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Optimization Techniques 

2.1 Introduction 

There are mainly two approaches to optimizing PCB assembly problems. The first 
one is to formulate the problems as mathematical models and then solve them to 
optimality using exact algorithms or commercial packages. The second one is 
simply to generate good solutions of the problems using metaheuristics. Although 
the latter approach can generate solutions efficiently, no one knows how good the 
solutions are unless the optimal solution is known in advance. 

This chapter is organized in the following way:  Section 2.2 presents several 
types of mathematical programming in Operations Research, which can be applied 
to PCB assembly problems. Section 2.3 and Section 2.4 survey commonly used 
exact algorithms and metaheuristics, respectively. Section 2.5 describes the 
commercial packages including those adopted in this book and some other 
prevalently used ones. Finally, some remarks concerning this chapter are 
summarized in Section 2.6. 

2.2 Mathematical Programming 

Many researchers used mathematical programming models in dealing with the 
PCB assembly problems. A mathematical programming model is a mathematical 
representation of the actual situation that may be used to make better decisions or 
simply to understand the actual situation better (Winston and Venkataramanan, 
2003). The common feature which mathematical programming models have is that 
they all involve optimization (Williams, 1999). In PCB assembly problems, 
optimization includes the minimization of something (e.g., setup time, placement 
time, and so on) or the maximization of something (e.g., throughput, workload 
balance, and so on), under certain constraints (e.g., machine capacity, available 
production time, and so on). 

In the following subsections, attention is confined to linear programming 
models, integer linear programming models, and nonlinear programming models. 
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They are presented and studied because the component sequencing and the feeder 
arrangement problems for the sequential pick-and-place machine (in Chapter 3) 
and the concurrent chip shooter machine (in Chapter 4), and the line assignment 
and the component allocation problems (in Chapter 5) can be formulated with these 
types of models. 

2.2.1 Linear Programming 

A model is defined as linear program (LP) when the objective function and the 
constraints involve linear expressions and the decision variables are continuous. 
Comparatively, LP models are given so much attention in comparison with 
nonlinear programming models because they are much easier to solve. The 
transportation model, first described by Hitchcock in 1941, is a special class of LP 
(Williams, 1999). Suppose that a number of suppliers (i = 1, 2, …, m) provides a 
commodity to a number of customers (j = 1, 2, …, n). The transportation problem 
is how to meet each customer’s requirement, dj, while not exceeding the capacity 
of any supplier, si, at minimum cost, cij. By introducing variables xij to represent the 
quantity of the commodity sent from supplier i to customer j, the transportation 
model can be written as (Winston and Venkataramanan, 2003) 
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The objective function (2.1) is to minimize the total transportation cost. 
Constraint set (2.2) is known as a supply or availability constraint, whereas 
constraint set (2.3) is known as a demand or requirement constraint. M2-1 is 
referred to as the transportation model. If the total supply equals total demand, then 
the problem is said to be a balanced transportation problem. In this case, constraint 
sets (2.2), and (2.3) are treated as both “=” instead of “≤” and “≥”, respectively. 

2.2.2 Integer Linear Programming 

Integer linear programming or integer programming (IP) is widely adopted as a 
method of modeling because some variables are not continuous but integers in 
many cases in real life. Actually, IP is a subset of LP, with an additional constraint 
that some or all decision variables are restricted to integral values depending on the 
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type of IP. Generally, there are three types of IP. First, IP is called pure integer 
linear programming if all variables must be integers. Second, IP is called mixed 
integer linear programming if only some of the variables must be integers. Third, 
IP is called binary integer linear programming if all the variables must be either 0 
or 1 (Winston and Venkataramanan, 2003). 

IP has important practical applications. However, it was pointed out that 
computational experience with IP has been less than satisfactory (Taha, 2003). 

The traveling salesman problem (TSP) is one of the most widely studied IP 
problems. The TSP can be easily stated as follows. A salesman wants to visit n 
distinct cities and then return home. He wants to determine the sequence of the 
travel so that the overall travel distance is minimized while visiting each city not 
more than once. Although the TSP is conceptually simple, it is difficult to obtain 
an optimal solution. In an n-city situation, any permutation of n cities yields a 
possible solution. As a consequence, n! possible tours must be evaluated in the 
search space. By introducing variables xij to represent the tour of the salesman 
travels from city i to city j, one of the common IP formulations for the TSP can be 
written as (Winston and Venkataramanan, 2003) 
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 All xij = 0 or 1. All ui ≥ 0 and is a set of integers. (M2-2) 

The distance between city i and city j is denoted as cij. The objective function 
(2.4) is simply to minimize the total distance traveled in a tour. Constraint set (2.5) 
ensures that the salesman arrives once at each city. Constraint set (2.6) ensures that 
the salesman leaves each city once. Constraint set (2.7) is to avoid the presence of 
a subtour. 

The TSP formulated for the component sequencing problem is known as the 
Euclidean TSP, in which the distance matrix c is expected to be symmetrical, that 
is, cij = cji for all i, j, and to satisfy the triangle inequality, that is, cik ≤  cij + cjk for 
all distinct i, j, k. 
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2.2.3 Nonlinear Programming 

In the previous subsections, LP as well as IP has been studied. For an LP, the 
objective is to minimize or maximize a linear function subject to linear constraints. 
Although LP problems are very common and cover a wide range of problems, the 
objective function may not be a linear function, or some of the constraints may not 
be linear in a real-life situation. Such an optimization problem is called a nonlinear 
programming (NLP) problem. 

The quadratic assignment problem (QAP) is a generalization of the linear 
assignment problem. The major difference between them is that the objective 
function of the QAP is in a nonlinear expression. Therefore, it is comparatively 
difficult to solve. The QAP can be described as follows. Consider a set of facilities 
(i, k = 1, 2, …, n) placed uniquely in a set of locations (j, l = 1, 2, …, n). The 
workflow intensity between each pair of facilities is aik while the distance between 
each pair of locations is bjl. Also, a fixed cost cij associated with the placement of 
facility i in location j is specified. The formulation of the QAP can be written as 
(Burkard et al., 1991; Williams, 1999) 
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The decision variables xij represent the placement of facility i in location j. 
Often, the objective function (2.8) is to assign facilities to locations so that the 
travel distance of material flow is minimized, while assuming that the cost of 
assigning a facility does not depend upon the location, that is, cij = 0. Constraint set 
(2.9) ensures that each location must be occupied by only one facility. Constraint 
set (2.10) ensures that each facility must be assigned only to one location. 

2.3 Exact Algorithms 

A set of fixed computational rules for solving a particular class of problems or 
models is known as an algorithm. It applies the rules repetitively to the problem or 
the model, each iteration moves the solution closer to the optimum. In Operations 
Research, there does not exist an algorithm that solves all types of mathematical 
models. For example, the simplex algorithm is the general method for solving LP 
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models, whereas the branch-and-bound algorithm is the general technique for 
solving IP models. 

2.3.1 Algorithms for Linear Programming 

Finding an optimal solution to an LP model can be regarded as assigning values to 
the decision variables so that the specified objective is achieved and the constraints 
are not violated. In the following, two commonly used algorithms for solving the 
LP models are discussed: the simplex algorithm and the interior point algorithm. 

2.3.1.1 The Simplex Algorithm 
The simplex algorithm has proved highly efficient in practice and therefore was 
widely adopted in commercial optimization packages for solving any LP model 
(Jensen and Bard, 2003). Its development was based on the graphical method that 
the optimal solution is always associated with a corner point of the solution space. 
The idea of the simplex algorithm is to move the solution to a new corner that has 
the potential to improve the value of the objective function in each iteration. The 
process terminates when the optimal solution is found (Taha, 2003). 

2.3.1.2 The Interior Point Algorithm 
The simplex algorithm searches for the optimal solution along the corner points of 
the solution space, whereas the interior point algorithm looks for the optimum 
through the interior of the feasible region (Jensen and Bard, 2003). The interior 
point algorithm has theoretical importance that it provides a bound on the 
computational effort required to solve a problem that is a polynomial function of 
its size. But, there is no polynomial bound available in the simplex algorithm 
(Carter and Price, 2001; Jensen and Bard, 2003). 

2.3.2 Algorithms for Integer Linear Programming 

Unlike LP with the simplex algorithm, a good IP algorithm for a very wide class of 
IP problems has not been developed (Williams, 1999). Different algorithms are 
good with different types of problem. Generally, IP algorithms are based on 
exploiting the tremendous computational success of LP. Thus, before applying an 
IP algorithm, the integer restriction on the problem should be relaxed first to form 
an LP model. Starting from the continuous optimum point obtained from the LP 
model, integer constraints are incorporated repeatedly to modify the LP solution 
space in a manner that will eventually render the optimum extreme point satisfying 
the integer requirements. 
 
2.3.2.1 The Branch-and-Bound Algorithm 
In practice, the branch-and-bound (B&B) algorithm is widely used for solving IP 
models, especially mixed integer linear programming (MIP) models (Williams, 
1999). The idea of the B&B algorithm is to perform the enumeration efficiently so 
that not all combinations of decision variables must be examined. Sometimes, the 
terms “implicit enumeration”, “tree search”, and “strategic partitioning” are used 
depending on the implementation of the algorithm (Jensen and Bard, 2003). 
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The B&B algorithm starts with solving an IP model as an LP model by relaxing 
the integrality conditions. In case the resultant LP solution or the continuous 
optimum is an integer, this solution will also be the integer optimum. Otherwise, 
the B&B algorithm sets up lower and upper bounds for the optimal solution. The 
branching strategy repetitively decreases the upper bound and increases the lower 
bound. The process terminates, provided that the processing list is empty (Castillo 
et al., 2002). 

2.3.2.2 The Cutting Plane Algorithm 
As with the B&B algorithm for solving IP models, the cutting plane algorithm 
relaxes the integrality requirements of the IP models and solves the resultant LP. 
But rather than repetitively imposing restrictions on the fractional variables, as is 
done in the B&B algorithm, extra constraints (i.e., cutting planes) are 
systematically added to the model, and the model is then resolved. The new 
solution to the further constrained model may or may not be an integer. By 
continuing the process until an integer solution is found or the model is shown to 
be infeasible, the IP model can be solved (Williams, 1999; Jensen and Bard, 2003). 

2.3.3 Algorithms for Nonlinear Programming 

The quadratic assignment problem (QAP), as shown in Section 2.2.3, belongs to 
the NLP model because there is a nonlinear expression in the objective function. In 
addition, the QAP is a binary NLP model as the decision variable is either 0 or 1. 
But, if an NLP model consists of both integer and continuous variables, it is 
regarded as mixed integer nonlinear programming model (MINLP). In this book, 
the integrated problem for the concurrent chip shooter machine will be formulated 
as this type of model. Therefore, the algorithms for solving the MINLP models are 
discussed. 

Actually, the MINLP problems are the most difficult optimization problems of 
all. They combine all the difficulties of both the MIP as well as the NLP. Also, 
they do not have the properties of the MIP or the NLP. For example, a local 
minimum is equivalent to the global minimum for convex NLP problems. But this 
result does not hold for MINLP problems. Therefore, MINLP problems belong to 
the class of NP-complete problems (Kallrath, 1999). 

There are two categories of MINLP problems: convex and nonconvex. In the 
following, the generalized benders decomposition, an algorithm for solving convex 
MINLP problems, and the branch-and-reduce algorithm, an algorithm for 
optimizing nonconvex MINLP problems, are described in brief. 

2.3.3.1 The Generalized Benders Algorithm 
In the generalized benders decomposition, two sequences of updated upper and 
lower bounds are generated. The upper bounds correspond to solving subproblems 
in continuous variables by fixing the integer variables, while the lower bounds are 
based on duality theory. The algorithm terminates if the lower and the upper 
bounds equal or cross each other (Floudas, 2000). 
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2.3.3.2 The Branch-and-Reduce Algorithm 
The branch-and-reduce algorithm is the extended version of the B&B algorithm for 
optimizing nonconvex MINLP problems in which valid convex underestimating 
NLPs can be constructed for the nonconvex relaxation. Due to the fact that 
nonconvex NLPs must be underestimated at each node, convergence can be 
achieved only if the continuous variables are branched. A number of tests are 
suggested to speed up the reduction of the solution space, including the optimality-
based range reduction tests and the feasibility-based range reduction tests (Floudas, 
2000; Tawarmalani and Sahinidis, 2002). 

2.4 Metaheuristics 

For many exact algorithms, the computational effort required is an exponential 
function of the problem size. In a sense, therefore, it may be necessary to abandon 
the search for the optimal solution using the exact algorithms and simply seek a 
good solution in a reasonable computational time using heuristics. In Operations 
Research, the term “heuristic” refers to the methods for the problem under study, 
based on rule of thumb, common sense, or adaptations of exact methods for 
simpler models. They are used to find reasonable solutions when the problems are 
complex and difficult to solve. In optimization, a heuristic method refers to a 
practical and quick method based on strategies that are likely to (but not 
guaranteed to) lead to a solution that is approximately optimal or near-optimal 
(Murty, 1995). 

Heuristics can be classified as either constructive (greedy) heuristics or as local 
search heuristics (Walser, 1999). First, greedy heuristics, such as the nearest 
neighbor heuristic, simply list all the feasible solutions of the problem under study, 
evaluate their objective functions, and pick the best as the output of the model. 
This approach of complete enumeration is likely to be grossly inefficient especially 
when the number of possible solutions to the problem is vast. So, greedy heuristics 
are not desirable for solving combinatorial optimization problems, and conversely, 
local search heuristics are more suitable. 

Second, local search heuristics, such as the 2-opt local search heuristic, are 
based on the concept of exploring the vicinity of the current solution. Neighboring 
solutions are generated by a move-generation mechanism. If the generated 
neighbor has a better objective value, it becomes a new current solution, or 
otherwise the current solution is retained. The process is iterated until there is no 
possibility of improvement in the neighboring solution. The method then 
terminates at a point called local optimum, which may be far from any global 
optimum, as shown in Figure 2.1. This is one of the disadvantages of simple local 
search methods. 
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Figure 2.1. Global and local optimum 

To avoid getting trapped at a local optimum, a number of conceptual metalevel 
strategies have been developed for local search heuristics. These strategies are 
referred to as metaheuristics (Osman and Kelly, 1996). A metaheuristic is an 
iterative generation process that guides a subordinate or simple heuristic by 
combining intelligence, biological evolution, neural systems, and statistical 
mechanics for exploring and exploiting the search spaces using learning strategies 
to structure information to find near-optimal solutions efficiently. The families of 
metaheuristics include genetic algorithms, the greedy random adaptive search 
procedure, problem-space search, neural networks, simulated annealing, tabu 
search, threshold algorithms, and their hybrids. 

In the following subsections, three metaheuristics will be described briefly. 
These three approaches are very general and applicable to a wide range of 
problems, while yielding reasonable performance in terms of speed and good 
performance in terms of the quality of the solutions generated. In addition, the 
Committee on the Next Decade of Operations Research has singled out these 
approaches as “extremely promising” for the future treatment of practical 
applications (Glover et al., 1993). They are simulated annealing (SA), tabu search 
(TS), and genetic algorithms (GAs). 

2.4.1 Simulated Annealing 

Simulated annealing (SA), introduced by Kirkpatrick, Gelatt, and Vecchi in 1983, 
is a technique combining the concepts of statistical mechanics. SA is based on an 
analogy between the annealing process and the technique of solving the 
combinatorial optimization problem. SA starts with an initial solution and 
repeatedly generates a neighbor solution. A neighbor solution is always accepted if 
there is an improvement in the objective value. However, if it is worse, the solution 
may be accepted and this acceptance will depend on the control parameter 
(temperature). To apply SA to a practical problem, there are several choices to be 
made. The choices can be divided into two main categories: problem-specific and 
generic. Table 2.1 illustrates the several choices (Johnson et al., 1989; Rayward et 
al., 1993; Osman and Kelly, 1996). 

Objective value 

Iterations 

Local 

Global 
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Table 2.1. Choices to be made in implementing simulated annealing 

Problem-specific: - What is the solution representation? 

 - What is the objective function? 

 - What are the neighborhood generation mechanisms? 

 - How do we determine an initial solution? 

Generic: - How do we determine an initial temperature? 

 - What is the temperature update rule? 

 - How many iterations must be performed at each temperature? 

 - What is the stopping criterion? 

2.4.2 Tabu Search 

Tabu search (TS) was developed by Glover and Hansen in 1986 for solving 
combinatorial optimization problems. TS, like SA, is based on local search 
heuristics with local-optima avoidance, but in a deterministic way which tries to 
model human memory processes. In other words, TS is an iterative metaheuristic 
search procedure combining the concepts of artificial intelligence. 

TS starts with an initial current solution, which can be generated randomly. 
Then, the method generates a list of all neighborhood solutions, which is known as 
the candidate list, from the current solution. Next, all solutions in the candidate list 
are evaluated, and the best solution from the candidate list will be selected. 
Sometimes, the best solution may not be selected if the solution is in the tabu 
memory lists. The lists can be divided into two parts, which are recency (short-
term) memory, and frequency (long-term) memory. Both memories are responsible 
for recording the history of the search, and especially the moves, called attributes, 
have participated in generating past solutions. The mechanism attempts to avoid 
the cycling behavior of the method. If the selection is forbidden (tabu), the method 
proceeds to select the second best solution in the candidate list as the new current 
solution. On the other hand, if the current solution is better than the specified 
aspiration level or best fitness value found so far, the solution’s tabu status is 
overridden and the solution is still admissible as the next current solution. The 
current best solution is updated if necessary, and then a new list of candidate 
solutions is generated around the new current solution. The procedure continues 
until the stopping criteria are satisfied (Glover et al., 1993; Glover and Laguna, 
1997). 

2.4.3 Genetic Algorithms 

Genetic algorithms (GAs) were developed by Holland in the 1960s. Only recently, 
their potential for solving combinatorial optimization problems has been explored. 
Similar to SA and TS, GAs can avoid getting trapped in a local optimum by the aid 
of one of the genetic operators called mutation. Actually, the basic idea of GAs is 
to maintain a population of candidate solutions that evolves under selective 
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pressure. Hence, they can be viewed as a class of local search based on a solution-
generation mechanism operating on attributes of a set of solutions rather than 
attributes of a single solution by the move-generation mechanism of the local 
search methods, like SA and TS (Osman and Kelly, 1996). As GA is selected as a 
heuristic method to solve the problems in this book, it will be described more 
thoroughly in the following chapters. 

In recent years, many researchers discovered that a simple GA was not 
desirable for solving combinatorial optimization problems with a large problem 
size. Therefore, they incorporated local search heuristics into the GA, which is 
called the genetic local search (GLS), for solving the TSP (Freisleben and Merz, 
1996a,b) and the QAP (Huntley and Brown, 1996; Ahuja et al., 2000). 
Experimental results showed that the GLS could solve the TSP and the QAP 
effectively. For instance, it was found that the GLS obtained the optimal solution 
for a TSP with 1,400 cities after 200 iterations (Freisleben and Merz, 1996b). 

Commonly used local search heuristics can be classified into three main 
categories: 2-opt, 3-opt, and Lin-Kernighan (LK). For the 2-opt local search 
heuristic, a neighboring solution is obtained from the current solution by deleting 
two edges, reversing and reconnecting the two resultant paths in a different way to 
form a new tour. For the 3-opt local search heuristic, three edges are deleted 
instead of two. The resultant paths are combined in the best possible way. 3-opt is 
much more effective than 2-opt, though the size of the neighborhood is larger, and 
hence more time-consuming to search. To improve 3-opt further, Lin and 
Kernighan developed a sophisticated edge exchange procedure where the number 
of edges to be exchanged is variable (Reinelt, 1994). 

2.5 Commercial Packages 

It is worth writing very sophisticated and efficient computer programs for 
algorithms when they are used frequently for solving many different models. Such 
programs, usually consisting of a number of algorithms collected together, are 
called a “package” of computer routines. Many such package programs are 
available commercially for solving mathematical programming models. When a 
mathematical programming model is built, it is usually worth using an existing 
package to solve it rather than getting diverted onto the task of programming the 
computer to solve the model oneself (Williams, 1999). 

In this book, integrated problems for the sequential pick-and-place machine and 
the concurrent chip shooter machine are formulated as integer nonlinear 
programming models presented in Chapter 3 and Chapter 4, respectively. Then, 
each of the models is equivalently converted into an integer linear programming 
model. To verify the models, two commercial packages are used. First, BARON is 
adopted to solve integer nonlinear programming models, whereas CPLEX is used 
for optimizing integer linear programming models. In the following, the 
characteristics and the working principles of both commercial packages are 
described briefly. In addition, some existing commercial packages not used in this 
book are discussed. 
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2.5.1 BARON 

BARON is a computational system for solving nonconvex optimization models to 
global optimality. Purely continuous NLP models, purely integer NLP models, and 
MINLP models can be solved with the software. This is the reason why it is 
adopted to solve the integer nonlinear programming models presented in Chapter 3 
and Chapter 4. BARON combines constraint propagation, interval analysis, and 
duality for efficient range reduction with rigorous relaxation constructed by 
enlarging the feasible region and/or underestimating the objective function. 

2.5.2 CPLEX 

CPLEX is used as an integer linear programming solver in this book because it is 
powerful in solving LP and MIP problems. For problems with integer variables, 
CPLEX uses a branch-and-bound search with modern algorithmic features, such as 
cuts and heuristics, to solve a series of LP subproblems. Because a single MIP 
generates many LP subproblems, even a small MIP can be very computationally 
intensive and requires significant amounts of physical memory. 

2.5.3 Others 

Nowadays, there are numerous commercial packages available for tackling 
different types of mathematical programming problems. For instance, apart from 
BARON, DICOPT is a framework for solving MINLP models using standard MIP 
and NLP solvers to solve MIP and NLP subproblems generated by the algorithm. 
SBB is another MINLP solver. It is based on a combination of the standard B&B 
algorithm and some of the standard NLP solvers for subproblems. 

On the other hand, except for CPLEX, LINDO is also widely used as an MIP 
solver. The base version includes primal and dual simplex solvers. For models with 
integer restrictions, LINDO includes an exceptional integer solver with default 
settings selected to work well on broad classes of integer models. OSL includes a 
set of stand-alone solvers for the MIP problem. A branch-and-bound technique is 
used for MIP, whereas the simplex algorithm is used to solve LP subproblems. 

2.6 Summary 

Various optimization techniques appropriate for the PCB assembly problems have 
been discussed in this chapter. Some remarks concerning these techniques are 
summarized as follows: 

1. PCB assembly problems can be formulated as different types of 
mathematical programming models, including linear programming, integer 
linear programming, and nonlinear programming models. 

2. An algorithm does not exist that solves all types of mathematical models. 
For instance, the simplex algorithm is the general method for solving linear 
programming models but not integer linear programming models. 
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3. Simulated annealing, tabu search, and the genetic algorithms (GAs) are 
commonly used metaheuristics. Note that each metaheuristic possesses its 
own characteristics and there is no special one that is acknowledged as the 
best. 

4. GAs will be adopted to solve integrated problems for both types of 
placement machines, the line assignment problem, and the component 
allocation problem. The reason is that GAs have been applied successfully 
in a wide variety of optimization problems such as the TSP, the QAP, and 
the minimum spanning tree problem (Gen and Cheng, 1997). In addition, 
the merits of GAs, including simplicity, ease of operation, and flexibility, 
are the encouraging factors for applying it. 

5. BARON and CPLEX are commercial packages used to solve integer 
nonlinear programming models and integer linear programming models to 
be formulated in this book, respectively. 

In the next chapter, the component sequencing problem and the feeder 
arrangement problem are studied for the sequential pick-and-place machine. Each 
of the problems is formulated as an individual mathematical model first. Because 
of their inseparable relationship, one cannot be solved unless the solution of the 
other one is obtained beforehand. Therefore, two mathematical models in nonlinear 
form are constructed for the integrated problem. The nonlinear programming 
models are also converted equivalently into two linear programming models. These 
models are compared in terms of computing complexity as well as the 
computational time taken for obtaining the global optimal solution. To achieve this 
goal, BARON and CPLEX are used. Besides applying mathematical modeling, a 
genetic algorithm incorporating several improved heuristics is developed. 


