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Part one

Thermodynamics of non-interacting systems and
ground states of interacting systems

1

Free energy and correlation functions of the XY
model

1.1 The isotropic XY model
1.1.1 Introduction and historical overview

As the simplest case of a solvable model we consider the following spin 1/2
Hamiltonian,

N N
H=T> SIS+ SIS 20> 87, Sk =St (1.1)
i=1 i=1

[S2. S = idueap,S]. (1.2)

Each site has two states: an up-spin state and a down-spin state. S* and S/
are represented by the Pauli matrices,

1 1 1

X __ — y z __ z
Sj =50}, S =309 Sj =30,
x_ (0 1 y (0 —i (10
"J’_(1 0)’ "f“(i o)’ “J"(o —1)' (1.3)
For this Hamiltonian there are 2V states, and it can be transformed as
follows:
J X N
#=3 SUSTSG +STSh —2h > SE S = SE LS. (1.4)
i=1 i=1

Lieb, Schultz and Mattis®! and Katsura®’ investigated this model in detail.
The operators S,:—L satisfy the relations

{Si+5Si_} = ]-7 [Si+7s'_] = 0 for l Sé .] (15)

1
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2 Free energy and correlation functions of the XY model
The above commutation relations are neither fermionic nor bosonic. But if
we introduce the operators

k—1 k—1
a = [J@SFsm =S5, of =80 [J@sFsm—1),
i=1 i=1

these satisfy the fermionic commutation relations
{ehe} = 0w, {ewer} = {chcfy =0. (1.6)

Fortunately one can find the expression for spin operators using these
fermionic operators

k=1 k—1
S =10 —2cfepef, s =T[0—2c]ei)e. (1.7)
=1 i=1

The Hamiltonian (1.1) is transformed as

g Nl J N
H = ) Z clTHci + c,Tc,'H + Eoc(c{cN + c;rvcl) —hN + ZhZc;rci, (1.8)
i=1 i=1

where o = [[_;(1— 2c,tck). The total number of down-spins M is a constant
of motion. The value of « is (—1)™. We introduce the Fourier transformation
of these fermionic operators:

1 XN
Cg=—= Zexp(—iqk)ck, q = 2nn/N, (1.9)
N3
where n is integer (half-odd integer) for odd (even) M. These operators
satisfy

{egrep} ={cb.cl} =0, {cgc]} =6y (1.10)

The Hamiltonian is the same as that of one-dimensional spinless fermions
H =—hN +> (2h—Jcosq)cc,. (1.11)

4q

The lowest energy state at fixed M is

M
11 er(M+1—2l)/N|0>’ (1.12)
I=1
and the total energy is
M
—h(N —2M)—J > cos(n(M +1—2I)/N). (1.13)

I=1
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1.1 The isotropic XY model 3

In this way the XY model is treated by the transformation of spin operators
to fermion operators. (1.7) is called the Jordan—Wigner transformation.

1.1.2 Energy cigenvalues of the Hamiltonian and the partition function

General eigenstates for fixed M are

M
1 cf@ni;/N)0). (1.14)
j=t

Here {I1,I,..,Ip} is a set of different integers or half-odd integers. If two
sets of integers are different, the two corresponding states are orthogonal.
The total number of states with M down-spins and N — M up-spins is given
by the binomial coefficient

N!
M 1.1
N = N — ! (115)
The total number of states represented by (1.14) is
Ch+Ch+..+C¥ =2V (1.16)

Thus the states represented by (1.14) give a complete orthonormal set of
eigenstates of the Hamiltonian (1.1).
The partition function of this system is
N
(1

Z = P[]0+ 2= (1 - 2|
=1 L
|

N
)+ IO —ze™ )))- (1.17)
=1
where z = exp(—2h/T). The first bracket gives the odd M states and the
second gives the even M states. The second term in each bracket is much
smaller than the first term, and so we can neglect them in the thermodynamic
limit.
In the case of the lowest energy state, the energy per site in the large N, M
limit is

—

J cos(n(2{—1)/N)
T

_+_

=

(14+ze— T

NI =
T

1

1 nM/N
e=—h—|——/ (2h — J cosq)dg
21 J_am/N
<J sin(nM/N))
— )

= —h(1 —2M/N) + (1.18)
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4 Free energy and correlation functions of the XY model

The free energy per site in the thermodynamic limit is the same as for
non-interacting fermions

f= —% InZ=—h-T In[1 + exp(—(2h — J cos q)/T)]g%. (1.19)

The entropy per site of this system is as follows,

__of _ ggu <2h—Jcosq>
oT ) 2= T ’
u(x) = In(2cosh x/2) — g tanh x/2. (1.20)
The function u(x) is a symmetric and rapidly decreasing function of x
o 7t2
u(x) = u(—x), / wx)dx = = (1.21)
—o0 3

Thus the low-temperature entropy is

1 T 0 nT
L I 122
> = % Tcos—1(2h/J) /,OO U)X = S T h ) (122)

The specific heat per site is

C = Taa—; - m (1.23)
On the other hand the velocity of a low energy excitation is
vs = J cos~' (2h/J).
Then the specific heat is written as
C= ﬂ (1.24)
3,

1.1.3 Correlation functions

The static correlation function (S/S7) is called the longitudinal correlation
function and (S;S,}) is the transverse correlation function. These can
be calculated analytically®. In the fermion representation, the correlation
functions are written as follows:

1 M
(SES5) = (1= 2cfe)(1 = 2efem))/4 = § = 7 + {cJachen),  (129)
m—1
(7S = e TI (1 —2¢fe)em). (1.26)
k=I+1
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1.1 The isotropic XY model 5

It should be noted that the longitudinal correlation function is represented by
averages of four fermion operators, but the transverse correlation function is
represented by averages of many fermion operators. The value of (c;rclcj,,cm)
is given by (c;rcl)<cjncm) —( }Lcm><c);,c,>. Here we have used Wick’s theorem.
Thus we have

1 M\?
(SfSz) = (5 — N) — Ui, (1.27)
i = (cfem). (1.28)

In principle we can decompose the thermal average of complicated opera-
" tors of non-interacting fermions into products of averages of two fermion
operators using Wick’s theorem. Thus we can calculate (1.26) analytically.
The highest order term is

m—1
(2" TT (cher)em).

k=1+1
This is decomposed as
(U1 Vel W24 e Ume L4l ]
Upi+2  Witri+2 Wi42042 - Um—1]42
om—l=1 qor | HEA43 WIHLIHS UI42143 e Um—1]43
L Uim Ul 1m Ul2.m e Up—1m i

The other terms are also written as determinants of this kind. Summing up
all terms we have the transverse correlation function,

S8y = 2m71=1 x det

[ W1 W41 — % Ur42,1+1 . Um—1,1+1 1
Urr+2 U+ 1,1+2 Ur42,142 — % . Um—1,142
U143 U+1,143 Ur42,143 . Ump—1,143
Ul m—1 Ul 1,m—1 Ul2,m—1 - Um—1m—1 — %

L Ulm Ul 1m Uio.m . Um—1,m i

In the limit N — oo we have uy,, for the ground state at N = 2M

I CE 1 for [=m
= (=mgr = 2 >
Hm = om /_n/ze Snxl=mi2 - for 4 m.
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6 Free energy and correlation functions of the XY model

Then we have the longitudinal correlation function

1 for [=m
ZQZN\ 4 >
(ST Sm) = { —(1 — (=)L for 1+ m.

n2(I—m)?

and a determinant expression of the transverse correlation function,

Sxy(m - l) = 2<SFS1:1_>

10 1 —1 L

0 1 0 1 0

-1 0 1 0 1
2mlpmDdet |

.. =1 0 1

L. . 0 -4 0 1.

(1.29)

(1.30)

The determinant is represented by Afl for | —m = 2n and A,A,_ for
l—m = 2n—1, where A, is the determinant of an n x n matrix with elements

xij = (=17 /(i — j) + 1),

- 1 -1y
I s
~1 1
A, = det '

1
cr
1y 1
N

(1.31)

One can eliminate x j, j > 2 by putting xQ, j = Xij— Xi1x1,; without changing

the value of the determinant. The new elements are
4 — 1) — (=)

Q2i—1)2j =320 —j)+1)

By this operation one gets the following recursion relation:

 (@n—2np?
" 2n—DNen—3nrt

, Jz2

Then we have

n—1 nDj
(2n—2j)7
A, = II —,
" Gnr 12

If we define B, = (2/%)"A4,, the two-point function is given as

S.(2n) = B2

n’

Sey(2n— 1) = B,B,_.

(1.32)

(1.33)
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1.2 The anisotropic XY model 7

B, satisfies:

Biyi 21 1 o\—1
B _Eg(l_(‘zj)) :

n

Using 2/ = [[7,(1 — (2j)7%), we have:

In B"“ = Z 1n(1—(2j)—2)_—i. (1.34)
n 4n
Jj=n+1

Then we can expect that B, behaves as n~'/4. The two-point function

Sxy(n) decays as n~'/2. On the other hand, S;.(n) decays as n~2. Thus the
correlation exponents are different for S;; and S,;,. We find that two-point
functions decay algebraically and not exponentially at zero temperature. At
finite temperature these decay exponentially.

1.2 The anisotropic XY model

We consider the anisotropic case of the XY model:

N
H = ZJ S¥Sfy +J,8)8T —2h) Si. (1.35)
j=1 j=

This is written in terms of ST operators as follows:

1 N
H =2 D IS St + S5 Sh) + IS+ 5780
j=1

N
Jx+J J—J
—2h E S? = yoJy==_2 1.36
p s J 2 H 2 ( )

This Hamiltonian changes the number of down-spins by two. Thus space
is divided by the parity of number of down-spins. By the Jordan—Wigner
transformation (1.7) we have

; N—1
H = -3 [—oc(cJ{cN + C;rvcl) + Z CL—IC]' + C}L'CJ'“]

j=1
J/ N—1
) [ (C1CN +cnecr) + Z cjﬂc +c]cj+1]
j=1
N
—hN + 21 clej, o= T](1—2cle)). (1.37)

j=1
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8 Free energy and correlation functions of the XY model

We can show that o> = 1 and [#,«] = 0. The Hamiltonian and o are
simultaneously diagonalized and the eigenvalue of « is +1. The Fourier
transformation of these fermionic operators is
1 1—id
Cy=—— Zexp(—iqk)ck, q = 2nn/N, (1.38)

JN V2 S

where n is integer (half-odd integer) for o« = —1(+1).

!
H = —hN+> (2h—J cos q)(chey +cye_g)+ I singlchel , +cgeq). (1.39)
q

Here 3~ means the sum over 0 < g < 7.

1.2.1 The subspace o = 1

In this Hamiltonian, particles with momentum ¢ and —g are coupled. We
apply the following transformation for fermion operators ¢, and c_g,

cq = cos 1, + sin aniq, c_q =—sin 04112; + cos 04—y,

Ng = cos B¢y — sin Hch_q, H—q = +sin Hqc]; + cos tyc—y. (1.40)

Ngq/2x is half-odd integer. The Hamiltonian (1.36) is transformed as
!
H = —hN + Z 2sin? 0,(2h — J cos q) + 2sin 0, cos 0, sing
q

+[(2h — J cos q) cos 20, — J' sing sin 29(1](;7;11(1 + niqn_q)
+[(2h — J cos q) sin 20, + J'sin g cos 294](;1;11161 +n_ghg)-  (1.41)

The last term is removed if we put

J'sing
20, = —————. 1.42
tan 26, Jcosq —2h (142)

Thus the Hamiltonian becomes
1
A =3 ela)(ngng — ),
q

e(q) = \/(J cos q — 2h)? + (J' sing)>. (1.43)

The lowest energy state |¥) must satisfy n,|¥) = 0. The following state
satisfies this condition,

|P) = H(cos 0, + sin HchcinO). (1.44)
q
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1.2 The anisotropic XY model 9

As we are considering the case o = 1, the total number of quasi particles
must be even. So the number of states which belong to this subspace is not
2N but > Cé\’j =2N-1,

1.2.2 The subspace o = —1

The number of particles must be odd in this subspace. Then the Hamiltonian
is the same form as (1.43) but g N/2n must be an integer. The lowest energy
state in this subspace is

I¥) = c, H(cos@ + sin 0, c )|O> (1.45)

The general states are given by an even number of excitations from this
state. The number of states is also 2¥~!. These states are orthogonal to each
other and therefore all these states together form a complete set of wave
vectors.

1.2.3 The free energy

Using the results of 1.2.1 and 1.2.2, one obtains the partition function of the
system,

7 = exp (Zq > {H(l‘l‘ —e(g /T _+_H —e(q/T}

+exp (722;@)) 5{H(1+e—€<4’>/T) H(1 WYL (146)
%

where g N /2n is a half-odd integer and ¢'N /2= is an integer. In the thermo-
dynamic limit the second term in {...} is much smaller than the first term and
we obtain the free energy per site. The free energy is given by the logarithm
of the partition function

f:—%an

= ey — % /7I In(1 + exp(—\/(J cosq — 2h)? + (J'sing)?/T))dq.
(1.47)

Here eg is the ground state energy per site

1 T .
eo =__/ \/(Jcosq—2h)2+(f/ sin g)*dgq.
Vi —7
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2

Systems with a delta-function potential

2.1 The boson problem
2.1.1 The c =0 case
Here we consider the system

N 2

H = — 2862—1—2625 Xi — Xj)- (2.1)

i<j

At first we consider the cases ¢ = 0 and ¢ = co. We assume periodic
boundary conditions.
In second quantized form, the Hamiltonian (2.1) at ¢ = 0 is written as

H =" Kala, k=2mn/L,
k

[akaaz] = 5k,q, [aka aq] - [ak5 q] - 0 (2'2)
The eigenstates and eigenvalues are given by
H(nk y~2(afy™ 10, Zkznk (2.3)

A set of integers {nx} gives an eigenstate. The ground state of this system is
no =N, mo=0. The partition function of the grand canonical ensemble
at chemical potential 4 is

E=]] 3 exp(—(k* —Am/T)=[](1 —exp[—(k* — 4)/TH7L. (2.4)

k n=0,1.2,.. k

The Gibbs free energy is given by

G=-ThE=T) In(1—exp[—(k’—4)/T]). (2.5)
k

10

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521019796
http://www.cambridge.org
http://www.cambridge.org

