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1.1
Introduction

Linear systems with input, output, or state constraints are probably the most impor-
tant class of systems in practice and the most studied as well. Although, a variety
of control design methods have been developed for linear systems, it is widely ac-
cepted that stability and good performance for these systems, especially in the pres-
ence of constraints, is guaranteed with a nonlinear control law. The most popular
nonlinear control approach for linear systems with constraints is model predictive
control or simply MPC which has become the standard for constrained multivari-
able control problems in the process industries [24, 25, 35].

MPC is an online constrained optimization method, based on the so-called re-
ceding horizon philosophy [24, 25]. At each sampling instant, the measurements
of the current output and/or state of the system are retrieved and an open-loop op-
timal control problem is solved over a finite time horizon to obtain the sequence of
future control values. The first value of the sequence is then obtained and the pro-
cedure is repeated in the next sampling instant and over a shifted horizon, leading
to a moving horizon policy. Since the objective function and the constraints of the
open-loop optimal control problem can be set to express true performance objec-
tives, the benefits of MPC are tremendous; optimality and constraints’ satisfaction
being obviously its main advantage.

The application of MPC is, nevertheless, rather restricted, considering its profit
potential, due to its online computational requirements which involve the repeti-
tive solution of an optimization problem at regular time intervals. This limitation
is in spite of the significant advances in the computational power of modern com-
puters and in the area of online optimization over the past few years. Thus, it is fair
to state that an efficient implementation of online optimization tools relies on a
quick and repetitive online computation of optimal control actions. A way to avoid
these repetitive online computations is by using multiparametric programming tech-
niques to solve the optimization problem. With this approach, the control variables
are obtained as an explicit function of the state variables and therefore the online
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optimization breaks down to simple function evaluations, at regular time intervals,
to compute the corresponding control actions for the given state of the plant. This
is known as the online optimization via off-line parametric optimization concept.

1.1.1
Multiparametric Programming

Overall, multiparametric programming is a technique for solving any optimization
problem, where the objective is to minimize or maximize a performance criterion
subject to a given set of constraints and where some of the parameters vary between
specified lower and upper bounds. The main characteristic of multiparametric pro-
gramming is its ability to obtain [1, 4, 15, 19, 20, 26, 28]

(i) the objective and optimization variable as functions of the
varying parameters, and

(ii) the regions in the space of the parameters where these
functions are valid.

Multiparametric programming has been applied to a number of applications listed
here

(i) hybrid parametric/stochastic programming [2, 22],
(ii) process planning under uncertainty [29],

(iii) material design under uncertainty [13],
(iv) multiobjective optimization [26, 27, 30],
(v) flexibility analysis [5],

(vi) computation of singular multivariate normal probabilities
[6], and

(vii) model predictive control [9, 10, 31].

The advantage of using multiparametric programming to address these prob-
lems is that for problems pertaining to plant operations, such as for process plan-
ning, scheduling, and control, one can obtain a complete map of all the optimal
solutions. Hence, as the operating conditions vary, one does not have to reoptimize
for the new set of conditions, since the optimal solution is already available as a
function of the operating conditions. Mathematically, all the above applications can
be generally posed as a multiparametric mixed-integer nonlinear programming
(mp-MINLP) problem

z(θ ) = min
y,x

dTy + f(x)

s.t. Ey + g(x) ≤ b + Fθ ,
θmin ≤ θ ≤ θmax,
x ∈ X ⊆ R

n,
y ∈ Y = {0, 1}m,
θ ∈ � ⊆ R

s,

(1.1)

where y is a vector of {0, 1} binary variables, x is a vector of continuous variables,
f a scalar, continuously differentiable and convex function of x, g a vector of con-
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tinuous differentiable and convex functions of x, b and d are constant vectors, E
and F are constant matrices, θ is a vector of parameters, θmin and θmax are the lower
and upper bounds of θ , and X and � are compact and convex polyhedral sets of
dimensions n and s, respectively.

The detailed theory and algorithms of solving the mp-MINLP problem (1.1) are
exploited in [1, 14, 15]. Furthermore, a number of variations of the problem (1.1)
have been developed and examined in [2, 14]. A special formulation of (1.1) which,
as we will later see in this chapter, is of great importance for linear model predictive
control problems is the multiparametric quadratic programming problem in which
d = 0, E = 0, and f and g are quadratic and linear functions of x, respectively. This
case will be given our full attention and will be treated carefully in the following
sections of this chapter.

1.1.2
Model Predictive Control

Consider the general mathematical description of discrete-time, linear time-
invariant systems�

xt+1 = Axt + But

yt = Cxt
(1.2)

subject to the following constraints:

ymin ≤ yt ≤ ymax,
umin ≤ ut ≤ umax,

(1.3)

where xt ∈ R
n, ut ∈ R

m, and yt ∈ R
p are the state, input, and output vectors,

respectively, subscripts min and max denote lower and upper bounds, respectively,
and the matrix pair (A, B) is stabilizable.

The linear MPC problem for regulating (1.2) to the origin is posed as the follow-
ing quadratic programming problem [24, 25, 35]

min
U

J(U, xt) = x′
t+Ny|tPxt+Ny|t +

Ny–1∑
k=0

x′
t+k|tQxt+k|t + u′

t+kRut+k

s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Nc,
umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc,
xt|t = xt,
xt+k+1|t = Axt+k|t + But+k, k ≥ 0,
yt+k|t = Cxt+k|t, k ≥ 0,
ut+k = Kxt+k|t, Nu ≤ k ≤ Ny,

(1.4)

where U � {ut, . . . , ut+Nu–1}, Q = Q′ � 0, R = R′ � 0, P � 0, (Q1/2, A) is detectable,
Nu, Ny, Nc are the input, output, and constraint horizon , respectively, such that
Ny ≥ Nu and Nc ≤ Ny – 1, and K is a stabilizing state feedback gain. Problem (1.4)
is solved repetitively at each time t for the current measurement xt and the vector
of predicted state variables, xt+1|t, . . . , xt+k|t at time t + 1, . . . , t + k, respectively, and
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corresponding optimal control actions U* = {u*
t , . . . , u*

t+k–1} is obtained. The input
that is applied to the system is the first control action

ut = u*
t

and the procedure is repeated at time t + 1, based on the new state xt+1.
The state feedback gain K and the terminal cost function matrix P usually are

used to guarantee stability for the MPC (1.4). The stability problem of the MPC has
been treated extensively (see also [12, 24, 32]). Since it is not in the scope of this
chapter to expand on this issue, we will briefly present two methods to obtain K
and P. One possible choice is to set K = 0 and P to be the solution of the discrete
Lyapunov equation

P = A′PA + Q.

However, this solution is restricted only to open-loop stable systems, since the con-
trol action is stopped after Nu steps. Alternatively, one can choose K and P as the
solutions of the unconstrained, infinite-horizon linear quadratic regulation (LQR)
problem, i.e., when Nc = Nu = Ny = ∞,

K = –(R + B′PB)–1B′PA,

P = (A + BK)′P(A + BK) + K′RK + Q.
(1.5)

This is possibly the most popular method for obtaining the K and P matrices (see
also [10, 32]).

Introducing the following relation, derived from (1.2),

xt+k|t = Akxt +
k–1∑
j=0

AjBut+k–1–j (1.6)

in (1.4) results in the following quadratic programming or QP problem

J*(xt) = min
U

�
1
2

U′HU + x′
tFU +

1
2

x′
tYx(t)

�

s.t. GU ≤ W + Ext,
(1.7)

where U � [u′
t, . . . , u′

t+Nu–1]′ ∈ R
s, s � mNu, is the vector of optimization variables,

H = H′ � 0, and H, F, Y, G, W, E are obtained from Q, R and (1.4)–(1.6). Thus, the
MPC is applied by repetitively solving the QP problem (1.7) at each time t ≥ 0 for
the current value of the state xt. Due to this formulation, the solution U* of the QP
is a function U*(xt) of the state xt, implicitly defined by (1.7) and the control action
ut is given by

ut = [
I 0 · · · 0

]
U*(xt). (1.8)

The problem in (1.4) obviously describes the constrained linear quadratic reg-
ulation problem [11, 12, 32, 33], while (1.7) is the formulation of the MPC as a
QP optimization problem. Despite the fact that efficient QP solvers are available to
solve (1.7), computing the input ut online may require significant computational
effort. The solution of (1.4) via multiparametric programming means, which avoids
the repetitive optimization, was first treated in [9, 10, 31] and will be discussed in
the following sections of this chapter.
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1.2
Multiparametric Quadratic Programming

Transforming the QP problem (1.7) into a multiparametric programming problem
is easy, once the following linear transformation is considered:

z � U + H–1F′xt (1.9)

z ∈ R
s. The QP (1.7) is then formulated to the following multiparametric quadratic

programming (mp-QP) problem:

Vz(xt) = min
z

1
2

z′Hz

s.t. Gz ≤ W + Sxt,
(1.10)

where z ∈ R
s is the vector of optimization variable, xt is the vector of parameters,

and

S = E + GH–1F′. (1.11)

Note that in (1.7) the state vector xt is present both in the objective function and
the right-hand side (rhs) of the constraints, whereas in (1.10) it only appears on the
rhs of the constraints. The main advantage of writing (1.4) in the form given in
(1.10) is that z (and therefore U) can be obtained as an affine function of x for the
complete feasible space of x.

In order to proceed with a method to solve (1.10), a number of important results
have to be established. An important theorem is first recalled from [18] before we
proceed.

Theorem 1 [18]. Let x0 ∈ R
n be a vector of parameters and (z0, λ0) be a KKT pair

for problem (1.10), where λ0 = λ0(x0) is a vector of nonnegative Lagrange multipliers,
λ, and z0 = z(x0) is feasible in (1.10). Also assume that the (i) linear independence
constraint satisfaction and (ii) strict complementary slackness conditions hold. Then,
there exists in the neighborhood of x0 a unique, once continuously differentiable function
[z(x), λ(x)] where z(x) is a unique isolated minimizer for (1.10), and


dz(x0)

dx
dλ(x0)

dx


 = –(M0)–1N0, (1.12)

where

M0 =




H GT
1 · · · GT

q
–λ1G1 –V1

...
. . .

–λpGq –Vq


 (1.13)

N0 = (Y, λ1S1, . . . , λpSp)T, (1.14)

where Gi denotes the ith row of G, Si denotes the ith row of S, Vi = Giz0 – Wi – Six0, Wi

denotes the ith row of W, and Y is a null matrix of dimension (s × n).
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The optimization variable z(x) can then be obtained as an affine function of
the state xt by exploiting the first-order Karush–Kuhn Tucker (KKT) conditions for
(1.10). More specifically

Theorem 2. Let x be a vector of parameters and assume that assumptions (i) and (ii)
of Theorem 1 hold. Then, the optimal z and the associated Lagrange multipliers λ are
affine functions of x.

Proof. The first-order KKT conditions for the mp-QP (1.10) are given by

Hz + G′λ = 0, (1.15)

λi(Giz – Wi – Six) = 0, i = 1, . . . , q, (1.16)

λ ≥ 0. (1.17)

Recalling that H is invertible (1.15) is written as

z = –H–1G′λ. (1.18)

Let λ̆ and λ̃ denote the Lagrange multipliers corresponding to inactive and active
constraints, respectively. For inactive constraints, λ̆ = 0. For active constraints,

G̃z – W̃ – S̃x = 0, (1.19)

where G̃, W̃, S̃ correspond to the set of active constraints. From (1.18) and (1.19),

λ̃ = –
�
G̃H–1G̃′
–1(W̃ + S̃x). (1.20)

Note that (G̃H–1G̃′)–1 exists because of the LICQ assumption. Thus λ is an affine
function of x. We can substitute λ̃ from (1.20) into (1.18) to obtain

z = H–1G̃′�G̃H–1G̃′
–1(W̃ + S̃x) (1.21)

and note that z is also an affine function of x. �

An interesting observation, resulting from Theorems 1 and 2, is given in the next
corollary.

Corollary 1. From Theorems 1 and 2,[
z(x)
λ(x)

]
= –(M0)–1N0(x – x0) +

[
z0

λ0

]
. (1.22)

The results in Theorems 1 and 2 and Corollary 1 are summarized in the following
theorem (see also in [35]).

Theorem 3. For the problem in (1.10) let x0 be a vector of parameter values and (z0, λ0)
a KKT pair, where λ0 = λ(x0) is a vector of nonnegative Lagrange multipliers, λ, and
z0 = z(x0) is feasible in (1.10). Also assume that (i) linear independence constraint
qualification and (ii) strict complementary slackness conditions hold. Then,[

z(x)
λ(x)

]
= –(M0)–1N0(x – x0) +

[
z0

λ0

]
, (1.23)
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where

M0 =




H GT
1 · · · GT

q
–λ1G1 –V1

...
. . .

–λpGq –Vq


 (1.24)

N0 = (Y, λ1S1, . . . , λpSp)T, (1.25)

where Gi denotes the ith row of G, Si denotes the ith row of S, Vi = Giz0 – Wi – Six0, Wi

denotes the ith row of W, and Y is a null matrix of dimension (s × n).

Theorems 2 and 3 show that given the solution z0, λ0 for a specific vector of
parameters x0, one can obtain the solution z(x), λ(x) for any parameter vector x
from (1.23). Thus, the optimization variable z and eventually the control sequence
U are linear, affine functions of the state x, z(x) and U(x). In that way the sequence
of control actions is obtained as an explicit function of the state. It remains now to
establish for which values of the parameter (state) x, this solution (1.23) remains
optimal.

The set of x where solution (1.23) remains optimal is defined as the critical region
(CR0) and can be obtained as follows. Let CRR represent the set of inequalities
obtained (i) by substituting z(x) into the inactive constraints in (1.10), and (ii) from
the positivity of the Lagrange multipliers corresponding to the active constraints,
as follows:

CRR = {
Ğz(x) ≤ W̆ + S̆x(t), λ̃(x) ≥ 0

}
, (1.26)

then CR0 is obtained by removing the redundant constraints from CRR as follows:

CR0 = �
{
CRR}

, (1.27)

where � is an operator which removes the redundant constraints—for a procedure
to identify the redundant constraints, see [20]. Since for a given space of state vari-
ables, X, so far we have characterized only a subset of X, i.e., CR0 ⊆ X, in the next
step the rest of the region CRrest, is obtained as follows:

CRrest = X – CR0, (1.28)

by using a procedure which is going to be described in what follows (see also [14]).
The above steps, (1.23)–(1.28), are repeated and a set of z(x), λ(x) and corresponding
CR0s is obtained. The solution procedure terminates when no more regions can be
obtained, i.e., when CRrest = ∅. For the regions which have the same solution
and can be unified to give a convex region, such a unification is performed and a
compact representation is obtained.

The continuity and convexity properties of the optimal solution are summarized
in the next theorem.

Theorem 4. For the mp-QP problem (1.10), the set of feasible parameters Xf ⊆ X is
convex, the optimal solution, z(x) : Xf 
→ R

s is continuous and piecewise affine, and
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the optimal objective function Vz(x) : Xf 
→ R is continuous, convex, and piecewise
quadratic.

Proof. We first prove convexity of Xf and Vz(x). Take generic x1, x2 ∈ Xf, and let
Vz(x1), Vz(x2), and z1, z2 be the corresponding optimal values and minimizers. Let
α ∈ [0, 1], and define zα � αz1 + (1 – α)z2, xα � αx1 + (1 – α)x2. By feasibility, z1,
z2 satisfy the constraints Gz1 ≤ W + Sx1, Gz2 ≤ W + Sx2. These inequalities can
be linearly combined to obtain Gzα ≤ W + Sxα , and therefore zα is feasible for the
optimization problem (1.10) where xt = xα . Since a feasible solution z(xα) exists at
xα , an optimal solution exists at xα and hence Xf is convex. The optimal solution at
xα will be less than or equal to the feasible solution, i.e.,

Vz(xα) ≤ 1
2

z′
αHzα

and hence

Vz(xα) –
1
2

[
αz′

1Hz1 + (1 – α)z′
2Hz2

]

≤ 1
2

z′
αHzα –

1
2

[
αz′

1Hz1 + (1 – α)z′
2Hz2

]

= 1
2

[
α2z′

1Hz1 + (1 – α)2z′
2Hz2 + 2α(1 – α)z′

2Hz1 – αz′
1Hz1 – (1 – α)z′

2Hz2
]

= –
1
2
α(1 – α)(z1 – z2)′H(z1 – z2) ≤ 0, (1.29)

i.e.,

Vz
�
αx1 + (1 – α)x2


 ≤ αVz(x1) + (1 – α)Vz(x2)

∀x1, x2 ∈ X, ∀α ∈ [0, 1], which proves the convexity of Vz(x) on Xf. Within the closed
polyhedral regions CR0 in Xf the solution z(x) is affine (1.21). The boundary be-
tween two regions belongs to both closed regions. Because the optimum is unique
the solution must be continuous across the boundary. The fact that Vz(x) is contin-
uous and piecewise quadratic follows trivially. �

An algorithm for the solution of an mp-QP of the form given in (1.10) to calculate
U as an affine function of x and characterize X by a set of polyhedral regions, CRs, is
summarized in Table 1.1. The optimal control sequence U*(x), once z(x) is obtained
by (1.23), is obtained from (1.9)

U*(x) = z(x) – H–1F′x. (1.30)

Finally, the feedback control law

ut = [
I 0 · · · 0

]
U*(xt) (1.31)

is applied to the system. The algorithm in Table 1.1 obtains the regions CR0s in the
subset X of the state space, where the optimal solution (1.23) and hence (1.31) exist.
Hence, the MPC can be implemented by performing online the following heuristic
rule:
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Table 1.1 mp-QP algorithm.

Step 1 For a given space of x solve (1.10) by treating x as a free variable and obtain [x0].
Step 2 In (1.10) fix x = x0 and solve (1.10) to obtain [z0, λ0].
Step 3 Obtain [z(x), λ(x)] from (1.23).
Step 4 Define CRR as given in (1.26).
Step 5 From CRR remove redundant inequalities and define the region of optimality CR0 as

given in (1.27).
Step 6 Define the rest of the region, CRrest, as given in (1.28).
Step 7 If no more regions to explore, go to the next step, otherwise go to Step 1.
Step 8 Collect all the solutions and unify a convex combination of the regions having the

same solution to obtain a compact representation.

1. obtain the measurements of the state x at the current time;
2. obtain the region CR0 in which x belongs, i.e., x ∈ CR0;
3. obtain the control action ut from (1.31) and apply it to the

system;
4. repeat in the next sampling instant.

Thus, the online optimization of the MPC problem (1.4) is reduced to the following
simple function evaluation scheme:

if x ∈ CR0 then ut = [
I 0 · · · 0

]
U*(xt).

Remark 1. Note that the union of all regions CR0 forms the space of feasible parameters
for the mp-QP problem (1.10) which is also the space of feasible initial conditions for
which a control exists that solves the MPC problem (1.4).

This approach provides a significant advancement in the solution and online im-
plementation of MPC problems, since its application results in a complete set of
control actions as a function of state variables (from (1.23)) and the corresponding
regions of validity (from (1.27)), which are computed off-line, i.e., the explicit con-
trol law. Therefore during online optimization, no optimizer call is required and
instead the region CR0 for the current state of the plant where the value of the state
variables is valid, can be identified by substituting the value of these state variables
into the inequalities which define the regions. Then, the corresponding control ac-
tions can be computed by using a function evaluation of the corresponding affine
function.

1.2.1
Definition of CRrest

This section describes a procedure for calculating the rest CRrest of a subset X,
when a region of optimality CR0 ⊆ X is given, i.e., CRrest = X – CR0. For the
sake of simplifying the explanation of the procedure, consider the case when only
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Fig. 1.1 Critical regions, X and CR0.

two state-variables x1 and x2, are present (see Fig. 1.1), and X is defined by the
inequalities:

X �
{
x ∈ R

n | xL
1 ≤ x1 ≤ xU

1 , xL
2 ≤ x2 ≤ xU

2
}

and CR0 is defined by the inequalities:

CR0 � {x ∈ R
n | C1 ≤ 0, C2 ≤ 0, C3 ≤ 0},

where C1, C2, and C3 represent linear functions of x. The procedure consists of
considering one by one the inequalities which define CR0. Considering, for exam-
ple, the inequality C1 ≤ 0, the rest of the region is given by

CRrest
1 = {

x ∈ R
n | C1 ≥ 0, xL

1 ≤ x1, x2 ≤ xU
2
}

which is obtained by reversing the sign of inequality C1 ≤ 0 and removing redun-
dant constraints in X (see Fig. 1.2). Thus, by considering the rest of the inequalities,
the complete rest of the region is given by

CRrest = {
CRrest

1 ∪ CRrest
2 ∪ CRrest

3
}
,

where CRrest
1 , CRrest

2 , and CRrest
3 are given in Table 1.2 and are graphically depicted

in Fig. 1.3. Note that for the case when X is unbounded, simply suppress the in-
equalities involving X in Table 1.2.

Table 1.2 Definition of rest of the regions.

Region Inequalities

CRrest
1 C1 ≥ 0, xL

1 ≤ x1, x2 ≤ xU
2

CRrest
2 C1 ≤ 0, C2 ≥ 0, x1 ≤ xU

1 , x2 ≤ xU
2

CRrest
3 C1 ≤ 0, C2 ≤ 0, C3 ≥ 0, xL

1 ≤ x1 ≤ xU
1 , xL

2 ≤ x2
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Fig. 1.2 Reversing the sign of C1 inequality to obtain CRrest.

1.3
Numerical Example

Consider the following state-space representation:



xt+1 =
[

0.7326 –0.0861
0.1722 0.9909

]
xt +

[
0.0609
0.0064

]
ut,

yt =
[

0 1.4142
]

xt.
(1.32)

Fig. 1.3 Rest of the regions.
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Fig. 1.4 Closed-loop response.

The constraints on input are as follows:

–2 ≤ ut ≤ 2. (1.33)

The corresponding optimization problem of the form (1.4) for regulating to the
origin is given as follows:

min
ut ,ut+1

x′
t+2|tPxt+2|t +

1∑
k=0

[
x′

t+k|txt+k|t + 0.01u2
t+k

]

s.t. –2 ≤ ut+k ≤ 2, k = 0, 1
xt|t = xt,

(1.34)

where P solves the Lyapunov equation P = A′PA + Q,

Q =
[

10
0 1

]
, R = 0.01, Nu = Ny = Nc = 2.

The closed-loop response from the initial condition x0 = [1 1]′ is shown in Fig. 1.4.
The same problem is now solved by using the parametric programming approach.
The corresponding mp-QP problem of the form (1.10) has the following constant
vectors and matrices:

H =
[

0.0196 0.0063
0.0063 0.0199

]
, F =

[
0.1259 0.0679
0.0922 –0.0924

]

G =




1 0
–1 0
0 1
0 –1


 , W =




2
2
2
2


 , E =


y

0 0
0 0
0 0
0 0


 .

The solution of the mp-QP problem, as computed by using the algorithm given in
Table 1.1, is given in Table 1.3 and is depicted in Fig. 1.5. Note that the CRs 2, 4
and 7, 8 in Table 1.3 are combined together and a compact convex representation
is obtained. To illustrate how online optimization reduces to a function evaluation
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Fig. 1.5 Polyhedral partition of the state space.

Table 1.3 Parametric solution of the numerical example.

Region no. Region u

1




–5 9220 –6 8883
5 9220 6 8883
–1 5379 6 8291
1 5379 –6 8291


 x ≤




2 0000
2 0000
2 0000
2 0000


 [

–5.9220 –6.8883
]

x

2, 4


 –3 4155 4 6452

0 1044 0 1215
0 1259 0 0922


 x ≤


 2 6341

–0 0353
–0 0267


 2.0000

3
[

0 0679 –0 0924
0 1259 0 0922

]
x ≤

[
–0 0524
–0 0519

]
2.0000

5
[

–0 1259 –0 0922
–0 0679 0 0924

]
x ≤

[
–0 0524

]
–2.0000

6


 –6 4159 –4 6953

–0 0275 0 1220
6 4159 4 6953


 x ≤


 1 3577

–0 0357
2 6423


 [

–6.4159 –4.6953
]

x + 0.6423

7, 8


 3 4155 –4 6452

–0 1044 –0 1215
–0 1259 –0 0922


 x ≤


 2 6341

–0 0353
–0 0267


 –2.0000

9


 6 4159 4 6953

0 0275 –0 1220
–6 4159 –4 6953


 x ≤


 1 3577

–0 0357
2 6423


 [

–6.4159 –4.6953
]

x – 0.6423
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Fig. 1.6 Closed-loop response with additional constraint xt+k|t ≥ –0.5.

problem, consider the starting point x0 = [1 1]′. This point is substituted into the
constraints defining the CRs in Table 1.3 and it satisfies only the constraints of
CR7,8 (see also Fig. 1.5). The control action corresponding to CR7,8 from Table 1.3
is u7,8 = –2, which is obtained without any further optimization calculations and it
is same as the one obtained from the closed-loop response depicted in Fig. 1.4.

The same example is repeated with the additional constraint on the state

xt+k|t ≥ xmin, xmin �
[

–0.5
–0.5

]
, k = 1.

The closed-loop behavior from the initial condition x0 = [1 1]′ is presented in
Fig. 1.6. The MPC controller is given in Table 1.4. The polyhedral partition of the
state-space corresponding to the modified MPC controller is shown in Fig. 1.7. The
partition consists now of 11 regions. Note that there are feasible states smaller than
xmin, and vice versa, infeasible states x ≥ xmin. This is not surprising. For instance,
the initial state x0 = [–0.6 0]′ is feasible for the MPC controller (which checks state
constraints at time t + k, k = 1), because there exists a feasible input such that x1

is within the limits. In contrast, for x0 = [–0.47 –0.47]′ no feasible input is able
to produce a feasible x1. Moreover, the union of the regions depicted in Fig. 1.7
should not be confused with the region of attraction of the MPC closed loop. For
instance, by starting at x0 = [46.0829 –7.0175]′ (for which a feasible solution exists),
the MPC controller runs into infeasibility after t = 9 time steps.

1.4
Computational Complexity

The algorithm given in Table 1.1 solves an mp-QP by partitioning X in Nr convex
polyhedral regions. This number Nr depends on the dimension n of the state, the
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Fig. 1.7 Polyhedral partition of the state space with additional constraint xt+k|t ≥ –0.5.

product s = mNu of the number Nu of control moves and the dimension m of the
input vector, and the number of constraints q in the optimization problem (1.10).

In an LP the optimum is reached at a vertex, and therefore s constraints must
be active. In a QP the optimizer can lie everywhere in the admissible set. As the
number of combinations of � constraints out of a set of q is(

q
�

)
= q!

(q – �)!�!
(1.35)

the number of possible combinations of active constraints at the solution of a QP
is at most

q∑
�=0

(
q
�

)
= 2q. (1.36)

This number represents an upper bound on the number of different linear feed-
back gains which describe the controller. In practice, far fewer combinations are
usually generated as x spans X. Furthermore, the gains for the future input moves
ut+1, . . . , ut+Nu–1 are not relevant for the control law. Thus several different combi-
nations of active constraints may lead to the same first m components u*

t (x) of the
solution. On the other hand, the number Nr of regions of the piecewise affine so-
lution is in general larger than the number of feedback gains, because the regions
have to be convex sets.

A worst case estimate of Nr can be computed from the way the algorithm in Ta-
ble 1.1 generates critical regions CR to explore the set of parameters X. The follow-
ing analysis does not take into account (i) the reduction of redundant constraints,
and (ii) possible empty sets are not further partitioned. The first critical region CR0

is defined by the constraints λ(x) ≥ 0 (q constraints) and Gz(x) ≤ W + Sx (q con-
straints). If the strict complementary slackness condition holds, only q constraints
can be active, and hence CR is defined by q constraints. From Section 1.2.1, CRrest

consists of q convex polyhedra CRi, defined by at most q inequalities. For each CRi,
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Table 1.4 Parametric solution of the numerical example for xt+k|t ≥ –0.5.

Region no. Region u

1, 2




3.4155 –4.6452
–0.1044 –0.1215
–0.7326 0.0861
–0.1259 –0.0922


 x ≤




2.6341
–0.0353
0.3782

–0.0267


 –2.0000

3, 9




–3.4155 4.6452
–0.7326 0.0861
0.1044 0.1215
0.1259 0.0922
–0.1722 –0.9909


 x ≤




2.6341
0.6218

–0.0353
–0.0267
0.5128


 2.0000

4


 –0.7326 0.0861

0.1259 0.0922
0.0679 –0.0924


 x ≤


 0.6218

–0.0519
–0.0524


 2.0000

5


 –12.0326 1.4142

12.0326 –1.4142
1.8109 –1.9698


 x ≤


 10.2120

–6.2120
–2.4406


 [–12.0326 1.4142]x

– 8.2120

6




–6.4159 –4.6953
–0.3420 0.3720
6.4159 4.6953
0.0275 –0.1220


 x ≤




2.6423
0.4609
1.3577

–0.0357


 [–6.4159 –4.6953]x

– 0.6423

7




–1.5379 6.8291
–5.9220 –6.8883
1.5379 –6.8291
5.9220 6.8883


 x ≤




2.0000
2.0000
2.0000
2.0000


 [ –5.9220 –6.8883 ]x

8


 –0.1722 –0.9909

–0.1259 –0.0922
–0.0679 0.0924


 x ≤


 0.4872

–0.0519
–0.0524


 –2.0000

10




–0.1311 –0.9609
6.4159 4.6953
–0.0275 0.1220
–6.4159 –4.6953


 x ≤




0.5041
2.6423

–0.0357
1.3577


 [–6.4159 –4.6953]x

+ 0.6423

11


 –26.8936 –154.7504

26.8936 154.7504
62.7762 460.0064


 x ≤


 80.0823

–76.0823
–241.3367


 [–26.8936 –154.7504]x

– 78.0823

a new CR is determined which consists of 2q inequalities (the additional q inequal-
ities come from the condition CR ⊆ CRi), and therefore the corresponding CRrest

partition includes 2q sets defined by 2q inequalities. As mentioned above, this way
of generating regions can be associated with a search tree. By induction, it is easy to
prove that at the tree level k+1 there are k!mk regions defined by (k+1)q constraints.
As observed earlier, each CR is the largest set corresponding to a certain combina-
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Table 1.5 Computational time to solve the mp-QP problem (seconds).

Free moves States
2 3 4 5

2 3.02 4.12 5.05 5.33
3 10.44 26.75 31.7 70.19
4 25.27 60.20 53.93 58.61

tion of active constraints. Therefore, the search tree has a maximum depth of 2q, as
at each level there is one admissible combination less. In conclusion, the number
of regions is

Nr ≤
2q–1∑
k=0

k!qk

each one defined by at most q2q linear inequalities.

1.4.1
Computational Time

In Tables 1.5 and 1.6 we report the computational time and the number of re-
gions obtained by solving a few test MPC problems. In the comparison, we vary
the number of free moves Nu and the number of poles of the open-loop system
(and consequently the number of states x). Computational times have been evalu-
ated by running the algorithm in Table 1.1 in Matlab 5.3 on a Pentium II-300 MHz
machine. No attempts were made to optimize the efficiency of the algorithm and
its implementation.

The theory and algorithm presented in this work are quite general and seem
to have great potential for large scale, industrial applications. While the framework
presented in this work may still require significant computational effort, most com-
putations are executed off-line, while online implementation basically reduces to
simple function evaluations. The suitability and applicability of the proposed para-
metric optimization based approach to large scale applications is a topic of current
investigation.

Table 1.6 Number of regions Nr in the MPC solution.

Free moves States
2 3 4 5

2 7 7 7 7
3 17 47 29 43
4 29 99 121 127
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1.5
Extensions to the Basic MPC Problem

The basic MPC problem (1.4) and the corresponding mp-QP formulation (1.10),
despite the fact that they treat the constrained regulation problem, can be extended
to treat other important control problems. To present the capability of multipara-
metric programming to deal with a number of control problems, some of these
extensions are presented here.

1.5.1
Reference Tracking

In reference tracking problems the objective is that the output, instead of being
regulated to the origin, is required to either asymptotically converge to a constant
reference value or follow a reference signal that may vary in time. In either case, the
objective is to minimize the error between the system output yt and the reference
signal rt ∈ R

p, which is given by the problem specifications and is a function of
time.

The general MPC formulation to treat the reference tracking problem is

min
U

J(U, xt, rt) =
Ny–1∑
k=0

�
yt+k|t – rt


′Q
�
yt+k|t – rt+k



+ δu′

t+kRδut+k

s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Nc

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc

δumin ≤ δut+k ≤ δumax, k = 0, 1, . . . , Nu – 1
xt+k+1|t = Axt+k|t + But+k, k ≥ 0
yt+k|t = Cxt+k|t, k ≥ 0
ut+k = ut+k–1 + δut+k, k ≥ 0
δut+k = 0, k ≥ Nu,

(1.37)

where U � {δut, . . . , δut+Nu–1}, rt � {rt, . . . , rt+Ny–1}, and δu ∈ R
m represent the

control increments that act as correcting terms in the input to force the output to
track the reference signal. The equation

ut+k = ut+k–1 + δut+k

corresponds to adding an integrator in the control loop. Due to this formulation,
the past input ut–1 is introduced in the above problem as a new vector of m para-
meters.

The reference tracking MPC (1.37) can be formulated into an mp-QP problem,
just like the regulation problem (1.4), by using the same procedure described in
(1.1) and (1.2). One should note, though, that the number of parameters in this
case has increased since, except for the state x, the past input ut–1 and the reference
inputs rt were also introduced. Note, that if the reference is constant then rt = · · · =
rt+Ny–1 = r and only one parameter, namely r, is introduced. By taking these extra
parameters into account and repeating the procedure in Sections 1.1 and 1.2, we
can transform the tracking problem (1.37) into
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J*(xt, ut–1, rt) = min
U

�
1
2

U′HU +
[
x′

tu
′
t–1r′

t
]
FU

�

s.t. GU ≤ W + E


 xt

ut–1

r′
t


 (1.38)

and finally into the mp-QP problem

Vz(xt) = min
z

1
2

z′Hz

s.t. Gz ≤ W + S


 xt

ut–1

rt


 ,

(1.39)

where

z = U + H–1F′

 xt

ut–1

rt


 and S = E + GH–1F′.

The mp-QP algorithm (1.1) can then be used to solve (1.39). The solution of (1.39)
U is a linear, piecewise affine function U(xt, ut–1, rt) of xt, ut–1, rt defined over a num-
ber of regions CR0 where this solution is valid. The reference tracking MPC is im-
plemented by applying the following control:

ut = ut–1 + δut(xt, ut–1, rt),

where δut(xt, ut–1, rt) is the first component of the vector U(xt, ut–1, rt).

1.5.2
Relaxation of Constraints

It is rather inevitable in some applications to consider possible violation of the out-
put and input constraints, which can lead to infeasible solution of the problem (1.4)
[36]. It is a common practice then to relax some of the output constraints in order to
guarantee that a feasible solution is obtained for (1.4) and that the input constraints
are satisfied, since usually these constraints are related to safety and performance
issues. Therefore, the output constraints have to be posed again as

ymin – �η ≤ yt ≤ ymax – �η,

where the scalar variable � corresponds to the magnitude of the relaxation and the
vector η ∈ R

p is constant and is used to determine the extent to which each of the
constraints is relaxed. In order to penalize the constraints violation the quadratic
term 
�2 is added to the objective function and the relaxation variable � is treated
as an optimization variable. Therefore, solving the mp-QP problem (1.10), with the
extra optimization variable, � is obtained as a piecewise affine function of the state
which allows one to know the exact violation of the constraints for each value of the
system states.
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1.5.3
The Constrained Linear Quadratic Regulator Problem

It is easy to observe that the MPC problem (1.4) describes the constrained linear
quadratic (CLQR) problem [12, 32], when Nc = Nu = Ny = N and the state feedback
gain K and P are obtained from the solution of the unconstrained, infinite-horizon
LQR problem (1.5). It is easy to note then that the solution to the CLQR, by follow-
ing the mp-QP method described in Section 1.2, is obtained as a piecewise affine
function of the states.

1.6
Conclusions

The solution of the linear MPC optimization problem, with a quadratic objective
and linear output and input constraints, by using multiparametric programming
techniques and specifically multiparametric quadratic programming, provides a
complete map of the optimal control as a function of the states and the charac-
teristic partitions of the state space where this solution is feasible. In that way the
solution of the MPC problem is obtained as piecewise affine feedback control law.
The online computational effort is small since the online optimization problem is
solved off-line and no optimizer is ever called online. In contrast, the online op-
timization problem is reduced to a mere function evaluation problem; when the
measurements of the state are obtained and the corresponding region and control
action are obtained by evaluation of a number of linear inequalities and a linear
affine function, respectively. This is known as the online optimization via off-line
parametric optimization concept.
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