation
slip of particles (Re′p < 1). In this case, the drag of particles obeys the Stokes
law. The second version involves a flow with a relatively high slip of the
dispersed phase in fluctuation motion (1 ≤ Re′p < 1,000). For this case, the
correction to the Stokes law of resistance must be taken into account.
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In view of the fact that, in the case of quasiequilibrium flow, the averaged
dynamic and thermal slip is zero (Rep = 0, T − Tp = 0), (2.25) and (2.26)
may yield, for the case of Stokesian particles [48,51],

dv′
x

dτ
=

u′
x − v′

x

τp0
, (2.27)

dt′p
dτ

=
t′ − t′p

τt0
. (2.28)

Approximate equations of fluctuation motion and heat transfer for parti-
cles for the case where the fluctuation slip is significant have the form [48,51]

dv′
x

dτ
=

u′
x − v′

x

τp0

(
1 +

1
6

Re′ 2/3
p

)
, (2.29)

dt′p
dτ

=
t′ − t′p

τt0

(
1 + 0.3Re′ 2/3

p Pr1/3
)

. (2.30)

Nonequilibrium flow. In this case, it does not appear possible to ignore the
interphase slip in averaged or fluctuation motion, because the values of slip
in these motions often turn out to be of the same order of magnitude, i.e.,
O(Re′p/Rep) = 1.

In view of assumptions made in [48, 51] and in order to simplify analysis
of the correlation terms, the approximate equations of fluctuation motion and
heat transfer (2.25) and (2.26) for nonequilibrium flow take the form:

dv′
x

dτ
=

u′
x − v′

x

τp0

[
1 +

1
6

(Rep + Re′p)2/3

]
, (2.31)

dt′p
dτ

=
t′ − t′p

τt0

[
1 + 0.3 (Rep + Re′p)1/2Pr1/3

]
. (2.32)

It follows from (2.31) and (2.32) that the averaged slip causes an increase
in the fluctuation velocity and temperature of particles.

Flow with large particles. Under conditions of this flow, the averaged slip
between the phases is far beyond the fluctuation slip, i.e., Re′p/Rep → 0. In
this case, the inertia of particles is so high that they hardly take part either
in fluctuation motion (v′

x = 0) or in fluctuation heat transfer (t′p = 0). The
following trivial notation of (2.25) and (2.26) was obtained in [48, 51], using
some assumptions, for flows of this class:

dv′
x

dτ
= 0, (2.33)

dt′p
dτ

= 0. (2.34)

The foregoing approximate equations of fluctuation motion and fluctu-
ation heat transfer for particles are of interest per se and may be used to
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determine the fluctuation velocity and temperature of particles. For this pur-
pose, the resultant equations are integrated with respect to time. This time
is the minimal of three times [49, 54, 56], namely, (1) the time of dynamic
(thermal) relaxation of particles, (2) the time of interaction between particles
and energy-carrying turbulent eddies of carrier gas, and (3) the lifetime of
turbulent eddy.

At first glance it would seem that the obtained relations may also be
employed to construct equations for correlations associated with the dispersed
phase. Such correlations are present in equations which describe the carrier
gas motion (see Sect. 2.4). It is necessary to calculate these correlations for
assessing the inverse effect of particles on the parameters of gas flow. How-
ever, equations of motion of the carrier medium are written using the Eulerian
continuum approach. Consequently, the correlations appearing in these equa-
tions must also be derived using Euler’s method [39]. As to the method of
constructing equations of fluctuation motion and heat transfer for particles,
which is described earlier, it is purely Lagrangian; therefore, the resultant
equations cannot be used to study the inverse effect of particles within the
Eulerian approach.

The possibilities of using the Lagrangian trajectory method for studying
the behavior of particles in turbulent gas flows may be well illustrated by
studies [40–42].

2.3.2 Eulerian Continuum Approach

We will now consider the presently existing approaches to the construction
of continuum equations of particle motion and analyze the singularities of
the description of behavior of the dispersed phase for heterogeneous flows of
different classes.

Equations describing the averaged motion and heat transfer of particles are
written by analogy with the equations for gas (1.6)–(1.8). The set of equations
for the dispersed phase also turns out to be nonclosed, because the equations
contain second moments for the fluctuations of velocity v′

iv
′
j , as well as of

velocity and temperature v′
jt

′
p of particles, similar to Reynolds stresses and

turbulent heat flux in gas. Based on the experience of studying single-phase
flows, various models are used for closing the set of averaged equations of
motion and heat transfer for particles. The best known are the algebraic and
differential models.

Two basic approaches exist to determining the correlations of velocity of
the dispersed phase within the algebraic models. According to the first ap-
proach, the correlation moments are expressed directly in terms of Reynolds
stresses of the carrier flow [23,26],

v′
iv

′
j = Au′

iu
′
j , (2.35)

where A is the function of involvement of particles in the fluctuation motion
of gas.
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Expression (2.35) is valid for relatively small particles (quasiequilibrium
flow) under conditions of uniform distribution of the averaged velocity of the
dispersed phase in the flow.

The second method of determining turbulent stresses in the dispersed
phase is by using gradient relations of the Boussinesq type for single-phase
flow [11],

v′
iv

′
j = −νp

(
∂Vi

∂xj

)
, (2.36)

or in the form [32,52]

v′
iv

′
j = −νp

(
∂Vi

∂xj
+

∂Vj

∂xi
− 2

3
∂Vk

∂xk
δij

)
+

2
3
kpδij , (2.37)

where νp is the coefficient of turbulent viscosity of the dispersed phase. Various
methods of determining νp are described in the literature [32,52].

Along with the algebraic models, the differential models are extensively
employed at present to describe the turbulent momentum and heat transfer in
the dispersed phase. These models are based on the use of equations of energy
balance of fluctuations of the dispersed phase or of the second moments of
fluctuations of particle velocity and temperature.

A consistent method of constructing Euler’s equations of motion and heat
transfer for the dispersed phase in a turbulent flow is the method based on
the use of a kinetic equation for the probability density function (PDF) of
particle velocity and temperature [12, 13, 35, 57]. According to this approach,
the probability density of particle distribution by coordinates −→x , velocities−→v , and temperatures tp is introduced for making a transition from stochastic
equations of the Langevin type (such as equations of instantaneous motion
and heat transfer for a single particle) to a kinetic equation for a plurality of
particles,

P (−→x ,−→v , tp, τ) = δ(−→x −−→r p(τ))δ(−→v −−→v p(τ))δ(t − tp(τ)) , (2.38)

where averaging is performed over realizations of random fields of velocity and
temperature of carrier gas. Then, the differentiation of (2.38) with respect to
time in view of representation of the gas velocity and temperature in the
instantaneous equations of motion and heat transfer for particles in the form
of sums of averaged and fluctuation components is used to derive the equation
for probability density. Then, the equation for the PDF of particle distribution
by coordinates, velocities, and temperatures is used to construct equations for
averaged concentration, velocity, and temperature of particles, which have the
form [52]:

∂Φ

∂τ
+
∑

j

∂ΦVj

∂xj
= 0, (2.39)
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∂Vi

∂τ
+
∑

j

Vj
∂Vi

∂xj
= −

∑
j

∂v′
iv

′
j

∂xj
+

Ui − Vi

τp
−
∑

j

Dpij

τp

∂ ln Φ

∂xj
, (2.40)

∂Tp

∂τ
+
∑

j

Vj
∂Tp

∂xj
= −

∑
j

∂ν′
jt

′
p

∂xj
+

T − Tp

τt
−
∑

j

Dt
pj

τt

∂ ln Φ

∂xj
, (2.41)

where

v′
iv

′
j =

1
Φ

∫∫
v′

iv
′
jPdνdtp, v′

jt
′
p =

1
Φ

∫∫
v′

jt
′
pPdνdtp,

Dpij = τp(v′
iv

′
j + gpu′

iu
′
j), Dt

pj = τtv′
jt

′
p + τpgptu′

jt
′,

gp =
TpL

τp
− 1 + exp(−TpL/τp),

gpt =
TpLt

τp
− 1 + exp(−TpLt/τp).

Here, TpL and TpLt denote the time of interaction of particles with energy-
intensive fluctuations of velocity and temperature, respectively. For an iner-
tialess impurity,

TpL = TL, TpLt = TLt, (2.42)

where TL and TLt are the time scales of fluctuations of velocity and tempera-
ture of gas, respectively.

In the case of nonequilibrium flow, where the averaged and dynamic slips
between the gas and particles become significant, the times of interaction with
fluctuations of the carrier flow may differ significantly from the respective
scales of fluctuations of the carrier phase.

The set of (2.39)–(2.41) is not closed, because the equations include the
turbulent stresses v′

iv
′
j and the turbulent heat flux v′

jt
′
p in the dispersed phase,

associated with the involvement of particles in the fluctuation motion, as well
as turbulent diffusion fluxes of momentum and heat arising because of the
nonuniformity of the particle concentration.

Volkov et al. [52] developed a mathematical description of the processes
of momentum and heat transfer in the dispersed phase of different levels of
detail. A closed set of equations is given on the level for the third moments.
In this case, the fourth moments of fluctuation characteristics, which appear
in equations for the third moments, are expressed approximately in terms
of the sum of products of the second moments [52]. Triple correlations must
be determined in order to describe the hydrodynamics and heat transfer of
the dispersed phase on the level of equations for the second moments. For
this purpose, Volkov et al. [52] further used equations for the third moments;
the simplification of these equations by ignoring small terms enables one to
find algebraic relations for triple correlations which contain only the second
moments. The computational scheme may be further simplified by replacing
the equations for the second moments of velocity fluctuations by a single



42 2 Mathematical Simulation of Particle-Laden Gas Flows

differential equation for the energy of fluctuations of the dispersed phase,
which has the following form [52]:

∂kp

∂τ
+
∑

j

Vj
∂kp

∂xj
= − 1

Φ

∑
j

∂Φv′
iv

′
iv

′
j

2∂xj
−
∑

j

∑
i

v′
iv

′
j

∂Vi

∂xj
+

2
τp

(fuk−kp), (2.43)

where kp = 1
2

∑
i

v′
iv

′
i is the energy of fluctuations of particle velocity.

In a steady-state uniform flow or for small particles (quasiequilibrium
flow), (2.43) yields kp = fuk, where fu = (1 + StkL)−1. In this case, (2.39)
and (2.40) in view of relation (2.37) give a description of momentum transfer
in the dispersed phase on the level of equations for the first moments.

2.4 Description of Motion of Gas
Carrying Solid Particles

We will treat the motion of gas in the presence of particles when the particles
start making an inverse effect on the gas characteristics. The equations of
continuity, motion, and energy for the gas phase with a relatively low content
of particles (ϕ � 1) in the absence of external mass forces have the form:

∑
j

∂uj

∂xj
= 0, (2.44)

∂ui

∂τ
+
∑

j

uj
∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∑
j

∂2ui

∂xj∂xj
− ρpϕ

ρ

(ui − vi)
τp

, (2.45)

∂t

∂τ
+
∑

j

uj
∂t

∂xj
= a

∑
j

∂2t

∂xj∂xj
− Cppρpϕ

Cpρ

(t − tp)
τt

. (2.46)

The continuity equation (2.44) has a similar form as (1.1) for a single-
phase flow. Equations (2.45) and (2.46) differ from the respective equations
of motion and energy for a single-phase gas (1.2) and (1.3) by the presence
in their right-hand parts of terms which take into account the dynamic and
thermal effect of the dispersed phase on the carrier flow.

We will average (2.44)–(2.46) over time. In so doing, we will follow the
well-known method of averaging in the theory of single- phase flows of variable
density [25], as well as the PDF-based method of constructing equations for
the dispersed phase [52], and assume ϕ′v′

i = ϕ′t′p = 0. The averaged equations
of continuity, motion, and energy have the form:

∑
j

∂Uj

∂xj
= 0, (2.47)
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∂Ui

∂τ
+
∑

j

Uj
∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν

∑
j

∂2Ui

∂xj∂xj
−
∑

j

∂(u′
iu

′
j)

∂xj

−ρpΦ

ρ

(Ui − Vi)
τp

− ρpϕ′u′
i

ρτp
, (2.48)

∂T

∂τ
+
∑

j

Uj
∂T

∂xj
= a

∑
j

∂2T

∂xj∂xj
−
∑

j

∂(u′
jt

′)
∂xj

−CppρpΦ

Cpρ

(T − Tp)
τt

− Cppρpϕ′t′

Cpρτt
. (2.49)

Equations (2.48) and (2.49) indicate that the inverse effect of particles on
the motion and heat transfer of carrier gas is defined by the averaged dynamic
and thermal slip of the dispersed phase, as well as by the fluctuations of the
particle concentration. Note that the contribution made by the penultimate
and last terms of the right-hand parts of (2.48) and (2.49) will be determining
for the case of flow with large particles and quasiequilibrium heterogeneous
flow, respectively (see Sect. 1.5). In the case of nonequilibrium heterogeneous
flow, where the averaged and fluctuation dynamic and thermal slip occurs
between the phases, it is necessary to take into account the contribution by
all of the above-identified terms of equations of motion and energy.

We will treat the case where the distributions of averaged velocities
and concentrations of the dispersed phase are known. In order to close the set
of averaged equations, one must know the turbulent stresses of gas u′

iu
′
j and

the turbulent heat flux u′
jt

′, as well as the correlations of the fluctuations of
particle concentration with the fluctuations of gas velocity and temperature
ϕ′u′

i and ϕ′t′ which may be represented as follows [14,15]:

ϕ′u′
i = −τpgpu′

iu
′
j

∂Φ

∂xj
, (2.50)

ϕ′t′ = −τpgptu′
jt

′ ∂Φ

∂xj
, (2.51)

where

gp = TpL/τp − 1 + exp(−TpL/τp), gpt = TpLt/τp − 1 + exp(−TpLt/τp).

One can subtract (2.47)–(2.49) from (2.44)–(2.46), respectively, and derive
the fluctuation equations of continuity, motion, and energy of the gas phase
in the presence of particles, ∑

j

∂u′
j

∂xj
= 0, (2.52)
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(2.53)

∂t′
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+
∑

j

[
u′

j

∂T

∂xj
+ Uj

∂t′

∂xj
+

∂(u′
jt

′)
∂xj

]
= a

∑
j

∂2t′

∂xj∂xj
+
∑

j

∂(u′
jt

′)
∂xj

−CppρpΦ

Cpρ

(t′ − t′p)
τt

− Cppρpϕ′

Cpρ

[(T − Tp) + (t′ − t′p)]
τt

+
Cppρpϕ′t′

Cpρτt
. (2.54)

The fluctuation equation of continuity (2.50) has a form similar to that
of the respective (1.9) for a single-phase flow. Equations (2.53) and (2.54)
differ from analogous equations of motion and energy for single-phase gas
(1.10) and (1.11) by the presence in their right-hand parts of terms which
take into account the dynamic and thermal effect of the dispersed phase on the
carrier flow. These equations indicate that the inverse effect of particles on the
fluctuation motion and heat transfer of carrier gas is defined by the fluctuation
and averaged dynamic and thermal slip of the dispersed phase, as well as
by the fluctuations of the particle concentration. Note that the contribution
made by the penultimate terms of the right-hand parts of (2.53) and (2.54)
will be determining for the case of flow with large particles characterized by a
significant difference of the averaged velocities and temperatures between the
phases.

We will derive the equation for the second moments of fluctuations of
velocity of the carrier phase in the presence of particles by analogy with the
case of single-phase flow in Sect. 1.2. We will first replace j by k in (2.53) for
u′

i and multiply both parts of the resultant equation by u′
j ,

u′
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∂u′
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. (2.55)
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We will write a similar equation for u′
j and multiply both its parts by u′

i,
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∂u′
j
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′
k
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j
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. (2.56)

We will combine (2.55) and (2.56) term-by-term and perform averaging. As
a result, the equation of transport of turbulent stresses of gas in the presence
of particles takes the form:
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′
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]
. (2.57)

Equation (2.57) differs from the similar equation for single-phase gas (1.14)
by the presence in the right-hand part of the last group of terms which take
into account the dynamic effect of the dispersed phase on the carrier flow.
The inverse effect of particles on the balance of Reynolds stresses of carrier
gas is caused by the fluctuation and averaged slip of the dispersed phase, as
well as by the fluctuations of particle concentration.

The set of (2.47), (2.48), (2.50), and (2.57) turns out to be nonclosed,
because (2.57) includes unknown triple correlations of fluctuations of the
carrier phase velocities, as well as the correlations associated with the fluctu-
ations of concentration and velocity of the dispersed phase. Various models
are used to derive the closed set of equations describing the averaged motion
of gas in the presence of particles. Most extensively employed (similar to
the theory of turbulent single-phase flows) are algebraic, one-parameter, and
two-parameter models.

2.4.1 Algebraic Models

The concepts of the Prandtl semiempirical theory of turbulence are usually
used in models of this type (see Sect. 1.2). In his pioneering study, Abramovich



46 2 Mathematical Simulation of Particle-Laden Gas Flows

[1] used the mixing length theory to determine the fluctuation velocities of
gas and particles. The thus developed model is based on the equation of con-
servation of momentum of turbulent eddy and particles moving in this eddy,
as well as on the equation of fluctuation motion of particles within the eddy.
It is assumed that that low-inertia particles are entrained in the fluctuation
motion by turbulent eddies of the carrier phase; as a result, the fluctuation
velocity of gas decreases. The obtained values of fluctuation velocities of gas
and particles are used to find correlations by multiplying together the res-
pective fluctuation quantities, which makes this method very approximate.
Models of this type were developed further in [2–5,24,27,29,50,59].

2.4.2 One-Parameter Models

The widest acceptance (similar to the case of single-phase flow) was received
by the model based on the equation for turbulent energy.

In order to construct the equation of transport of turbulent energy of gas
in the presence of particles, the equation of fluctuation motion (2.53) must be
multiplied by u′

i, summed over i, and then averaged. The resultant equation
will have the form
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∂τ
+
∑

j

Uj
∂k

∂xj
=
∑

j

∂

∂xj

⎡
⎣ν

∂k

∂xj
− u′

j

(
1
2

∑
i

u′2
i +

p′

ρ

)⎤
⎦

−
∑

j

∑
i

u′
iu

′
j

∂Ui

∂xj
− ν

∑
j

∑
i

∂u′
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′
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i(Ui − Vi)

+ (ϕ′u′
iu

′
i − ϕ′u′

iv
′
i)
]
. (2.58)

In accordance with the equation of transport of turbulent energy of single-
phase gas (1.24), (2.58) may also be rewritten in a condensed form,

Dk

Dτ
= D + P − ε − εp, (2.59)

where the additional dissipation εp caused by the presence of particles has the
form:

εp =
∑

i

ρp

ρτp

[
Φ(u′

iu
′
i − u′

iv
′
i) + ϕ′u′

i(Ui − Vi) + (ϕ′u′
iu

′
i − ϕ′u′

iv
′
i)
]
. (2.60)

The terms on the right-hand side of (2.60) are responsible for the dis-
sipation of turbulent energy caused by the fluctuation interphase slip, the
correlation of the fluctuations of particle concentration with the fluctuation
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velocity of carrier gas, and the presence of averaged dynamic slip, as well
as by the correlations of the fluctuations of particle concentration and the
fluctuation velocities of the phases, respectively.

The authors of a number of studies (for example, [17, 20, 21]) tried to
estimate the terms in the right-hand part of (2.60) for particle-laden flows
of different types. It was demonstrated that, in flows with relatively inertial
particles (StkL ≥ 1), the fluctuations of concentration of the dispersed phase
do not correlate with the field of fluctuation velocity of gas. This implies
the smallness of the second and third terms of the right-hand part of (2.60)
compared to its first term. Therefore, in the case of the quasiequilibrium
and nonequilibrium flows (see Table 1.1), the first term on the right-hand
side of (2.60) will play the determining part in the process of dissipation of
turbulence. In the case of a flow with large particles which are not entrained
in the fluctuation motion by energy-carrying eddies of the carrier phase, the
expression for εp may be written as:

εp =
∑

i

ρpΦ

ρτp
u′

iu
′
i =

2Mk

τp
. (2.61)

Note that, in the case of a flow with large particles whose relaxation time
is significant, the value of additional dissipation of turbulent energy will be
negligible compared to other terms of (2.58).

As was demonstrated by the experimental results, the presence of large
particles in the flow may cause additional generation (production) of turbu-
lence of the carrier gas. This mechanism is in no way taken into account in
writing (2.45). We will write (2.59) as:

Dk

Dτ
= D + P − ε + Pp − εP, (2.62)

where Pp is the term responsible for the additional production of turbulent
energy because of the presence of the dispersed phase. Therefore, the inclusion
of the modification of turbulence in heterogeneous flows presumes a correct
description of the terms of (2.62) responsible for the generation (Pp) and
dissipation (εp).

A mathematical model is given in Sect. 4.3, which describes the processes
of additional dissipation of turbulence by low-inertia particles (quasiequilib-
rium flow) and of additional generation of turbulence in wakes behind moving
particles (flow with large particles). Analysis was performed in a diffusionless
(algebraic) approximation, i.e., disregarding the contribution by the diffusion
term D to (2.62). The effect of particles on the steady-state hydrodynami-
cally developed pipe flow is treated; for this flow, the left-hand part of (2.62)
goes to zero. In addition, for the purpose of deriving simple analytical rela-
tions, analysis was made for moderate values of particle concentration, when
the effect of particles on the distribution of averaged velocity of the carrier
gas was minor. As a result, expressions for the source terms εp and Pp were
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derived and used to find two complexes of physical parameters responsible for
the dissipation and generation of turbulent energy of the carrier gas under
conditions of quasiequilibrium flow and flow with large particles, respectively.

Good agreement between the calculation results and the available exper-
imental results leads one to expect the efficiency of the model in the case of
a nonequilibrium flow, when the joint action is possible of both mechanisms
(laminarizing and turbulizing) of the effect of particles on turbulence.

2.4.3 Two-Parameter Models

As in studying single-phase turbulent flows, the most generally employed
model is the two-parameter k–ε model of turbulence with the equation for
the rate of dissipation used as the second equation.

By analogy with (1.28) for a single-phase flow, we have, in the case of a
particle-laden flow,

Dε

Dτ
= Dε + Pε − εε − εεp, (2.63)

where εεp is the decrease in dissipation because of the presence of particles.
The expression for εεp is most commonly represented in the form [18,36]

εεp = Cε3
ε

k
εp, (2.64)

where the constant Cε3 may take the following values: Cε3 = 1.0 [33], Cε3 =
1.2 [18], and Cε3 = 1.9 [7].

2.4.4 Methods of Direct Numerical Simulation

In conclusion, we must dwell briefly on the methods of direct numerical sim-
ulation (DNS) which are rapidly developing in recent years. A method of
direct numerical simulation is the solution of nonstationary Navier–Stokes
equations for instantaneous values without involving additional closing rela-
tions or equations, i.e., actually without the simulation of turbulence. The
well-known limitation of such a method is the impossibility of using it at
moderate or high values of the Reynolds number. A variety of this method
is the method of large eddy simulation (LES) which involves the treatment
of only large energy-carrying eddies [30]. In this manner, an attempt is made
at obviating the disadvantage identified earlier and extending the range of
application of the method.

In the overwhelming majority of early investigations of particle-laden two-
phase flows [16, 44, 53], these two methods were used to simulate the motion
of single particles; in accordance with the classification of heterogeneous flows
developed in Sect. 1.5, this corresponds to the case of a weakly dusty flow
without the inverse effect of particles on the carrier gas parameters. These
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investigations were performed to study the behavior of particles. For this pur-
pose, the trajectories of a large ensemble of particles introduced into a turbu-
lent flow were calculated, which was followed by the averaging of the obtained
spatial characteristics of particle motion. Note that the spatial resolution was
much less than the particle size proper. In performing the calculations, it was
not intended to determine the parameters of gas flow about a particle. This
was not necessary, because the particle motion is calculated in the usual way,
i.e., using the law of resistance of the dispersed phase. The particle drag is
defined by the Reynolds number; for determining the value of this number,
one needs to know the carrier gas velocity rather than the distribution of
this velocity over the particle contour. The foregoing restriction in the calcu-
lation of particle motion is valid only when describing the behavior of very
fine particles whose size is less than the size of the smallest turbulent eddies
(Kolmogorov scale).

In more recent investigations [6, 8, 9, 45,47], the methods of direct numer-
ical simulation were used as advantage for the calculation of weakly dusty
flows with the inverse effect of particles on the characteristics of flow of the
carrier phase. In this case, the calculations are performed in several iteration
steps. First, the parameters of motion of “pure” gas are calculated. For this
purpose, it is usually assumed that the fluctuations of gas velocity obey the
normal law. In the known field of gas velocities, the trajectories of particles are
calculated by integrating the equations of their motion. Then, given a fairly
representative ensemble of particles, one finds the averaged characteristics of
the dispersed phase which are then used to calculate the gas phase flow in
the next stage. The thus obtained “new” field of gas velocities serves a basis
for the calculations of particle trajectories at the next iteration step, and so
on. The calculations are performed until the difference between the obtained
characteristics of motion of both phases of heterogeneous flow at the previous
and subsequent iteration steps is within the preassigned error.
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