

CAMBRIDGE TRACTS IN MATHEMATICS

GENERAL EDITORS H. BASS, J. F. KINGMAN, F. SMITHIES J. A. TODD & C. T. C. WALL

72. Completeness and basis properties of sets of special functions

J. R. HIGGINS

Lecturer in Mathematics
The Cambridgeshire College of Arts and Technology

72. Completeness and basis properties of sets of special functions

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE LONDON · NEW YORK · MELBOURNE

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 1977

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1977 First paperback edition 2004

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data
Higgins, John Rowland, 1935—
Completeness and basis properties of sets of special functions.
(Cambridge tracts in mathematics; 72)
Bibliography: p.
Includes indexes.
1. Functions, Special. 2. Series, Orthogonal.
3. Lp spaces. 1. Title. II. Series.
QA351.H57 515'.5 76-19630

ISBN 0 521 21376 2 hardback ISBN 0 521 60488 5 paperback

To Nan and P.B.

Contents

Preface			page ix
1	FOUNDATIONS		1
	1.1	Notes on metric spaces	1
	1.2	Notes on the L^p spaces	8
	1.3	Orthogonal sequences in Hilbert space	11
	1.4	Biorthogonal systems in Hilbert space	19
	1.5	Postscript to chapter 1	26
2	Orn	THOGONAL SEQUENCES	28
	2.1	Complete sequences of polynomials	28
	2.2	The Vitali completeness criterion	33
	2.3	The Dalzell completeness criterion	39
	2.4	The functions of Rademacher, Walsh and Haar	45
	2.5	CON sequences and the reproducing kernel	53
	2.6	The method of isometric transformation	55
	2.7	CON sequences of complex functions	64
3	Non-orthogonal sequences		71
	3.1	The stability of bases	71
	3.2		84
	3.3	Non-orthogonal Fourier-Bessel and Legendre	
		functions	88
	3.4	Some theorems of Müntz and Szász	95
4	DIFFERENTIAL AND INTEGRAL OPERATORS		98
	4.1	Sturm-Liouville systems	100
	4.2		109
	4.3	Integral operators	112
		[vii]	

viii	Conto	ents
Appendix 1	Supplementary theorems $page$	116
Appendix 2	Definitions of special functions	120
Appendix 3	Some complete sequences of special functions	122
Bibliography		126
Subject index		131

Preface

Some years ago I came across the need for precise information concerning the basis properties of sets of special functions, and the methods available for testing for such properties. This material proved to be rather widely scattered, so I began a collection of notes on the subject which have formed the foundations of the present little book.

I hope that the book will prove useful to graduate students of mathematics, particularly those whose research interests are developing in the direction of bases in Hilbert and Banach spaces: it could bridge the gap that exists between the scant treatment this topic usually receives in standard texts on functional analysis on the one hand, and the rather formidable specialist books such as Marti (1969) and Singer (1970) on the other. There is no harm in having some experience on the practical side of the business before aiming to become managing director!

I hope the book will appeal to workers in other scientific fields as well. An appendix has been included which lists many of the standard results, and this may help to make the book useful as a source of reference.

It is assumed that the reader's education will have included the usual first courses in real variable (including Lebesgue integration) and complex variable. Although a knowledge of functional analysis would be an advantage it is not strictly necessary, and all the principles of functional analysis which are used in the text are listed in an appendix, along with certain other facts which do not fit easily into the presentation.

Introductory sections on metric and L^p spaces have been included, in note form since it is assumed that most readers will already be familiar with this material. These sections are intended to serve as a 'run up' to the main part of the book.

x Preface

The subject matter touches upon many important topics in both pure and applied mathematics; for example, bases in Banach space, orthogonal series, properties of special functions, interpolation and approximation, eigenfunctions and boundary value problems, probability, and information theory. These, together with a variety of methods of proof both ancient and modern, give the subject a certain charm. This is a source of satisfaction to me, and I hope it will prove equally satisfactory to the reader; if so, my work will have been well rewarded.

I wish to express my gratitude for having been allowed some remission of teaching duties at the Cambridgeshire College of Arts and Technology for purposes of writing and research over a three-year period, during which parts of the book were written. I am particularly grateful to those of my colleagues who, as a consequence, had to shoulder an extra burden of work.

I would also like to thank Dr F. Smithies, fellow of St John's College, Cambridge, for reading the manuscript and making many valuable suggestions; as a result of this the book has been improved in every respect. Appreciation is also due to the staff of Cambridge University Press for accepting the book as a 'tract', and for their courteous efficiency.

Cambridge March 1976 J. R. Higgins