Contents

List of	f Symbols								• • • • • •		XIX
---------	-----------	--	--	--	--	--	--	--	-------------	--	-----

Part I Theory

On	the P	erron Root of Irreducible Matrices	3
1.1	Some	Basic Definitions	3
1.2	Some	Bounds on the Perron Root and Their Applications	4
	1.2.1	Concavity of the Perron Root on Some Subsets of	
		Irreducible Matrices	11
	1.2.2	Kullback–Leibler Divergence Characterization	14
	1.2.3	Some Extended Perron Root Characterizations	15
	1.2.4	Collatz–Wielandt-Type Characterization of the	
		Perron Root	18
1.3	Conv	exity of the Perron Root	22
	1.3.1	Some Definitions	22
	1.3.2	Sufficient Conditions	24
	1.3.3	Convexity of the Feasibility Set	26
	1.3.4	Necessary Conditions	28
1.4	Speci	al Classes of Matrices	30
	1.4.1	Symmetric Matrices	31
	1.4.2	Symmetric Positive Semidefinite Matrices	32
1.5	The I	Perron Root Under the Linear Mapping	34
	1.5.1	Some Bounds	35
	1.5.2	Disproof of the Conjecture	38
1.6	Some	Remarks on Arbitrary Nonnegative Matrices	41
	1.6.1	Log-Convexity of the Spectral Radius	42
	1.6.2	Characterization of the Spectral Radius	43
	1.6.3	Collatz–Wielandt-Type Characterization of the	
		Spectral Radius	46
1.7	Biblic	ograpical Notes	47
	On 1.1 1.2 1.3 1.4 1.5 1.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 On the Perron Root of Irreducible Matrices 1.1 Some Basic Definitions 1.2 Some Bounds on the Perron Root and Their Applications 1.2.1 Concavity of the Perron Root on Some Subsets of Irreducible Matrices 1.2.2 Kullback-Leibler Divergence Characterization 1.2.3 Some Extended Perron Root Characterizations 1.2.4 Collatz-Wielandt-Type Characterization of the Perron Root 1.3 Convexity of the Perron Root 1.3.1 Some Definitions 1.3.2 Sufficient Conditions 1.3.3 Convexity of the Feasibility Set 1.3.4 Necessary Conditions 1.4.1 Symmetric Matrices 1.4.1 Symmetric Matrices 1.5.2 Disproof of the Conjecture. 1.5.3 Convexity of the Spectral Radius 1.6.3 Collatz-Wielandt-Type Characterization of the Spectral Radius 1.6.3 Collatz-Wielandt-Type Characterization

2	On	the Positive Solution to a Linear System with				
	Nor	negative Coefficients	$\mathbf{i}1$			
	2.1	Basic Concepts and Definitions				
	2.2	Feasibility Sets				
	2.3	Convexity Results				
		2.3.1 Log-Convexity of the Positive Solution	6			
		2.3.2 Convexity of the Feasibility Set	9			
		2.3.3 Strict Log-Convexity	60			
		2.3.4 Strict Convexity of the Feasibility Sets	5			
	2.4	The Linear Case	6			

Part II Applications and Algorithms

3	Intr	oduct	ion	71
4	Net	work]	Model	75
	4.1	Basic	Definitions	75
	4.2	Mediu	Im Access Control	76
	4.3	Wirele	ess Communication Channel	79
		4.3.1	Signal-to-Interference Ratio	81
		4.3.2	Power Constraints	83
		4.3.3	Data Rate Model	84
		4.3.4	Two Examples	85
5	\mathbf{Res}	ource	Allocation Problem in Communications	
	Net	works		91
	5.1	End-te	o-End Rate Control in Wired Networks	91
		5.1.1	Fairness Criteria	92
		5.1.2	Algorithms	95
	5.2	Proble	em Formulation for Wireless Networks	97
		5.2.1	Joint Power Control and Link Scheduling	98
		5.2.2	Feasible Rate Region	101
		5.2.3	End-to-End Window-Based Rate Control for Wireless	
			Networks	103
		5.2.4	MAC Layer Fair Rate Control for Wireless Networks.	105
		5.2.5	Utility-Based Power Control	107
	5.3	Interp	retation in the QoS Domain	112
	5.4	Remai	rks on Joint Power Control and Link Scheduling	115
		5.4.1	Optimal Joint Power Control and Link Scheduling	115
		5.4.2	High SIR Regime	118
		5.4.3	Low SIR Regime	119
		5.4.4	Wireless Links with Self-Interference	122
	5.5	Rema	rks on the Efficiency–Fairness Trade Off	123
		5.5.1	Efficiency of the Max-Min Fair Power Allocation	125

		5.5.2	Axiom-Based Interference Model	128
6	Pov	ver Co	ntrol Algorithm	129
	6.1	Some	Basic Definitions	130
	6.2	Conve	ex Statement of the Problem	131
	6.3	Strong	g Convexity Conditions	133
	6.4	Gradi	ent Projection Algorithm	137
		6.4.1	Global Convergence	138
		6.4.2	Rate of Convergence	140
		6.4.3	Diagonal Scaling	142
		6.4.4	Projection on a Closed Convex Set	142
	6.5	Distri	buted Implementation	143
		6.5.1	Local and Global Parts of the Gradient Vector	143
		6.5.2	Adjoint Network	145
		6.5.3	Distributed Handshake Protocol	148
		6.5.4	Noisy Measurements	150
			*	

Part III Appendices

\mathbf{A}	Son	ne Concepts and Results from Matrix Analysis	155
	A.1	Vectors and Vector Norms	155
	A.2	Matrices and Matrix Norms	157
	A.3	Square Matrices and Eigenvalues	158
		A.3.1 Spectral Radius and Neumann Series	159
		A.3.2 Orthogonal, Symmetric and Positive Semidefinite	
		Matrices	160
	A.4	Perron–Frobenius Theory	161
		A.4.1 Perron–Frobenius Theorem for Irreducible Matrices	162
		A.4.2 Perron–Frobenius Theorem for Primitive Matrices	165
		A.4.3 Some Remarks on Reducible Matrices	166
		A.4.4 The Existence of a Positive Solution \mathbf{p} to	
		$(\alpha \mathbf{I} - \mathbf{X})\mathbf{p} = \mathbf{b} \dots$	168
В	Son	ne Concepts and Results from Convex Analysis	171
	B.1	Sets and Functions	171
	B.2	Convex Sets and Functions	175
		B.2.1 Strong Convexity	176
	B.3	Log-Convex Functions	177
		B.3.1 Inverse Functions of Monotonic Log-Convex Functions	179
	B.4	Convergence of Gradient Projection Algorithms	180
Rei	feren	ces	185

List of Figures

1.1	The feasibility set F for some $\mathbf{X} \in X^p_{K,\Gamma}(\Omega)$ with	
	$\gamma(x) = x, x > 0, K = 2 \text{ and } \Omega = \mathbb{Q}^2.$	34
2.1	Illustration of Example 2.3: The feasibility set	
	$\mathbf{F}(P_{\mathbf{t}}; P_1, P_2) \text{ with } \mathbf{X}(\boldsymbol{\omega}) \equiv 0, \ \gamma(x) = e^x - 1, x > 0,$	
	and $\mathbf{u}(\boldsymbol{\omega}) = (e^{\omega_1} - 1, e^{\omega_2} - 1)$. The constraints P_1, P_2 and P_t are chosen to satisfy $0 < P_1, P_2 < P_2$ and $P_t < P_1 + P_2$	55
2.2	The l^1 -norm $\ \mathbf{p}(\boldsymbol{\omega}(\mu))\ _1$ as a function of $\mu \in [0, 1]$ for some	00
	fixed $\hat{\omega}, \check{\omega} \in \mathbb{Q}^{\tilde{K}}$ chosen such that $\ \mathbf{p}(\hat{\omega})\ _1$ and $\ \mathbf{p}(\check{\omega})\ _1$ are	
0.0	independent of the choice of γ	65
2.3	$F(P_1, P_2)$ is equal to the intersection of $F_1(P_1)$ and $F_2(P_2)$. Thus, $F^c(P_1, P_2)$ is equal to the union of $F_1^c(P_1)$ and $F_2^c(P_2)$.	
	each of which is a convex set if $\gamma(x) = x, x > 0$. However, the	
	union of these sets is not convex in general	67
4.1	There are five nodes represented by	
	$N = \{1, 2, 3, 4, 5\}$ and 10 wireless links:	
	(1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 5), (5, 3), (4, 5), (5, 4).	
	The wireless links are not numbered in the figure. Two flows	
	entering the network at nodes 1, 3 and destined for node 4 establish 6 logical links $\mathbf{K} = \{1, 2, 3, 4, 5, 6\}$ For instance	
	logical links (or MAC layer flows) originating at node 2 are	
	2 and 3 so that we have $K(2) = \{2, 3\}$. These links share	
	wireless link $(2, 4)$. The flow rates are ν_1 and ν_2 . Packets of	
	flow 2 take two different routes to their destination that is	77
	110ue 4	((

- 5.1Three flows compete for access to two links [58, 1]. Whereas flows 1 and 2 are one-link flows going through links 1 and 2, respectively, flow 3 uses both links. The links have fixed capacities C_1 and C_2 , respectively. Clearly, the maximum total throughput is $C_1 + C_2$ and, in the maximum, the longer flow must be shut off $(\nu_3 = 0)$ so that the one-link flows can be allocated rates of $\nu_1 = C_1$ and $\nu_2 = C_2$. In contrast, if $C_1 \leq C_2$, the max-min fair allocation is $\nu_1 = C_1/2, \nu_2 = C_2 - C_1/2$ and $\nu_3 = C_1/2$. Thus, the total throughput is $C_2 + C_1/2$ which is strictly smaller than $C_1 + C_2$. Note that if $C_1 = C_2$, then all source rates are equal under the max-min fair solution. 93 Assuming $\Phi^{-1}(x) = e^x - 1, x \in \mathbb{R}$, the figure compares 5.2the modified utilities $U(x) = \Psi(\Phi^{-1}(x)), x > 0$, with the traditional ones $U(x) = \Psi(x), x > 0$, for $\Psi(x) = \log(x), \Psi(x) - 1/x, x > 0$, and $\Psi(x) = \log x/(1+x), x > 0. \dots$ 110. The feasible rate region for two mutually orthogonal links 5.3subject to a sum power constraint. The region is a strictly convex set so that link scheduling between arbitrary points on the boundary of the feasible rate region is suboptimal. ... 117 5.4The feasible SIR region for two users under total power constraint $P_{\rm t}$ and individual power constraints on each link $P_1 < P_t$ and $P_2 < P_t$. If there were no individual power constraints, a MAC policy involving a time sharing protocol between the points E and F, corresponding to power vectors $(0, P_t)$ and $(P_t, 0)$, respectively, would be optimal. In contrast, when in addition individual power constraints are imposed, a time sharing protocol between A and D (that correspond to power vectors $(0, P_2)$ and $(P_1, 0)$, respectively) is suboptimal. In this case, it is better to schedule either between A and Bor between B and C or between C and D depending on the target signal-to-interference ratios. 121In the primal network, the received signal samples 6.1at E1 and E2 are $y_1 = h_{1,1}X_1 + h_{1,2}X_2$ and $y_2 = h_{2,2}X_2 + h_{2,1}X_1$, respectively, where X_1, X_2 are

List of Symbols

$\begin{array}{l} a,b,c,\alpha,\beta,\mu,\dots\\ \mathbf{A},\mathbf{B},\mathbf{X},\mathbf{Y}\dots\\ \mathbf{A}\leq\mathbf{B}\\ \mathbf{A}^{-1}\\ \mathbf{A}^{T}\\ \mathbf{A}_{K}(\mathbf{X})\\ \mathbf{A}\times\mathbf{B}\\ \mathbf{A}\\ \mathbf{A}\circ\mathbf{B} \end{array}$	Scalars over \mathbb{R} or \mathbb{C} Matrices; Sect. A.2 Partial ordering; Sect. A.2 Matrix inverse; Sect. A.3 Transpose matrix; Definition A.3 Eq. (1.8) Cartesian product Sect. 5.2.1 Hadamard product; Sect. A.2
$\frac{\mathbf{B}_{K}}{\mathbf{B}_{K}}$ B	Sect. 1.6.2 Sect. 1.6.2 Sects. 4.3 and 5.2.1
\mathbb{C} cl(A) \mathbb{C} $\mathbb{\tilde{C}}$	Sect. A.1 Closure Eq. (5.11) Eq. (5.15)
$ \begin{aligned} \text{diag}(\mathbf{u}) \\ \text{det}(\mathbf{A}) \\ \delta_l \end{aligned} $	Diagonal matrix; Sect. A.2 Matrix determinant; Sect. A.3 The Kronecker delta
$egin{aligned} \mathbf{e}_i \ \mathbf{E}_K(\mathbf{X}) \ \mathbf{E}_K^+(\mathbf{X}) \ \eta(\mathbf{p}) \end{aligned}$	Sect. A.1 Sect. 1.6.2 Sect. 1.6.2 Eq. (6.30)
\mathbf{F} $\partial \mathbf{F}$ \mathbf{F}^{c}	Eq. (1.53) and Eq. (2.5) Eq. (1.55) Eq. (1.60)

$\mathrm{F}(P_{\mathrm{t}})$	Eq. (2.9)
$F(P_1,\ldots,P_K)$	Eq. (2.11)
$F_k(\alpha)$	Eq. (2.12)
$F(P_t; P_1, \ldots, P_K)$	Eq. (2.13)
$\partial F(P_t)$	Definition 2.15
$\partial F(P_1,\ldots,P_K)$	Definition 2.15
$F^c(P_t)$	Sect. 2.4
F_{γ}	Eq. (5.32)
$\mathbf{F}_{\gamma}^{'}(\mathbf{P})$	Eq. (5.31)
$\partial F_{\gamma}(P)$	Eq. (5.34)
$f'(x), x \in \mathbb{R}$	The first derivative; Sect. B.1
$f''(x), x \in \mathbb{R}$	The second derivative: Sect. B.1
$F(\mathbf{p})$	Eq. (6.2)
$F_{c}(\mathbf{s})$	Eq. (6.12)
	-1. ()
$\Gamma(\omega)$	Eqs. (1.48) and (5.12)
$q_k(\mathbf{p})$	
3n (1)	(6.21)
$h_k(\mathbf{s})$	Eq. (6.14)
	- ()
Ι	Identity matrix; Sect. A.2
$I_k(\mathbf{p})$	Eq. (6.5)
	1 ()
К	Sect. 4.1
K(n)	Sect. 4.1
$\lambda_p(\boldsymbol{\omega})$	Sect. 1.3.1
$LC_K(\Omega)$	Definition 1.34
$lc(\Omega)$	Sect. 2.3
L	Sect. 4.1
\mathbb{N}	Natural numbers
\mathbb{N}_0	Nonnegative integers
N	Sect. 4.1
$\mathbf{N}_K = \mathbb{R}_+^{K \times K}$	Definition A.18
N_{V}^{+}	Sect. 1.6.2
$N_K^{\alpha}(\Omega)$	Definition 1.32
$N_{K,\Gamma}(\Omega)$	Eq. (2.8)
	Vector norms; Sect. A.1
	Matrix norms; Sect. A.2
$\nabla_k f(\mathbf{x})$	Definition B.9
$\nabla f(\mathbf{x})$	Eq. (B.3)
$\nabla^2 f(\mathbf{x})$	Definition B.12
~ ` /	

1	Sect. A.1
$\Omega \subset \mathbb{R}^K$	Eq. (1.45)
-	
\prod_{K}	Sect. 1.1
\prod_{K}^{K}	Sect. 1.1
$\mathbf{P}_K = \mathbb{R}_{++}^{n \times n}$	Definition A.18
$P_K(\Omega)$	Sect.
ω (TF)	Sect. 1.3.1
$\mathbf{p}(\mathbf{X})$	Eq. (1.2)
$\mathbf{p}(\boldsymbol{\omega})$	Eq. (2.4)
Φ	Eq. (4.7)
Ψ	Definition 5.5
Ψ_e	Definition 5.5
ψ	Eq. (5.36)
ψ_e	Definition 6.1
$\Pi_{ m S}$	Eq. (B.19)
$\mathbf{P} \subset \mathbb{R}_+^K$	Eq. (4.6)
\mathbf{P}_n	Eq. (4.6)
P ₊	Eq. (6.10)
(\mathbf{V})	\mathbf{F} (1.0)
$\mathbf{q}(\mathbf{X})$	Eq. (1.2)
$Q \subset \mathbb{R}$	Sect. 1.3.1
R	Real numbers
$\mathbb{R}_{+} \subset \mathbb{R}$	Sect. A.4
$\mathbb{R}_{++} \subset \mathbb{R}_{+}$	Sect. A.4
\mathbb{R}^{K}	Sect. A.1
$\mathbb{R}^{K \times K}$	Sect. A.2
$\mathbb{R}^{K}_{++}(\Omega)$	Sect. 2.1
(1)	
$\sigma(A)$	Matrix spectrum; Definition A.7
$\rho(\mathbf{X})$	Spectral radius; Definition A.7
S_K	Sect. 1.2
$S_K(\mathbf{X})$	Eq. (1.3)
$\operatorname{SIR}_k(\mathbf{p})$	Eq. (4.2)
$S \subset \mathbb{R}^{n}$	Eq. (6.11)
S	Sect. 4.1
$trace(\mathbf{X})$	Matrix trace; Sect. A.2
$\theta(\mathbf{p})$	Eq. (6.30)
\ 1 /	L \/
$\mathbf{u} \leq \mathbf{v}$	Partial ordering; Sect. A.1
$\mathbf{p}, \mathbf{q}, \mathbf{s}, \mathbf{u}, \mathbf{v}, \mathbf{z}, \dots$	Vectors; Sect. A.1

V	Eq. (4.4)
$\mathrm{W}_K(\mathbf{X})$	Eq. (1.14)
$X_{K} \subset N_{K}$ $X_{K}(\Omega)$ $X_{K,\Gamma}(\Omega)$ $X_{K,\Gamma}^{s}(\Omega)$ $X_{K,\Gamma}^{p}(\Omega)$ $X_{0}^{0}(\Omega)$	Definition A.21 Definition 1.32 Eq. (1.49) Sect. 1.4.1 Sect. 1.4.2 Sect. 1.5
0	Zero vector; Sect. A.1