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Abstract We present a branch-and-price framework for solving the graph multi-
coloring problem. We propose column generation to implicitly optimize 
the linear programming relaxation of an independent set formulation 
(where there is one variable for each independent set in the graph) for 
graph multi-coloring. This approach, while requiring the solution of a 
difficult subproblem, is a promising method to obtain good solutions for 
small to moderate size problems quickly. Some implementation details 
and initial computational experience are presented. 
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1. INTRODUCTION 
The graph multi-coloring problem is a generahzation of the well-

known graph coloring problem. Given a graph, the (node) coloring 
problem is to assign a single color to each node such that the colors 
on adjacent nodes are different. For the multi-coloring problem, each 
node must be assigned a preset number of colors and no two adjacent 
nodes may have any colors in common. The objective is to accomplish 
this using the fewest possible number of colors. 
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Like the graph coloring problem, the multi-coloring problem can model 
a number of applications. It is used in scheduling ([7]) where each node 
represents a job, edges represent jobs that cannot be done simultane­
ously, and the colors represent time units. Each job requires multiple 
time units (the required number of colors at the node), and can be sched­
uled preemptively. The minimum number of colors then represents the 
makespan of the instance. Multi-colorings also arise in telecommunica­
tion channel assignment where the nodes represent transmitters, edges 
represent interference, and the transmitters send out signals on multiple 
wavelengths (the colors) [14]. It is due to this application in telecom­
munications that multi-coloring, as well as generalizations that further 
restrict feasible colorings, dates back to the 1960s. Aardal et al. ([1] 
provide an excellent survey on these problems. 

The multi-coloring problem can be reduced to graph coloring by re­
placing each node by a clique of size equal to the required number of 
colors. Edges are then replaced with complete bipartite graphs between 
the corresponding cliques. Such a transformation both increases the 
size of the graph and embeds an unwanted symmetry into the problem. 
It is therefore useful to develop specialized algorithms that attack the 
multi-coloring problem directly. 

Johnson, Mehrotra, and Trick [9] included the multi-coloring prob­
lem in a series of computational challenges, and provide a testbed of 
sample instances. Prestwich [17] developed a local search algorithm for 
this form of the multi-coloring problem and compared that approach to 
a satsifiability-based model. Without lower bounds or exact solutions 
to simple problems, however, it is difficult to evaluate these heuristic 
approaches. 

We suggest an approach based on an integer programming formula­
tion of the graph multi-coloring problem. This formulation, called the 
independent set formulation^ has a variable for each independent set 
in the graph. In our previous work on graph coloring problems [12], 
we demonstrated that despite the enormous number of variables in this 
formulation, it is possible to develop an effective column generation tech­
nique for the coloring problem. We used appropriate branching rules and 
tested our branch-and-price approach on a variety of coloring instances. 
Encouraged by the effectiveness of such a method for coloring problems, 
we discuss the extension of such an approach on graph multi-coloring 
problems. This extension is independently interesting due particularly 
to the non-binary nature of the variables. Most examples of branch-
and-price use binary variables, which results in now-routine branching 
rules. With non-binary variables, we need to explore new and intriguing 
approaches to branching. 
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In Section 2, we develop the independent set formulation of the graph 
multi-coloring problem and discuss various advantages of the formula­
tion, In Section 3, we summarize the techniques for generating columns 
in this formulation and outline one method for such generation. In Sec­
tion 4, we discuss the branching rules that are necessary to be developed 
for a full branch-and-price method. In Section 5, we describe some ini­
tial computational results and conclude with some directions for future 
exploration. 

2. A COLUMN GENERATION MODEL 
Let G — (y, E) be an undirected graph on F , the set of vertices, with 

E being the set of of edges. Let \V\ = n and |£^| = m. Let wi be an 
integer weight associated with a node i ^V giving the required number 
of colors at the node. When lo^ = 1, for alH G F , then the problem is 
the usual vertex coloring problem. 

A multi-coloring of G is an assignment of Wi labels to each vertex i 
such that the endpoints of any edge do not have any common label. A 
minimum multi-coloring of G is a multi-coloring with the fewest different 
labels among all possible multi-colorings. 

An independent set, 5* of C is a set of vertices S C. V such that 
there is no edge in E connecting any pair of nodes in S. Clearly in any 
coloring of G, all vertices with the same label comprise an independent 
set. A maximal independent set is an independent set that is not strictly 
included in any other independent set. 

The problem of finding a minimum multi-coloring in a graph can be 
formulated in many ways. For instance, letting xik, i ^ V, 1 < k < K 
be a binary variable that is 1 if label k is assigned to vertex i and 0 
otherwise, where K represents an upper bound on the number of labels 
needed to obtain a valid multi-coloring of the graph, the problem can be 
formulated as follows: 

Minimize y 

s.t. Xik + Xjk < 1 y{iJ)eE, k = 1,...,K 

Y^Xij, = Wi y i eV 
k 

y > kxik V i G F , k ==1,...,K 

Xik e {0,1} V Z G F , fc - 1,...,K 
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We will refer to this formulation as (VC). While correct, (VC) is 
difficult to use in practice. One obvious problem is the size of the for­
mulation. Since K can be quite large, the formulation can have up to 
nK variables and 2Km + n constraints. Given the need to enforce in­
tegrality, this formulation becomes computationally intractable for all 
except the smallest of instances. This is especially true because the lin­
ear programming relaxation is extremely fractional. To see this, note 
that even when all Wi ~ 1, the solution, xik = \/K for every (i,/c) is 
feasible whenever K >2, 

A second, less obvious, problem involves the symmetry of the formu­
lation. The variables for each k appear in exactly the same way. This 
means that it is difhcult to enforce integrality in one variable without 
problems showing up in the other variables. This is because any solution 
to the linear relaxation has an exponential number (as a function of K) 
of representations. Therefore, branching to force xn to take on integral 
values does little good because it results in another representation of the 
same fractional solution in which x̂ 2 takes on the old value of xn and 
vice-versa. 

To address this problem, we consider a formulation with far fewer 
constraints that does not exhibit the same symmetry problems as our 
first formulation. Let T be the set of all maximal independent sets of G. 
We create a formulation with binary variables, x^, for each t eT. In this 
formulation, xt — k implies that independent set t will be given k unique 
labels, while x^ = 0 implies that the set does not require a label. The 
minimum multi-coloring problem is then the following (denoted (IS)): 

Minimize V^ xt 

teT 

Subject to y2 ^t ^ Wi y i E V 
{tneT} 

Xt > 0 and integer W t E T. 

This formulation can also be obtained from the first formulation by 
using a suitable decomposition scheme as explained in [10] in the context 
of general mixed integer programs. The formulation (IS) has only one 
constraint for each vertex, but can have a tremendous number of vari­
ables. Note that a feasible solution to (IS) may assign more than the 
specified number of labels to a vertex since we include only maximual 
independent sets in the formulation. This can be remedied by using any 
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correct subset of the assigned multiple labels as the labels for the vertex. 
The alternative would be to allow non-maximal sets in T and to require 
equalities in (IS). In view of the ease of correcting the problem versus 
the great increase in problem size that would result from expanding T, 
we choose the given formulation. 

This formulation exhibits much less symmetry than (VC): vertices 
are combined into independent sets and forcing a variable to 0 means 
that the vertcies comprising the corresponding independent set will not 
receive the same color in the solution. Furthermore, it is easy to show 
[10] that the bound provided by the linear relaxation of (IS) will be at 
least as good as the bound provided by the hnear relaxation of (VC). 

The fact remains, however, that (IS) can have far more variables than 
can be reasonably handled directly. We resolve this difficulty by using 
only a subset of the variables and generating more variables as needed. 
This technique, called column generation, is well known for linear pro­
grams and has emerged as a viable technique for a number of integer 
programming problems [5, 12]. The need to generate dual variables 
(which requires something like hnear programming) while still enforcing 
integrality makes column generation procedures nontrivial for integer 
programs. The procedures need to be suitably developed and their ef­
fectiveness is usually dependent on cleverly exploiting the characteristics 
of the problem. 

The following is a brief overview of the column generation technique in 
terms of (IS). Begin with a subset T of independent sets. Solve the hnear 
relaxation (replace the integrality constraints on Xs with nonnegativity) 
of (IS) restricted to t G T. This gives a feasible solution to the linear 
relaxation of (IS) and a dual value ixi for each constraint in (IS). Now, 
determine if it would be useful to expand T. This is done by solving the 
following maximum weighted independent set problem (MWIS): 

Maximize ^ r^iZi 
iev 

Subject to Zi -\- Zj < 1 V (i, j ) G E 

z, G {0,1} V Z G K 

If the optimal solution to this problem is more than 1, then the zi 
with value 1 correspond to an independent set that should be added to 
T. If the optimal value is less than or equal to 1, then there exist no 
improving independent sets: solving the linear relaxation of (IS) over 
the current T is the same as solving it over T. 
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This process is repeated until there is no improving independent set. 
If the resulting solution to the linear relaxation of (IS) has Xt integer 
for all t e T, then that corresponds to an optimal solution to (IS) over 
T. When some of the xt are not integer, however, we are faced with the 
problem of enforcing integrality. 

To complete this algorithm, then, we need to do two things. First, 
since (MWIS) is itself a difficult problem, we must devise techniques 
to solve it that are sufficiently fast to be able to be used repeatedly. 
Second, we must find a way of enforcing integrality if the solution to the 
linear relaxation of (IS) contains fractional values. Standard techniques 
of enforcing integrality (cutting planes, fixing variables) make it difficult 
or impossible to generate improving independent sets. We discuss these 
two problems in the next two sections. 

3. SOLVING THE MAXIMUM WEIGHTED 
INDEPENDENT SET PROBLEM 

The maximum weighted independent set problem is a well-studied 
problem in graph theory and combinatorial optimization. Since a clique 
is an independent set in the complement of a graph, the literature on 
the maximum weighted clique is equally relevant. Various solution ap­
proaches have been tried, including implicit enumeration [6], integer 
programming with branch and bound [3, 4], and integer programming 
with cutting planes [2, 15], In addition, a number of heuristics have 
been developed [16] and combined with general heuristic methods such 
as simulated annealing [8]. In this section, we outhne a simple recur­
sive algorithm based on the work of [11] and describe a simple greedy 
heuristic that can be used to reduce the need for the recursive algorithm. 

The basic algorithm for finding a maximum weighted independent set 
(MWIS) in the graph G{V^ E) is based on the following insight. For any 
subgraph Gi (Vi, £^i) of G, and a vertex i G Vi, the MWIS in Gi is either 
the MWIS in Gi restricted to Vi/{i} or it is i together with the MWIS 
in AN(i), where AN(i) is the anti-neighbor set of i: the set of all vertices 
j in Vi such that (i, j ) ^ Ei. This insight, first examined in [11] for the 
unweighted case, leads to the following recursion which can be turned 
into a full program: 

MWIS(T/i U {k}) - max(MWIS(yi),MWIS({/c} U AN(/c))), 

where MWIS (5) represents the maximum weighted independent set 
in the subgraph of G induced by the set of nodes in S. 
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While this approach is reasonably effective for graphs that are not too 
sparse, it can be improved by appropriately ordering the vertices to add 
to Vi. The following have been shown to be effective in reducing the 
computational burden of the recursion: 

• Begin with Vi equal to a heuristically found independent set. We 
use a simple greedy approach to find such a set, with the nodes 
ordered by node weight. 

• Order the remaining vertices in order of degree from lowest to high­
est, and add them to Vi in that order. During the final stages of 
the recursion, it is important to keep the anti-neighbor set small in 
order to solve the MWIS on as small a graph as possible. Since ver­
tices with high degree have small anti-neighbor sets, those should 
be saved for the end. 

• Use simple bounds to determine if a branch of the recursion can 
possibly return a MWIS better than the incumbent. For instance, 
if the total weight of the set examined is less than the incumbent, 
the incumbent is necessarily better, so it is unnecessary to continue 
the recursion. 

• Use a faster code for smaller problems. It appears that a weighted 
version of the method of Carraghan and Pardalos [6] is faster for 
smaller problems. This is particularly the case since it is able 
to terminate when it is clear that no independent set is available 
that is better than the incumbent. In our tests, which use rela­
tively small graphs, we use a variant of Carraghan and Pardalos 
for all except the first level of recursion, which echoes the results 
of Khoury and Pardalos in the unweighted case. 

In the context of our column generation technique, it is not critical 
that we get the best (highest weight) maximal independent set: it is 
sufficient to get any set with weight over 1. This suggests that a heuristic 
approach for finding an improving column may suffice in many cases. It 
is only when it is necessary to prove that no set exists with weight over 1 
(or when the heuristics fail) that it is necessary to resort to the recursion. 
There are many heuristics for weighted independent sets. The simplest 
is the greedy heuristic: begin with (one of) the highest weighted vertices 
and add vertices in nonincreasing order of their weight making certain 
that the resulting set remains an independent set. 

This heuristic, in addition to being simple, is very fast, and seems to 
work reasonably well. The resulting independent set can either be added 
directly to (IS) (if it has value over 1) or can be used as a starting point 
for the recursion. 
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4. BRANCHING RULE 
A difficult part about using column generation for integer programs 

is the development of branching rules to ensure integrality. Rules that 
are appropriate for integer programs where the entire set of columns is 
explicitly available do not work well with restricted integer programs 
where the columns are generated by implicit techniques. 

The fact that the variables in (IS) are general integers, rather than 
binary variables, makes this issue even more difficult. For binary vari­
ables, the Ryan-Foster [18] branching rule is generally effective, but that 
rule cannot be used for general integer variables. For (single-color per 
node) graph coloring, given a solution to (IS), the Ryan-Foster rule iden­
tifies two nodes % and j , such that there is a fractional independent set 
that includes both i and j . The branching is then on whether i and j 
have the same color or different colors. For the purposes of generating 
improving independent sets, this involves either contracting two nodes 
into one or adding an edge to the graph, respectively, as developed in 
[12]. Such changes do not affect the operation of the MWIS algorithm. 

For general integers, it is not necessarily the case that there will be a 
pair of vertices with a fractional number of colors in common. Vander-
beck [19] does show there are sets of nodes V\ and V2 such that the x 
values for all independent sets that contain all nodes in V\ and no nodes 
in y^ is fractional. If we let ^(Vi, V2) represent the currently generated 
independent sets that contain all of V\ and none of V2, this leads to a 
branching rule with 

sG^(Vi,y2) 

in one branch, and 

Y^ X, > fc + 1 

in the other. This can comphcate the solving of the subproblem (MWIS) 
since either case involves adding a constraint to (IS). This constraint 
leads to a dual value that must be considered in the MWIS subproblem. 

This problem can be addressed in one of two ways. Vanderbeck [19] 
gives an approach where multiple subproblems are solved without mod­
ifying the structure of the subproblem (in our case, MWIS). This ap­
proach has the advantage of keeping the subproblem algorithm the same, 
at the expense of requiring the solution of multiple subproblems. Fur­
ther, this approach has the disadvantage that the branching rule needs 
to be more complicated than the node-pair rule given by the Ryan-Foster 
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rule. Instead, the branching constraints need to consist of nested sets of 
constraints. 

The alternative approach is to directly embed the dual values asso­
ciated with branching constraints into the subproblem. To do this, we 
will have to modify the solution approach to MWIS to allow costs on 
arbitrary pairs of sets (Vi, V2). This dual value is charged for any inde­
pendent set that contains all of Vi and none of ¥2-

Fortunately, this is a straightforward modification of the implicit enu­
meration approach in [12], similar to the modification we proposed in the 
context of solving clustering problems [13] where the costs only appeared 
on edges between nodes. 

The key aspect of our imphcit enumeration is that, at each step, the 
nodes of the graph are divided into three sets: those that will be in the 
independent set (/), those that are definitely not in the independent set 
(A^/), and those for which their status is unknown (UN). The duals 
associated with (Vi,V2) can similarly be assigned one of three states: 
definitely to be charged (C), definitely not to be charged (NC) and 
"not yet determined" {UC). For instance, if the current independent 
set contains a member of V2 we know that the corresponding dual on 
{Vi^ V2) will not be charged. 

At each stage of the implicit enumeration, we can calculate an upper 
bound by adding in the duals for all nodes in / , all the positive duals in 
NI, all duals in C, and all positive duals in UC. The lower bound is the 
sum of the duals in / and C. We can strengthen the bounds somewhat 
by taking the dual for any entry in UC containing just one node in UN 
and moving that dual value to the UN node. This gives a valid recursion 
for the case of dual values on arbitrary node sets. 

5. COMPUTATIONAL DETAILS 

Our current implementation focuses on first optimizing the LP relax­
ation of (IS) via column generation. Then we determine the best integer 
solution to the restricted (IS) formulation comprising of the columns 
generated to optimize the LP relaxation at the root node of the branch-
and-price tree. Here we provide some implementation details and initial 
computational results that we have obtained. 

5.1 Implementation Issues 
We generate a feasible initial multi-coloring using the greedy MWIS 

heuristic repeatedly until all nodes are colored at least once. This gives 
us an initial solution to the multi-coloring problem as well as a number 
of columns to add to our linear program. We then generate columns 
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to improve the linear program. The following discussion pertains to 
generation of columns to improve the hnear program. 

Improving the Linear Program. 

Improving Column. As mentioned earlier, any solution to the 
MWIS with value greater than 1 represents an improving column for 
the linear program. In our current implementation, we set a target to 
3.0 and our MWIS algorithm either returns the first such solution it 
finds, failing which, it finds the exact solution. We have also experi­
mented with changing this target value to a higher number initially (an 
approach to find a good set of columns as fast as possible) and then de­
creasing its value later on in the column generation. The eflFort required 
to solve some diflBcult problems can be substantially reduced by suitably 
altering this target value. 

Ordering the Nodes . The order in which the nodes are to be con­
sidered can be specified in our MWIS algorithm. We have found that 
ordering the nodes independently by nonincreasing weights or by nonin-
creasing degree is not as efficient as ordering them by considering both 
at the same time. In our experiments we order the nodes in nonincreas­
ing values of the square root of the degree of the node times the weight 
of the node. 

Column Management . Another approach to optimizing the linear 
program more quickly is to generate several columns rather than a single 
column [5] at every iteration. For example, one could use improvement 
algorithms that take existing columns with reduced cost equal to zero 
and try to construct columns that might improve the linear program. 
In our experiments, we generated more candidates by determining other 
independent sets at each iteration such that every node belonged to at 
least one indpendent set being added. 

5.2 Computational Results 
In our computational experiments, we use instances drawn from a 

large number of sources. Our goal is to determine the robustness of the 
approach. For some of these graphs, the coloring problem has no real 
interpretation. We use these graphs as examples of structured graphs, 
rather than just experimenting on random graphs. These graphs come 
from a large test set at http://mat.tepper.cmu.edu/COLOR04. 

Currently, we have not implemented the branching scheme. Rather, 
we use the standardized branching to determine an integer solution from 
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among the independent sets generated at the root node to optimize the 
corresponding LP relaxation of the (IS) formulation. Hence our current 
implementation provides an optimization-based heuristic procedure. We 
report our results in Tables 1 and 2. The instance name identifies the 
problem from the test set. The objective values corresponding to the 
optimal LP relaxation solution and the intger solution obtained by our 
method are listed under the columns labeled LP, and Heur, respectively. 
The gap between these two objective values and the computational time 
in seconds to optimize the linear relaxation and then to determine the 
integer solution are listed in the next three columns. The column labeled 
cons lists the number of constraints in the corresponding (IS) equal 
to the number of vertices in the graph. The number of independent 
sets generated to optimize the LP relaxation is listed under the column 
labeled vars. The computational results reported here are limited to the 
best integer solution found in at most 1000 seconds using CPLEX default 
branching scheme on DEC ALPHA workstation. As can be seen from 
the gap between the LP bound and the corresponding (heuristic) integral 
solution obtained by our methodology, this branch-and-price framework 
looks promising for finding optimal multi-coloring solutions for small to 
moderate size graphs. In Table 1, we report results on geometric graphs 
with up to 120 nodes. The best integer solution found for these is within 
1 of the optimal multi-coloring in the worst case. The cpu time is also 
reasonable. A similar performance is seen for the random graphs of up 
to 100 nodes except for RlOO-lga where the gap is 2 between the LP 
bound and the best integer solution found in 1000 seconds. The gaps 
are higher for some miscellaneous graphs in Table 2. 

5.3 Further Research 

A full implementation of the branching is necessary to complete the 
branch-and-price framework proposed here. Based on the initial results, 
there is hope that the LP bound is strong and one may not need to have a 
very deep branch-and-price tree to find optimal multi-colorings for many 
structured graphs. Further exploration will explore the robustness of this 
framework for general graphs. 

It will also be interesting to see the comparison between using this 
branch-and-price scheme with a branch-and-price scheme that uses mod­
ified branching scheme proposed by Vanderbeck [19], 

Finally, it will be interesting to see if this framework can be suitably 
exploited to solve other variations and extensions of coloring problems. 
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Table 1. Results for Geometric Graphs 

1 Instance 
geom20 

geom20a 
1 geom20b 
1 geomSO 

geomSOa 
geomSOb 
geom40 

geom40a 
geom40b 
geomSO 

geomSOa 
geomSOb 
geomGO 

geom60a 
geom60b 
geomTO 

geomTOa 
geomTOb 
geomSO 

geomSOa 
geomSOb 
geom90 

geom90a 
geomOOb 

geomlOO 
geomlOOa 
geomlOOb 
geomllO 

geomllOa 
geomllOb 
geoml20 

geoml20a 
geoml20b 

LP 
28.00 
30.00 
8.00 

26.00 
40.00 
11.00 
31.00 
46.00 
14.00 
35.00 
61.00 
17.00 
36.00 
65.00 
22.00 
44.00 
71.00 
22.00 
63.00 
68.00 
25.00 
51.00 
65.00 
28.00 
60.00 
81.00 
30.00 
62.00 
91.00 
37.00 
63.50 
93.00 
34.00 

Heur 
28 
30 
8 

26 
40 
11 

31 
46 
14 
35 
61 
18 
36 
65 
22 
44 
71 
23 
63 
68 
26 
52 
66 
29 
60 
81 
31 
63 
92 
37 
64 
94 
35 

1 Gap 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
1 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
1 
0 
0 
1 
1 

1 cpu-lp 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
1 

cpu-ip 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
1 
5 
2 
1 
2 

25 
10 

141 
1 

167 
303 
462 

cons 
20 
20 
20 
30 
30 
30 
40 
40 
40 
50 
50 
50 
60 
60 
60 
70 
70 
70 
80 
80 
80 
90 
90 
90 

100 
100 
100 
110 
110 
110 
120 
120 
120 

vars 
31 
29 
34 

49 
65 
67 
76 
69 
96 
96 
106 
121 
124 
120 
129 
131 
130 
160 
130 
168 
211 
171 
243 
213 
180 
241 
276 
212 
260 
214 
268 
329 
302 
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Table 2. Results for Random and Other Miscellaneous Graphs 

1 Instance 
R50-lga 

R50-lgba 
R50-5ga 

R50-5gba 
R50-9ga 

R50-9gba 
R75-lga 

R75-lgba 
R75-5ga 

R75-5gba 
R75-9ga 

R75-9gba 
RlOO-lga 

RlOO-lgba 
R100-5ga 

R100-5gba 
R100-9ga 

R100-9gba 
1 mycielS 

mycielSb 
myciel4 

myciel4b 
myciel5 

myciel5b 

mycielG 
myciel6b 
myciel7 

myciel7b 
queen8-8 

queen8-8b 
queen9-9 

queen9-9b 
queen 10-10 

queen 10-10b 
queenl l -11 

q u e e n l l - l l b 
queen12-12 

queen12-12b 

DSJC125.1 
DSJC125.1b 
DSJC125.5 

DSJC125.5b 
DSJC125.9 

DSJC125.9b 

LP 
12.00 
45.00 
28.12 
99.68 
64.00 

228.00 
14.00 
53.00 
37.17 
130.84 

93.50 
328.00 
15.00 
56.00 
41.96 
152.57 
117.29 
421.50 
10.50 
31.50 
11.71 
38.80 
13.32 
44.83 
15.47 
57.14 

16.37 
60.74 
28.00 
113.00 
35.00 
135.00 
38.00 
136.00 
41.00 
140.00 
42.00 
163.0 
19.00 
67.00 
52.87 
161.5 

139.00 
496.25 

Heur 
12 
45 
29 
100 
64 

228 
15 
54 
38 
131 
94 

328 
17* 
57 
43 
153 
118 
422 
11 
32 
12 
39 
14 
45 
16 
58 
17 
61 
29 
113 
36 
135 
40 
136 
44* 
142* 
47* 

165.0* 
21 
68 

55* 
164.0* 

140 
497 

1 Gap 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
2 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
2 
0 
3 
2 

5 
2 
2 
1 
2 
2 
1 
0 

1 cpu-lp cpu-ip 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 1 
0 4 
2 2 
2 4 

0 0 
0 0 
10 1000 
4 127 
7 38 
6 228 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 3 
2 1 

30 3 
18 23 
0 1 
0 0 
0 2 
0 2 
1 123 
0 42 

1 1000 
3 1000 

38 1001 
1 1000 
2 57 
2 63 

20 1001 
19 1000 
1 1 
1 0 

cons 
50 
50 
50 
50 
50 
50 
70 
70 
75 
75 
75 
75 
100 
100 
100 
100 
100 
100 
11 
11 
23 
23 
47 
47 
95 
95 
191 
191 
64 
64 
81 
81 
100 
100 
121 
121 
144 
144 
125 
125 
125 
125 
125 
125 

vars 
91 
82 

482 
441 
253 
177 
262 
224 
1290 
1262 
354 
372 
612 
492 

2292 
2171 
786 
640 
27 
24 
83 
70 

243 
189 
578 
595 
1379 
1096 
266 
148 
215 
242 
291 
282 
349 
443 
701 
376 
321 
368 

3591 
3733 
1388 
1270 
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