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0

Historical introduction

The birth of the holor concept may be set at 1673, when John Wallis sug-
gested the geometric representation of complex numbers by points in a
plane.! A complex number is an entity consisting of two parts. It is
usually written as

Z=x+1y,
where x and y are real numbers and / emphasizes the fact that x and y are

independent quantities. A more modern notation writes a two-element
holor as an ordered number pair,

z2=(x,»)
or, in index notation,
x'=(!, x?).
This constitutes the first step in a fascinating mathematical development
that now includes vectors, matrices, tensors, and other holors.

0.01. Quaternions

Mathematicians expected that the extension from the complex number,
with n=2 to n=3, would be child’s play; but considerable time elapsed
before they found that no such extension is possible without violating a
rule of ordinary algebra.? After wrestling with the problem for 15 years,
Sir William Rowan Hamilton in 1843 found a holor with four elements,

j 1 2 3 4
x'=(x",x%x",x%,

which he called a quaternion.® The ordinary rules of algebra hold for
quaternions except that multiplication is noncommutative. Hamilton

1



2 0 Historical introduction

believed that quaternions constituted his greatest contribution to mathe-
matics and that most of physics would eventually be written in quaternion
form. Tait* devoted himself to that end. But physicists were not con-
vinced. For instance, Maxwell® in his celebrated treatise (1873) men-
tioned quaternions several times but was careful not to use them.

0.02. Linear associative algebras

The work of Hamilton should certainly have suggested the possibility of
a host of new algebras in which associative or commutative properties
are abandoned. This possibility, however, was not recognized until 1870,
when Benjamin Peirceé invented a whole new branch of mathematics -
the study of linear associative algebras. The subject became popular, and
hundreds of algebras* were developed with their associated holors.” One
would expect that a few of these algebras would have had interesting
practical applications, but such does not seem to be the case. The reason
for this disappointing result will now be explained.
Consider holors such as

x=(xh X2 x™,
y=0hyhaun,

and two operations, which we shall call addition and multiplication. The
universally accepted definition of addition is

iy =ty X242 X+,
It appears that nothing is to be gained by changing the definition of addi-
tion. But multiplication is another story! We are at liberty to select a mui-
tiplication table, and each table determines a new algebra with its own
peculiar properties.

A linear associative algebra is a closed system: a sum or product is
always a holor of the same system. For instance, the product of two qua-
ternions is always a quaternion, the product of two matrices is always
a matrix. This is a delightful property, closely associated with groups,
rings, and other aspects of modern algebra. But it is not the kind of
behavior that is needed for most physical applications. Experience shows
that the product of two vectors, for instance, must sometimes be a vec-
tor, sometimes a scalar, sometimes a matrix. And this variety cannot

* This includes algebras of Dedekind, Frobenius, Scheffers, Peirce, Kronecker, Weier-
strass, Dickson, Sylvester, and Cartan.
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be obtained with any of the linear associative algebras. Here is the reason
that this branch of mathematics, once pursued with such enthusiasm, has
proved to be of limited value as regards physical applications.

0.03. Matrices
We have been considering univalent holors, such as
xi=0x? L x™.

Also important are bivalent holors (matrices), for instance,

All A]Z v Aln

o AZI A22 e AZﬂ
AV =

Anl An2 ee.o4nn

The theory of matrices* was initiated by Arthur Cayley® in 1855. The
only product ordinarily used is the Cayley product, which in index nota-
tion is

AYB;, =C;.

This is an associative but noncommutative product. Thus, matrix alge-
bra® may be regarded as one of the linear associative algebras.

0.04. Grassmann

In the same year (1844) that Hamilton published his first paper on qua-
ternions, a much more general treatment of holors was published by
Herman Grassmann.!® Not only did Die Ausdehnungslehre deal with
n-space but, unlike the linear associative algebras, it was not limited to a
single product per algebra. Thus it opened up new possibilities, particu-
larly in geometric and physical applications of holors. Hamilton’s com-
ment was typical'': “I have recently been reading...more than a hun-
dred pages of Grassmann’s Ausdehnungsilehre, with great admiration and
interest. ... But it is curious to see how narrowly, yet how completely,
Grassmann failed to hit off the quaternions.” As if Grassmann, with his
immensely more general treatment, would be particularly interested in
the special case of the quaternion!

* The name “matrices” was first used by J. J. Sylvester, Collected math. papers, Vol. |
(Cambridge University Press, Cambridge, 1904), p. 145.
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0.05. Vector analysis

To other mathematicians and physicists at this time, the Ausdehnungs-
lehre seemed quite incomprehensible; and quaternions, based on Hamil-
ton’s 800-page explanation, seemed hardly simpler. It was not until 40
years later that Williard Gibbs? (and independently, Oliver Heaviside)!?
worked out a special case of quaternions called vector analysis. This was
based largely on Hamilton’s pioneer work and even used Hamilton’s
terms scalar and vector, but it applied only to 3-space and was usually
expressed in rectangular coordinates. It did have two distinct products,
however, and it proved to be just what was needed in a large number of
physical applications. As a consequence, vector analysis has been uni-
versally accepted and is widely used today.!

0.06. Invariance

If one reads an early treatment of vectors, such as that of Gibbs or
Coffin, he is impressed by the exclusive use of rectangular Cartesian
coordinates. Even such concepts as divergence, curl, and scalar and
vector Laplacians'é are usually defined in rectangular coordinates. In a
way, this procedure makes for simplicity. But it ignores the subject of
invariance. Even with Gibbs, a vector was more than a set of numbers
representing rectangular coordinates: it was a geometric entity that could
be expressed equally well in other coordinate systems.'? The merates
changed when the coordinates were changed, but the geometric object
maintained its identity.

Invariants were studied by Cayley!” beginning in 1841. The subject
received such enthusiastic support during the latter half of the nineteenth
century that Sylvester!® remarked in 1864, “As all roads lead to Rome,
so I find in my own case at least that all algebraic inquiries, sooner or
later, end at the Capitol of modern algebra over whose shining portal is
inscribed the Theory of Invariants.” The subject is treated in a volumi-
nous literature.!

An important application of invariant theory is differential geometry.
Riemann?°® outlined an approach in his Habilitationsschrift (Gottingen,
1854). Felix Klein,?! in his Erlanger program, stated a principle that af-
fected the development of geometry for many years. Christoffel, Beltrami,
Bianchi, and others made valuable contributions. Ricci?? developed a new
notation, which he called “the absolute differential calculus” but which
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is now called tensor* theory. Ricci wrote many papers, including a cele-
brated one with Levi-Civita2? (1901).

Physicists in general were not interested in invariants and had never
heard of Ricci’s work. It was not until 1916 that Albert Einstein24 applied
tensors in formulating his general relativity. Because of the extraordinary
popular appeal of this theory, tensors became famous overnight. Hun-
dreds of books appeared on relativity and several on tensors.?s And even
the old subject of vectors took on new life when presented in tensor
form.“

0.07. Tensors

Index notation was designed particularly to handle behavior under coor-
dinate transformation. But the basic notation is applicable even when
no coordinate transformations are involved. Thus, index notation can
be employed advantageously to unify a great field of holors of various
valences and dimensionalities, even where the question of invariance
does not necessarily enter. We have seen how vector analysis originated
with little thought for coordinate transformation. The same may be
said for quaternions, matrices, and the holors treated in linear associative
algebras.

Since 1916, however, the feeling seems to be prevalent that the only
hypernumbers of any value are tensors. On the contrary, many valuable
applications of holors do not need a consideration of coordinate trans-
formation. The simplest application of holors specifies a collection of
discrete objects - for instance, machine screws. Each merate gives the
number of screws of a particular type. The complete holor designates the
inventory of a particular tool room (as regards screws in stock). Trans-
formation of coordinates is meaningless here. Another example has
merates that specify the loop currents in a given /-loop electric network.
Again, transformation does not enter. And there are examples in which
transformation is possible but not of much interest. Thus, we have a host
of practical applications of holors where the holor is definitely not a
tensor. And we have, of course, a host of other applications where the
holor is a tensor.

* The name fensor is often said to be the invention of Woldemar Voigt,2¢ who used it to
represent a bivector in crystal physics. The word, however, is much older, having been
applied in connection with quaternions by Hamilton. See The Mathematical papers of Sir
William Rowan Hamilton (Cambridge University Press), p. 237.
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0.08. Holor notation

Heaviside suggested boldfaced type to distinguish vectors from scalars,
and this convention has been widely accepted. Some means of distin-
guishing other holors is definitely needed. In particular, a distinctive sym-
bol should be established for matrices, though no such standard seems to
have been fixed. Schouten?’ invented a complicated notation for holors
in 1914. Struik 28 developed another ingenious system in 1922.

A quite different nomenclature for holors developed from invariance
theory. A quadratic form is usually written as

n
A= aijx'xj,
1

where x!, x?, ..., x" are real numbers, x' is a vector in n-space, and a;; isa
matrix. Such expressions were used by Riemann in his Habilitationsschrift
(1854) and were incorporated into Ricci’s work. Thus, tensor analysis
was printed in ordinary type, and the kind of quantity was distinguished
by the number and position of the indices. The scheme was further devel-
oped by Levi-Civita, Schouten and Struik,?® Veblen, Weyl, Cartan, Eisen-
hart, T. Y. Thomas, and many others, so that it may now be considered
as a universal notation for all holors.* '

Einstein introduced the summation convention (1916), which has be-
come an important characteristic of modern index notation. Whereas
Ricci always wrote a summation with the customary Y, as

Ers ars d‘xr dxs'
Einstein omitted the summation sign and wrote
a, dx"dx’.

He says,?* “A glance at the equations of this paragraph shows that there
is always a summation with respect to the indices which occur twice
under a sign of summation. ..and only with respect to indices which
occur twice. It is therefore possible, without loss of clearness, to omit the
sign of summation. In its place we introduce the convention: If an index
occurs twice in one term of an expression, it is always to be summed
unless the contrary is expressly stated.” This apparently trivial change
had an astonishing effect on the simplicity and power of index notation."
* Note that both Schouten and Struik abandoned their “direct” representations after 1922
and employed the standard tensor notation.

T The quotation ignores the important distinction between subscripts and superscripts. A
more modern treatment is given in Chapter 2.
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0.09. Derivatives

Derivatives of holors are frequently encountered. For example, a con-
travariant vector transforms as

ax'

T oax!

i i
and a covariant vector as
ax'
u, = o u;.

For a metric space, Riemann (1854) wrote

(ds)zzg,»j dx'dx’.

He also used geodesics defined by the second-order differential equation,

d’x' (i) dx/ dx*
ds? {jkz ds ds

Christoffel 3¢ (1869) introduced the Christoffel symbols which were de-
fined in terms of the metric coefficients g;;.

In 1917, Levi-Civita® extended the idea of parallelism to a Riemannian
n-space. The covariant derivative appeared, and the limitations of Rie-
mann and Christoffel were removed to give a more general treatment.
The linear connection I‘}k is defined as a holor whose transformation
equation is3°

i axtax ax %" ax!
K axt axd axk TR T gxd gxk ax'

The linear connection may be considered as the sum of a symmetric and
an antisymmetric part:

| =S}k+9}k.
The covariant derivative employs a symbolism used by Schouten, 32

. avi .
[ ik
\ 2 P +I'0%.

Also noteworthy are the Riemann-Christoffel tensor,

ar%  ars
k / ! k
Riji= it =557 TO T =T T

and the Ricci tensors,
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— pl _ p!
R,;=R;, and R,=Ry;.

These curvature tensors are very important in Einstein’s general relativity.

0.10. Outline of the book

Our book begins with three chapters on holor notation and holor alge-
bra. At this stage, we are interested in index notation but not at all in
transformation properties. Thus, we consider addition of holors as well
as uncontracted and contracted multiplication.

Part II introduces coordinate transformations and defines tensors,
akinetors, and geometric objects.

Part III introduces holor calculus in a very general form in which the
linear connection is entirely arbitrary except for its transformation equa-
tion. Note that the keystone of tensor calculus is a linear connection
holor that is itself not a tensor.

Part 1V depends on the introduction of a metric. It thus includes
the important subjects of Riemannian spaces and the special case of
Euclidean space.



