
2

Optimization Techniques

2.1 Introduction

There are mainly two approaches to optimizing PCB assembly problems. The first
one is to formulate the problems as mathematical models and then solve them to
optimality using exact algorithms or commercial packages. The second one is
simply to generate good solutions of the problems using metaheuristics. Although
the latter approach can generate solutions efficiently, no one knows how good the
solutions are unless the optimal solution is known in advance.

This chapter is organized in the following way: Section 2.2 presents several
types of mathematical programming in Operations Research, which can be applied
to PCB assembly problems. Section 2.3 and Section 2.4 survey commonly used
exact algorithms and metaheuristics, respectively. Section 2.5 describes the
commercial packages including those adopted in this book and some other
prevalently used ones. Finally, some remarks concerning this chapter are
summarized in Section 2.6.

2.2 Mathematical Programming

Many researchers used mathematical programming models in dealing with the
PCB assembly problems. A mathematical programming model is a mathematical
representation of the actual situation that may be used to make better decisions or
simply to understand the actual situation better (Winston and Venkataramanan,
2003). The common feature which mathematical programming models have is that
they all involve optimization (Williams, 1999). In PCB assembly problems,
optimization includes the minimization of something (e.g., setup time, placement
time, and so on) or the maximization of something (e.g., throughput, workload
balance, and so on), under certain constraints (e.g., machine capacity, available
production time, and so on).

In the following subsections, attention is confined to linear programming
models, integer linear programming models, and nonlinear programming models.

8 Optimal Production Planning for PCB Assembly

They are presented and studied because the component sequencing and the feeder
arrangement problems for the sequential pick-and-place machine (in Chapter 3)
and the concurrent chip shooter machine (in Chapter 4), and the line assignment
and the component allocation problems (in Chapter 5) can be formulated with these
types of models.

2.2.1 Linear Programming

A model is defined as linear program (LP) when the objective function and the
constraints involve linear expressions and the decision variables are continuous.
Comparatively, LP models are given so much attention in comparison with
nonlinear programming models because they are much easier to solve. The
transportation model, first described by Hitchcock in 1941, is a special class of LP
(Williams, 1999). Suppose that a number of suppliers (i = 1, 2, …, m) provides a
commodity to a number of customers (j = 1, 2, …, n). The transportation problem
is how to meet each customer’s requirement, dj, while not exceeding the capacity
of any supplier, si, at minimum cost, cij. By introducing variables xij to represent the
quantity of the commodity sent from supplier i to customer j, the transportation
model can be written as (Winston and Venkataramanan, 2003)

 Minimize z = ∑∑
= =

m

i

n

j
ijij xc

1 1

 (2.1)

subject to

 i

n

j
ij sx ≤∑

=1

 i = 1, 2, …, m (2.2)

 ∑
=

≥
m

i
jij dx

1

 j = 1, 2, …, n (2.3)

 All xij ≥ 0. (M2-1)

The objective function (2.1) is to minimize the total transportation cost.
Constraint set (2.2) is known as a supply or availability constraint, whereas
constraint set (2.3) is known as a demand or requirement constraint. M2-1 is
referred to as the transportation model. If the total supply equals total demand, then
the problem is said to be a balanced transportation problem. In this case, constraint
sets (2.2), and (2.3) are treated as both “=” instead of “≤” and “≥”, respectively.

2.2.2 Integer Linear Programming

Integer linear programming or integer programming (IP) is widely adopted as a
method of modeling because some variables are not continuous but integers in
many cases in real life. Actually, IP is a subset of LP, with an additional constraint
that some or all decision variables are restricted to integral values depending on the

 Optimization Techniques 9

type of IP. Generally, there are three types of IP. First, IP is called pure integer
linear programming if all variables must be integers. Second, IP is called mixed
integer linear programming if only some of the variables must be integers. Third,
IP is called binary integer linear programming if all the variables must be either 0
or 1 (Winston and Venkataramanan, 2003).

IP has important practical applications. However, it was pointed out that
computational experience with IP has been less than satisfactory (Taha, 2003).

The traveling salesman problem (TSP) is one of the most widely studied IP
problems. The TSP can be easily stated as follows. A salesman wants to visit n
distinct cities and then return home. He wants to determine the sequence of the
travel so that the overall travel distance is minimized while visiting each city not
more than once. Although the TSP is conceptually simple, it is difficult to obtain
an optimal solution. In an n-city situation, any permutation of n cities yields a
possible solution. As a consequence, n! possible tours must be evaluated in the
search space. By introducing variables xij to represent the tour of the salesman
travels from city i to city j, one of the common IP formulations for the TSP can be
written as (Winston and Venkataramanan, 2003)

 Minimize z = ∑∑
=

≠
=

n

i

n

ij
j

ijij xc
1 1

 (2.4)

subject to

 ∑
=

n

i
ijx

1

 = 1 j = 1, 2, …, n; i ≠ j (2.5)

 ∑
=

n

j
ijx

1

 = 1 i = 1, 2, …, n; i ≠ j (2.6)

 ui – uj + nxij ≤ n – 1 i, j = 2, 3, …, n; i ≠ j (2.7)

 All xij = 0 or 1. All ui ≥ 0 and is a set of integers. (M2-2)

The distance between city i and city j is denoted as cij. The objective function
(2.4) is simply to minimize the total distance traveled in a tour. Constraint set (2.5)
ensures that the salesman arrives once at each city. Constraint set (2.6) ensures that
the salesman leaves each city once. Constraint set (2.7) is to avoid the presence of
a subtour.

The TSP formulated for the component sequencing problem is known as the
Euclidean TSP, in which the distance matrix c is expected to be symmetrical, that
is, cij = cji for all i, j, and to satisfy the triangle inequality, that is, cik ≤ cij + cjk for
all distinct i, j, k.

10 Optimal Production Planning for PCB Assembly

2.2.3 Nonlinear Programming

In the previous subsections, LP as well as IP has been studied. For an LP, the
objective is to minimize or maximize a linear function subject to linear constraints.
Although LP problems are very common and cover a wide range of problems, the
objective function may not be a linear function, or some of the constraints may not
be linear in a real-life situation. Such an optimization problem is called a nonlinear
programming (NLP) problem.

The quadratic assignment problem (QAP) is a generalization of the linear
assignment problem. The major difference between them is that the objective
function of the QAP is in a nonlinear expression. Therefore, it is comparatively
difficult to solve. The QAP can be described as follows. Consider a set of facilities
(i, k = 1, 2, …, n) placed uniquely in a set of locations (j, l = 1, 2, …, n). The
workflow intensity between each pair of facilities is aik while the distance between
each pair of locations is bjl. Also, a fixed cost cij associated with the placement of
facility i in location j is specified. The formulation of the QAP can be written as
(Burkard et al., 1991; Williams, 1999)

 Minimize z = ∑∑∑∑
= =

≠
=

≠
=

n

i

n

j

n

ik
k

n

jl
l

klijjlik xxba
1 1 1 1

 + ∑∑
= =

n

i

n

j
ijij xc

1 1

 (2.8)

subject to

 ∑
=

n

i
ijx

1

 = 1 j = 1, 2, …, n (2.9)

 ∑
=

n

j
ijx

1

 = 1 i = 1, 2, …, n (2.10)

 All xij = 0 or 1. (M2-3)

The decision variables xij represent the placement of facility i in location j.
Often, the objective function (2.8) is to assign facilities to locations so that the
travel distance of material flow is minimized, while assuming that the cost of
assigning a facility does not depend upon the location, that is, cij = 0. Constraint set
(2.9) ensures that each location must be occupied by only one facility. Constraint
set (2.10) ensures that each facility must be assigned only to one location.

2.3 Exact Algorithms

A set of fixed computational rules for solving a particular class of problems or
models is known as an algorithm. It applies the rules repetitively to the problem or
the model, each iteration moves the solution closer to the optimum. In Operations
Research, there does not exist an algorithm that solves all types of mathematical
models. For example, the simplex algorithm is the general method for solving LP

 Optimization Techniques 11

models, whereas the branch-and-bound algorithm is the general technique for
solving IP models.

2.3.1 Algorithms for Linear Programming

Finding an optimal solution to an LP model can be regarded as assigning values to
the decision variables so that the specified objective is achieved and the constraints
are not violated. In the following, two commonly used algorithms for solving the
LP models are discussed: the simplex algorithm and the interior point algorithm.

2.3.1.1 The Simplex Algorithm
The simplex algorithm has proved highly efficient in practice and therefore was
widely adopted in commercial optimization packages for solving any LP model
(Jensen and Bard, 2003). Its development was based on the graphical method that
the optimal solution is always associated with a corner point of the solution space.
The idea of the simplex algorithm is to move the solution to a new corner that has
the potential to improve the value of the objective function in each iteration. The
process terminates when the optimal solution is found (Taha, 2003).

2.3.1.2 The Interior Point Algorithm
The simplex algorithm searches for the optimal solution along the corner points of
the solution space, whereas the interior point algorithm looks for the optimum
through the interior of the feasible region (Jensen and Bard, 2003). The interior
point algorithm has theoretical importance that it provides a bound on the
computational effort required to solve a problem that is a polynomial function of
its size. But, there is no polynomial bound available in the simplex algorithm
(Carter and Price, 2001; Jensen and Bard, 2003).

2.3.2 Algorithms for Integer Linear Programming

Unlike LP with the simplex algorithm, a good IP algorithm for a very wide class of
IP problems has not been developed (Williams, 1999). Different algorithms are
good with different types of problem. Generally, IP algorithms are based on
exploiting the tremendous computational success of LP. Thus, before applying an
IP algorithm, the integer restriction on the problem should be relaxed first to form
an LP model. Starting from the continuous optimum point obtained from the LP
model, integer constraints are incorporated repeatedly to modify the LP solution
space in a manner that will eventually render the optimum extreme point satisfying
the integer requirements.

2.3.2.1 The Branch-and-Bound Algorithm
In practice, the branch-and-bound (B&B) algorithm is widely used for solving IP
models, especially mixed integer linear programming (MIP) models (Williams,
1999). The idea of the B&B algorithm is to perform the enumeration efficiently so
that not all combinations of decision variables must be examined. Sometimes, the
terms “implicit enumeration”, “tree search”, and “strategic partitioning” are used
depending on the implementation of the algorithm (Jensen and Bard, 2003).

12 Optimal Production Planning for PCB Assembly

The B&B algorithm starts with solving an IP model as an LP model by relaxing
the integrality conditions. In case the resultant LP solution or the continuous
optimum is an integer, this solution will also be the integer optimum. Otherwise,
the B&B algorithm sets up lower and upper bounds for the optimal solution. The
branching strategy repetitively decreases the upper bound and increases the lower
bound. The process terminates, provided that the processing list is empty (Castillo
et al., 2002).

2.3.2.2 The Cutting Plane Algorithm
As with the B&B algorithm for solving IP models, the cutting plane algorithm
relaxes the integrality requirements of the IP models and solves the resultant LP.
But rather than repetitively imposing restrictions on the fractional variables, as is
done in the B&B algorithm, extra constraints (i.e., cutting planes) are
systematically added to the model, and the model is then resolved. The new
solution to the further constrained model may or may not be an integer. By
continuing the process until an integer solution is found or the model is shown to
be infeasible, the IP model can be solved (Williams, 1999; Jensen and Bard, 2003).

2.3.3 Algorithms for Nonlinear Programming

The quadratic assignment problem (QAP), as shown in Section 2.2.3, belongs to
the NLP model because there is a nonlinear expression in the objective function. In
addition, the QAP is a binary NLP model as the decision variable is either 0 or 1.
But, if an NLP model consists of both integer and continuous variables, it is
regarded as mixed integer nonlinear programming model (MINLP). In this book,
the integrated problem for the concurrent chip shooter machine will be formulated
as this type of model. Therefore, the algorithms for solving the MINLP models are
discussed.

Actually, the MINLP problems are the most difficult optimization problems of
all. They combine all the difficulties of both the MIP as well as the NLP. Also,
they do not have the properties of the MIP or the NLP. For example, a local
minimum is equivalent to the global minimum for convex NLP problems. But this
result does not hold for MINLP problems. Therefore, MINLP problems belong to
the class of NP-complete problems (Kallrath, 1999).

There are two categories of MINLP problems: convex and nonconvex. In the
following, the generalized benders decomposition, an algorithm for solving convex
MINLP problems, and the branch-and-reduce algorithm, an algorithm for
optimizing nonconvex MINLP problems, are described in brief.

2.3.3.1 The Generalized Benders Algorithm
In the generalized benders decomposition, two sequences of updated upper and
lower bounds are generated. The upper bounds correspond to solving subproblems
in continuous variables by fixing the integer variables, while the lower bounds are
based on duality theory. The algorithm terminates if the lower and the upper
bounds equal or cross each other (Floudas, 2000).

 Optimization Techniques 13

2.3.3.2 The Branch-and-Reduce Algorithm
The branch-and-reduce algorithm is the extended version of the B&B algorithm for
optimizing nonconvex MINLP problems in which valid convex underestimating
NLPs can be constructed for the nonconvex relaxation. Due to the fact that
nonconvex NLPs must be underestimated at each node, convergence can be
achieved only if the continuous variables are branched. A number of tests are
suggested to speed up the reduction of the solution space, including the optimality-
based range reduction tests and the feasibility-based range reduction tests (Floudas,
2000; Tawarmalani and Sahinidis, 2002).

2.4 Metaheuristics

For many exact algorithms, the computational effort required is an exponential
function of the problem size. In a sense, therefore, it may be necessary to abandon
the search for the optimal solution using the exact algorithms and simply seek a
good solution in a reasonable computational time using heuristics. In Operations
Research, the term “heuristic” refers to the methods for the problem under study,
based on rule of thumb, common sense, or adaptations of exact methods for
simpler models. They are used to find reasonable solutions when the problems are
complex and difficult to solve. In optimization, a heuristic method refers to a
practical and quick method based on strategies that are likely to (but not
guaranteed to) lead to a solution that is approximately optimal or near-optimal
(Murty, 1995).

Heuristics can be classified as either constructive (greedy) heuristics or as local
search heuristics (Walser, 1999). First, greedy heuristics, such as the nearest
neighbor heuristic, simply list all the feasible solutions of the problem under study,
evaluate their objective functions, and pick the best as the output of the model.
This approach of complete enumeration is likely to be grossly inefficient especially
when the number of possible solutions to the problem is vast. So, greedy heuristics
are not desirable for solving combinatorial optimization problems, and conversely,
local search heuristics are more suitable.

Second, local search heuristics, such as the 2-opt local search heuristic, are
based on the concept of exploring the vicinity of the current solution. Neighboring
solutions are generated by a move-generation mechanism. If the generated
neighbor has a better objective value, it becomes a new current solution, or
otherwise the current solution is retained. The process is iterated until there is no
possibility of improvement in the neighboring solution. The method then
terminates at a point called local optimum, which may be far from any global
optimum, as shown in Figure 2.1. This is one of the disadvantages of simple local
search methods.

14 Optimal Production Planning for PCB Assembly

Figure 2.1. Global and local optimum

To avoid getting trapped at a local optimum, a number of conceptual metalevel
strategies have been developed for local search heuristics. These strategies are
referred to as metaheuristics (Osman and Kelly, 1996). A metaheuristic is an
iterative generation process that guides a subordinate or simple heuristic by
combining intelligence, biological evolution, neural systems, and statistical
mechanics for exploring and exploiting the search spaces using learning strategies
to structure information to find near-optimal solutions efficiently. The families of
metaheuristics include genetic algorithms, the greedy random adaptive search
procedure, problem-space search, neural networks, simulated annealing, tabu
search, threshold algorithms, and their hybrids.

In the following subsections, three metaheuristics will be described briefly.
These three approaches are very general and applicable to a wide range of
problems, while yielding reasonable performance in terms of speed and good
performance in terms of the quality of the solutions generated. In addition, the
Committee on the Next Decade of Operations Research has singled out these
approaches as “extremely promising” for the future treatment of practical
applications (Glover et al., 1993). They are simulated annealing (SA), tabu search
(TS), and genetic algorithms (GAs).

2.4.1 Simulated Annealing

Simulated annealing (SA), introduced by Kirkpatrick, Gelatt, and Vecchi in 1983,
is a technique combining the concepts of statistical mechanics. SA is based on an
analogy between the annealing process and the technique of solving the
combinatorial optimization problem. SA starts with an initial solution and
repeatedly generates a neighbor solution. A neighbor solution is always accepted if
there is an improvement in the objective value. However, if it is worse, the solution
may be accepted and this acceptance will depend on the control parameter
(temperature). To apply SA to a practical problem, there are several choices to be
made. The choices can be divided into two main categories: problem-specific and
generic. Table 2.1 illustrates the several choices (Johnson et al., 1989; Rayward et
al., 1993; Osman and Kelly, 1996).

Objective value

Iterations

Local

Global

 Optimization Techniques 15

Table 2.1. Choices to be made in implementing simulated annealing

Problem-specific: - What is the solution representation?

 - What is the objective function?

 - What are the neighborhood generation mechanisms?

 - How do we determine an initial solution?

Generic: - How do we determine an initial temperature?

 - What is the temperature update rule?

 - How many iterations must be performed at each temperature?

 - What is the stopping criterion?

2.4.2 Tabu Search

Tabu search (TS) was developed by Glover and Hansen in 1986 for solving
combinatorial optimization problems. TS, like SA, is based on local search
heuristics with local-optima avoidance, but in a deterministic way which tries to
model human memory processes. In other words, TS is an iterative metaheuristic
search procedure combining the concepts of artificial intelligence.

TS starts with an initial current solution, which can be generated randomly.
Then, the method generates a list of all neighborhood solutions, which is known as
the candidate list, from the current solution. Next, all solutions in the candidate list
are evaluated, and the best solution from the candidate list will be selected.
Sometimes, the best solution may not be selected if the solution is in the tabu
memory lists. The lists can be divided into two parts, which are recency (short-
term) memory, and frequency (long-term) memory. Both memories are responsible
for recording the history of the search, and especially the moves, called attributes,
have participated in generating past solutions. The mechanism attempts to avoid
the cycling behavior of the method. If the selection is forbidden (tabu), the method
proceeds to select the second best solution in the candidate list as the new current
solution. On the other hand, if the current solution is better than the specified
aspiration level or best fitness value found so far, the solution’s tabu status is
overridden and the solution is still admissible as the next current solution. The
current best solution is updated if necessary, and then a new list of candidate
solutions is generated around the new current solution. The procedure continues
until the stopping criteria are satisfied (Glover et al., 1993; Glover and Laguna,
1997).

2.4.3 Genetic Algorithms

Genetic algorithms (GAs) were developed by Holland in the 1960s. Only recently,
their potential for solving combinatorial optimization problems has been explored.
Similar to SA and TS, GAs can avoid getting trapped in a local optimum by the aid
of one of the genetic operators called mutation. Actually, the basic idea of GAs is
to maintain a population of candidate solutions that evolves under selective

16 Optimal Production Planning for PCB Assembly

pressure. Hence, they can be viewed as a class of local search based on a solution-
generation mechanism operating on attributes of a set of solutions rather than
attributes of a single solution by the move-generation mechanism of the local
search methods, like SA and TS (Osman and Kelly, 1996). As GA is selected as a
heuristic method to solve the problems in this book, it will be described more
thoroughly in the following chapters.

In recent years, many researchers discovered that a simple GA was not
desirable for solving combinatorial optimization problems with a large problem
size. Therefore, they incorporated local search heuristics into the GA, which is
called the genetic local search (GLS), for solving the TSP (Freisleben and Merz,
1996a,b) and the QAP (Huntley and Brown, 1996; Ahuja et al., 2000).
Experimental results showed that the GLS could solve the TSP and the QAP
effectively. For instance, it was found that the GLS obtained the optimal solution
for a TSP with 1,400 cities after 200 iterations (Freisleben and Merz, 1996b).

Commonly used local search heuristics can be classified into three main
categories: 2-opt, 3-opt, and Lin-Kernighan (LK). For the 2-opt local search
heuristic, a neighboring solution is obtained from the current solution by deleting
two edges, reversing and reconnecting the two resultant paths in a different way to
form a new tour. For the 3-opt local search heuristic, three edges are deleted
instead of two. The resultant paths are combined in the best possible way. 3-opt is
much more effective than 2-opt, though the size of the neighborhood is larger, and
hence more time-consuming to search. To improve 3-opt further, Lin and
Kernighan developed a sophisticated edge exchange procedure where the number
of edges to be exchanged is variable (Reinelt, 1994).

2.5 Commercial Packages

It is worth writing very sophisticated and efficient computer programs for
algorithms when they are used frequently for solving many different models. Such
programs, usually consisting of a number of algorithms collected together, are
called a “package” of computer routines. Many such package programs are
available commercially for solving mathematical programming models. When a
mathematical programming model is built, it is usually worth using an existing
package to solve it rather than getting diverted onto the task of programming the
computer to solve the model oneself (Williams, 1999).

In this book, integrated problems for the sequential pick-and-place machine and
the concurrent chip shooter machine are formulated as integer nonlinear
programming models presented in Chapter 3 and Chapter 4, respectively. Then,
each of the models is equivalently converted into an integer linear programming
model. To verify the models, two commercial packages are used. First, BARON is
adopted to solve integer nonlinear programming models, whereas CPLEX is used
for optimizing integer linear programming models. In the following, the
characteristics and the working principles of both commercial packages are
described briefly. In addition, some existing commercial packages not used in this
book are discussed.

 Optimization Techniques 17

2.5.1 BARON

BARON is a computational system for solving nonconvex optimization models to
global optimality. Purely continuous NLP models, purely integer NLP models, and
MINLP models can be solved with the software. This is the reason why it is
adopted to solve the integer nonlinear programming models presented in Chapter 3
and Chapter 4. BARON combines constraint propagation, interval analysis, and
duality for efficient range reduction with rigorous relaxation constructed by
enlarging the feasible region and/or underestimating the objective function.

2.5.2 CPLEX

CPLEX is used as an integer linear programming solver in this book because it is
powerful in solving LP and MIP problems. For problems with integer variables,
CPLEX uses a branch-and-bound search with modern algorithmic features, such as
cuts and heuristics, to solve a series of LP subproblems. Because a single MIP
generates many LP subproblems, even a small MIP can be very computationally
intensive and requires significant amounts of physical memory.

2.5.3 Others

Nowadays, there are numerous commercial packages available for tackling
different types of mathematical programming problems. For instance, apart from
BARON, DICOPT is a framework for solving MINLP models using standard MIP
and NLP solvers to solve MIP and NLP subproblems generated by the algorithm.
SBB is another MINLP solver. It is based on a combination of the standard B&B
algorithm and some of the standard NLP solvers for subproblems.

On the other hand, except for CPLEX, LINDO is also widely used as an MIP
solver. The base version includes primal and dual simplex solvers. For models with
integer restrictions, LINDO includes an exceptional integer solver with default
settings selected to work well on broad classes of integer models. OSL includes a
set of stand-alone solvers for the MIP problem. A branch-and-bound technique is
used for MIP, whereas the simplex algorithm is used to solve LP subproblems.

2.6 Summary

Various optimization techniques appropriate for the PCB assembly problems have
been discussed in this chapter. Some remarks concerning these techniques are
summarized as follows:

1. PCB assembly problems can be formulated as different types of
mathematical programming models, including linear programming, integer
linear programming, and nonlinear programming models.

2. An algorithm does not exist that solves all types of mathematical models.
For instance, the simplex algorithm is the general method for solving linear
programming models but not integer linear programming models.

18 Optimal Production Planning for PCB Assembly

3. Simulated annealing, tabu search, and the genetic algorithms (GAs) are
commonly used metaheuristics. Note that each metaheuristic possesses its
own characteristics and there is no special one that is acknowledged as the
best.

4. GAs will be adopted to solve integrated problems for both types of
placement machines, the line assignment problem, and the component
allocation problem. The reason is that GAs have been applied successfully
in a wide variety of optimization problems such as the TSP, the QAP, and
the minimum spanning tree problem (Gen and Cheng, 1997). In addition,
the merits of GAs, including simplicity, ease of operation, and flexibility,
are the encouraging factors for applying it.

5. BARON and CPLEX are commercial packages used to solve integer
nonlinear programming models and integer linear programming models to
be formulated in this book, respectively.

In the next chapter, the component sequencing problem and the feeder
arrangement problem are studied for the sequential pick-and-place machine. Each
of the problems is formulated as an individual mathematical model first. Because
of their inseparable relationship, one cannot be solved unless the solution of the
other one is obtained beforehand. Therefore, two mathematical models in nonlinear
form are constructed for the integrated problem. The nonlinear programming
models are also converted equivalently into two linear programming models. These
models are compared in terms of computing complexity as well as the
computational time taken for obtaining the global optimal solution. To achieve this
goal, BARON and CPLEX are used. Besides applying mathematical modeling, a
genetic algorithm incorporating several improved heuristics is developed.

