
Preface

Over the past few decades, the role of computing has grown from being
used mainly for scientific purposes, into being part of our everyday life,
where it is used for purposes such as communication, entertainment, and
device control in the state-of-the-art consumer products. The ubiquity of
communication networks is facilitating the development of wireless and In-
ternet applications aimed at allowing users to communicate and collaborate
amongst themselves. Soon, group-oriented services will be customary-they
will be essential for increasing productivity in the future workplace, and
they will be integral to how we redefine our sense of community. Ultimately,
these group-oriented services will be heterogeneous in nature, bringing to-
gether a diverse clientele of users with varying amounts of computing power
and communication capabilities. However, before these group-oriented ser-
vices can materialize, technologies must be developed to guarantee that the
information and data exchanged in these group-scenarios are protected. In
short, it is necessary to develop solutions that will make multi-user services
trustworthy and secure.

Recently computing and networking research has shifted from the static
model of the wired Internet towards the new and exciting “anytime-
anywhere” service model of the mobile Internet. At the heart of the technolo-
gies facilitating such pervasive computing are recent advancements inwireless
technologies that will provide the ubiquitous communication coverage that
is so coveted by mobile services. Moreover, due to the fact that wireless
devices can seamlessly blend into users’ lives, it is easy to predict that future
wireless networks will gradually become the primary interface for consumer
applications. These group-oriented services will be popular as they will be

viii Preface

essential for increasing productivity in the future workplace. Already the
migration to mobile computing has started, and it appears that the mar-
ket for mobile services, or “m-commerce”, will succeed as recent estimates
project m-commerce to grow to involve over 1 billion subscribers. In spite
of the predicted success of the wireless market, there are several disrup-
tive challenges lurking in the future that threaten the successful adoption
of wireless services. Perhaps core amongst these challenges are two issues,
namely, platform heterogeneity, and secure and trusted communications.

The first issue points to the fact that wireless systems appear to be
shifting away from the single-platform model of the 1990’s to a free-for-
all mixture of technologies battling it out in unlicensed bands of spectrum.
Even the broad umbrella of Beyond-3G and 4G systems, along with forward-
planning 3G/WLAN interworking solutions, do not appear to be positioned
to capture the broad heterogeneity that will be introduced when completely
new classes of wireless systems, such as cognitive radios, mesh networks,
and wireless personal area networks are deployed using newly-developed
programmable radio technologies. Further, it can be expected that a di-
verse array of new media services will drive the mobile Internet, and new
multimedia delivery devices, such as wireless audio-visual devices and the
next evolution of wearable computing devices, will emerge as important new
products complementing today’s laptop computers and personal digital as-
sistants, providing a revolutionary means to communicate and collaborate
from anywhere at anytime.

The second hurdle facing wireless systems is security. Even for the existing
wireless networks, security is often cited as a major technical barrier that
must be overcome before widespread adoption of mobile services can occur.
The increasingly popular “WiFi” or 802.11 wireless local-area network was
initially based on a standard with relatively weak wireless security called
WEP, resulting in major security concerns as the equipment was deployed
in offices and homes. Further, emerging 3G cellular data services also have
limited security capabilities. Moreover, it has become clear that end-to-end
security solutions, which were originally designed for the wired Internet,
have limited applicability to the unique problems associated with wireless
networks. Add to this the foreseeable heterogeneity in devices and user
profiles that emerging wireless networks will introduce, and it is evident
that there is a need for research targeted at developing security solutions
for next-generation mobile services.

One of the most suitable technologies for delivering data to groups of
users is multicast networking. Multicasting has seen significant advance-
ments recently, in both the underlying technology as well as the deployment
of applications utilizing multicast technologies. Already there are multicast
services that stream stock quotes, and provide video and audio on demand.
The adaptation of multicast into commercial applications requires security
functionalities, such as authentication, non-repudiation, and access control.
Of these, access control is paramount as it is the first line of defense needed

Preface ix

to protect the value of an application’s data. A service provider may control
access to content by encrypting the content using a key that is shared by
all group members. The problem of access control becomes more difficult
when the content is distributed to a group of users since membership will
most likely be dynamic, with users joining and leaving the service for a
variety of reasons, and therefore necessitating the ability to update keys.

Key management is accomplished either by using a centralized entity that
is responsible for distributing keys to users, or by contributory protocols
where legitimate members exchange information to agree upon a key. Typ-
ical group key management schemes seek to minimize either the amount of
rounds needed in establishing the group key, or the size of the messages,
and treat all users as identical. However, these approaches do not factor
in the varying requirements of the users, the underlying network, or the
application, and are therefore not well suited to provide solutions efficient
for all users, for all networks, or for all types of applications. In particular,
since many applications will involve a heterogeneous clientele consisting
of group members with different computational capabilities, pricing plans,
and bandwidth resources, these network-aware factors must be considered
when designing an access control system.

The pervasiveness of computing has made it increasingly difficult to find
any aspects of computing that are unaffected by issues from the underlying
application and communication network. Applications must consider the
requirements of the users and the underlying network conditions in order
to provide a service that meets the demands of as many users as possible.
A similar approach is needed for designing the security architecture for an
application. In order to secure tomorrow’s computing systems, it is essential
to develop a network-aware framework that provides trustworthiness by
jointly considering issues of computing and communications in dynamic,
heterogeneous group environments.

Wireless multicasting will support many new multimedia applications,
ranging from the broadcasting of media content for entertainment services,
to video surveillance for remote monitoring applications, to multiparty “on-
the-go” collaborations that will increase our productivity. Securing the next
wave of wireless communications will require new strategies since traditional
multicast security solutions are not targeted at addressing issues specific to
emerging new applications such as wireless multimedia multicast services.

Before group-oriented wireless services can materialize, technologies must
be developed to guarantee that the information and data exchanged are pro-
tected. In short, it is necessary to develop solutions that will make wireless
multi-user multimedia services trustworthy and secure in the diverse wire-
less networks of the future. In order to accomplish this we have to have a
better understanding with a holistic view of security solutions that address
the following three topics:

x Preface

• Access Control and Data Confidentiality serve as the first line of de-
fense needed to protect the value of an application’s data. A service
provider may control access to content by encrypting the content
using a key that is shared by all group members. The problem of ac-
cess control for multicasts is challenging since group membership will
most likely be dynamic, with users joining and leaving-necessitating
the ability to update keys. However, traditional multicast key man-
agement schemes do not factor in the varying requirements of the
users, the underlying network, or the application, and therefore are
not adequately efficient for wireless multimedia multicast services.

• Service Authentication and Verification are important security issues
for the media service. Traditional public key authentication is not
suitable for wireless networks since many mobile devices will be low-
powered, with limited computational and storage resources. Addition-
ally, the strict delay requirements of multimedia data prevent popular
delayed key disclosure techniques from being appropriate for wireless
multimedia services. Together, these requirements necessitate the de-
velopment of new classes of delay-sensitive authentication mechanisms
for multimedia multicasting. An additional issue that is relevant for
service validation is non-repudiation. Although non-repudiation is not
typically studied in the context of multicast services, it is of particular
importance for multimedia multicast services since the combination
of advanced compression coding and best-effort wireless multicast-
ing will not provide any guarantee of the quality of service delivered.
It is important to both the service provider and the customers that
mechanisms are available to irrefutably prove the quality of service
delivered during a multimedia multicast service.

• Attack and Immunization Countermeasures are part of the security
design cycle. The development of a suite of security protocols should
involve an active phase of attacking the protocols in the suite as well
as other protocols. The lessons learned by this effort give valuable
insight into strengthening, or immunizing, the protocols to different
types of attacks.

Throughout the discussion of these topics in this book, we take the view-
point that the combination of content and wireless infrastructure introduces
unique challenges that are not adequately addressed by generic multicast
security solutions. This book presents the research results that have been
undertaken by the authors in the past decade on security and reliability
issues of group-based computing and communications. We hope our artic-
ulating point of the book– the network-aware approach toward security of
group communications– can serve as an enlightening view for future devel-
opment of wireless security.

Preface xi

Finally, we would like to acknowledge the assistance of the Army Re-
search Office, whose University Research Initiatives has helped support the
investigations behind many of the results that we present in this book. Ad-
ditionally, we would like to express our thanks to the many people who
have helped us in developing this book, including Yinian Mao, Min Wu,
Yinian Mao, Jie Song, Wei Yu, and Qing Li.

2
Centralized Multi-user Key
Management

One of the most important challenges for securing group-oriented communi-
cations is the issue of key management. As we outlined in the introductory
chapter, managing keys in a group-oriented scenario is harder than tradi-
tional key management services.

In this chapter, we explore the challenges associated with centralized
key management for group-oriented applications. We will begin with an
overview of the fundamental limits governing centralized multicast key dis-
tribution, and then provide a survey of several approaches that exist in the
literature. We then develop a new framework for multicast key management
that reduces the communication overhead associated with key management,
and show how to best tune this key management scheme to reduce commu-
nication overhead.

2.1 Basic Multicast Information Theory

We now provide a summary of information theory results relevant to mul-
ticasting. Much of this summary is based upon results that were presented
in [3, 4].

First, let U = {u1, u2, · · · , un} denote the user set consisting of n users
uj . Associated with each user uj is a private key Kj that is drawn uniformly
from a key space K. Of the n users, only a subset of them will be privileged.
We denote the set of private keys associated with privileged members by
KP , and the set of private keys associated with non-privileged users by KF .
For example, if there are n = 4 users, and users u1, u3 are privileged, then

8 2. Centralized Multi-user Key Management

KP = {K1,K3}, and KF = {K2,K4}. There is a secret S that is drawn
from a space S that the group center wishes to transmit to members of the
multicast group U . The broadcast message α is a function of the secret S, as
well as the private user information of the privileged users, α = f(S,KP).

It is useful to derive bounds on the size of the broadcast message given
the following security constraints:

• The user’s secrets KP and the secret S uniquely determine the broad-
cast message

H(α|S,KP) = 0. (2.1)

• Knowing only a user’s private key Kj does not decrease the uncer-
tainty of the secret S. That is

H(S|Kj) = H(S). (2.2)

In particular, this implies that H(S|KP) = H(S).

• No uncertainty in the secret remains if both a user’s private key Kj

and the broadcast message are available.

H(S|Kj , α) = 0. (2.3)

• The broadcast message does not decrease the uncertainty in a user’s
private key:

H(Kj |α) = H(Kj). (2.4)

• The broadcast message alone does not decrease the uncertainty in the
secret:

H(S|α) = H(S). (2.5)

The first results that we present are from Just et al. [3]. In the proofs,
we have followed the basic derivations provided in [3].

Lemma 1. The entropy of the broadcast message α is equal to mutual
information between the message and the joint random variable (KP , S):

H(α) = I(α;KP , S). (2.6)

Proof. We start by applying the chain rule to the mutual information:

I(α;KP , S) = I(α;Kj1) + I(α;Kj2 |Kj1) + · · ·
+ I(α;Kjm

|Kj1 ,Kj2 , · · · ,Kjm−1) + I(α;S|KP).

Expanding the mutual information terms yields the telescoping sum:

I(α;KP , S) = H(α) − H(α|Kj1) + H(α|Kj1) − H(α|Kj1 ,Kj2) + · · ·
+H(α|KP) − H(α|KP , S),

2.1 Basic Multicast Information Theory 9

which yields
I(α;KP , S) = H(α) − H(α|KP , S). (2.7)

However, H(α|KP , S) = 0, so that

I(α;KP , S) = H(α). (2.8)

Lemma 2. Let D ⊂ P be a subset of privileged members such that |D| ≤
m − 1, and let KD be the set of private keys associated with users in D.
Let Ki be a private key of a user ui ∈ P − D. Then for a secret S and a
broadcast message α, we have

H(Ki) − H(Ki|α,KD) ≥ H(S). (2.9)

Proof. The term H(Ki, S|α,KD) may be expanded in two different ways:

H(Ki, S|α,KD) = H(Ki|α,KD) + H(S|α,KD,Ki) (2.10)
= H(S|α,KD) + H(Ki|α,KD, S). (2.11)

Since H(S|α,Kj) = 0 for any user uj in the privileged set P , we have that
H(S|α,KD,Ki) = H(S|α,KD) = 0, and thus

H(Ki|α,KD) = H(Ki|α,KD, S). (2.12)

Observe that since I(Ki;S|α) = I(S;Ki|α) we have

H(Ki|α) − H(Ki|α, S) = H(S|α) − H(S|α,Ki)
H(Ki) − H(Ki|α, S) = H(S). (2.13)

Since H(Ki|α, S) ≥ H(Ki|α, S,KD), we may apply (2.12) to get
H(Ki|α, S) ≥ H(Ki|α,KD). Substituting this result into (2.13) gives
H(Ki) − H(Ki|α,KD) ≥ H(S).

A consequence of this lemma is the fact that each private key Ki will
have entropy greater than the entropy of secret, i.e. H(Ki) ≥ H(S). We
may now put these results together to get a lower bound on the size of the
broadcast message given the conditions stated.

Theorem 1. Suppose that the keys Kj are distributed independently of
each other, i.e. H(Kj ,Ki) = H(Kj) + H(Ki), and the conditions (2.1)-
(2.5) hold, then the following bound on the size of the broadcast message
holds:

H(α) ≥ mH(S) (2.14)

10 2. Centralized Multi-user Key Management

Proof. By Lemma 1 we have

H(α) = I(α;KP , S) (2.15)
= I(α;KP) + I(α;S|KP) (2.16)
= I(KP ;α) + I(S;α|KP) (2.17)
= H(KP) − H(KP |α) + H(S) − H(S|α,KP). (2.18)

Using the fact that H(S|α,KP) = 0 and that

H(KP) = H(Kj1 ,Kj2 , · · · ,Kjm
) (2.19)

= H(Kj1) + · · · + H(Kjm
), (2.20)

which follows from the independence of the private keys, we have

H(α) = H(Kj1) + · · · + H(Kjm
) − H(KP |α) + H(S). (2.21)

Similarly, expanding H(KP |α) using the chain rule gives

H(KP |α) = H(Kj1 |α) + H(Kj2 |α,Kj1) + · · ·
+H(Kjm

|α,Kj1 , · · · ,Kjm−1). (2.22)

Upon substitution we get

H(α) = H(Kj1)−H(Kj1 |α) +

m�
i=2

�
H(Kji)−H(Kji |α, Kj1 , · · · , Kji−1)

�
+ H(S).

(2.23)

By observing that H(Kj1 |α) = H(Kj1), and applying Lemma 2 we get the
desired result H(α) ≥ mH(S).

In summary, we have presented two main results from [3] that govern the
theoretical underpinnings of multicast key management. The first result
that was shown states that the entropy of a user’s private information
must be greater than the entropy of the secret that is to be distributed
to the group. This translates into the security terminology by implying
that the bit length of the user’s private key should be as large as the bit
length of the group secret. It was also shown, under the assumption of
independent keys, that the size of the broadcast message must be at least
as large the size of the group times the size of the secret that is to be
conveyed. This latter result gives a lower bound on the communication
requirements for rekeying. In particular, it implies that the best that can
be done is a message whose size is linear in the amount of group members
unless the key independence assumption is relaxed. As we shall see in the
later discussions, the implication of this result is that we must do away
with the independence assumption in order to reduce the message size.
Currently, the most popular family of multicast key management schemes
are those that employ a tree key hierarchy, in which the key information
that each user has is not independent of each other.

2.2 Overview of Multicast Key Management 11

2.2 Overview of Multicast Key Management

The distribution of identical data to multiple parties using the conven-
tional point-to-point communication paradigm makes inefficient usage of
resources. The redundancy in the copies of the data can be exploited in
multicast communication by forming a group consisting of users who receive
similar data, and sending a single message to all group users [1]. Access con-
trol to multicast communications is typically provided by encrypting the
data using a key that is shared by all legitimate group members. The shared
key, known as the session key (SK), will change with time, depending on
the dynamics of group membership as well as the desired level of data pro-
tection. Since the key must change, the challenge is in key management–
the issues related to the administration and distribution of keying material
to multicast group members.

In order to update the session key, a party responsible for distributing
the keys, called the group center (GC), must securely communicate with
the users to distribute new key material. The GC shares keys, known as key
encrypting keys (KEKs), that are used solely for the purpose of updating
the session key and other KEKs with group members.

As an example of key management, we present a basic example of a mul-
ticast key distribution scheme. Suppose that the multicast group consists
of n users and that the group center shares a key encrypting key with each
user. Upon a member departure, the previous session key is compromised
and a new session key must be given to the remaining group members.
The GC encrypts the new session key with each user’s key encrypting key
and sends the result to that user. Thus, there are n − 1 encryptions that
must be performed, and n− 1 messages that must be sent on the network.
The storage requirement for each user is 2 keys while the GC must store
n + 1 keys. This approach to key distribution has linear communication,
computation and GC storage complexity. As n becomes large these com-
plexity parameters make this scheme undesirable, and more scalable key
management schemes should be used.

In general, during the design of a multicast application, there are several
issues that should be kept in consideration when choosing a key distribution
scheme. We now provide an overview of some of these issues.

• Dynamic nature of group membership: It is important to effici-
ently handle members joining and leaving as this necessitates changes
in the session key and possibly any intermediate keying information.

• Ability to prevent member collusion: No subset of the members
should be able to collude and acquire future session keys or other
member’s key encrypting keys.

• Scalability of the key distribution scheme: In many applications
the size of the group may be very large and possibly on the order

12 2. Centralized Multi-user Key Management

of several million users. The required communication, storage, and
computational resources should not become a hindrance to providing
the service as the group size increases.

One approach to group key management is provided by the group key
management protocol (GKMP) [5]. In this scheme, the GC uses a SK,
called a group traffic encrypting key (GTEK) in the GKMP literature, and
a group key encrypting key (GKEK). The GC updates the SK by using
the GKEK. This allows all group members to be updated using a single
encrypted message. A major disadvantage of GKMP, however, is that it is
not able to handle member departures, or the compromise of a single mem-
ber. The compromise of the GKEK means that all future communication
is compromised since an adversary can calculate future session keys.

Fiat and Naor [6] present a broadcast key distribution scheme that allows
for a single source to transmit a SK to a dynamic subset of privileged users
such that no coalition of at most k non-privileged users can acquire the
SK. The communication overhead of their scheme is not dependent on the
amount of non-privileged members, but instead on the security parameter
k and a parameter describing the probability that a coalition of at most k
non-privileged users can acquire the SK.

In Section 2.1, we summarized the theoretical work of [3,4] for the distri-
bution of secret information via broadcast messages. These results provide
an insight into the communication resources needed to achieve the above
goals. In particular, it was shown in Theorem 1 that for a key size of B
bits, the message needed to update a group of n users must be at least nB
bits to provide perfect security in the key distribution. One key result of [3]
is that in order to achieve a smaller broadcast size, it is necessary to do
away with the constraint that the private information held by each user
is mutually independent. Therefore, to reduce the usage of communication
resources, the users must share secret information.

One strategy for having users share secret information is to arrange the
keys according to a tree structure. The tree based approach to group rekey-
ing was originally presented by Wallner et al. [7], and independently by
Wong et al. [8]. In such schemes an a-ary tree of depth loga n is used to
break the multicast group into hierarchical subgroups. Each member is as-
signed to a unique leaf of the tree. KEKs are associated with all of the
tree nodes, including the root and leaf nodes. A member has knowledge
of all KEKs from his leaf to the root node. Thus, some KEKs are shared
by multiple users. Adding members to the group amounts to adding more
depth to the tree, or adding new branches to the tree [8, 9]. Upon mem-
ber departure the session key and all the internal node KEKs assigned to
that member become compromised and must be renewed. Due to the tree
structure, the communication overhead is O(log n), while the storage for
the center is O(n) and for the receiver is O(log n).

Various modifications to the tree scheme have been proposed. In [10], a
modification to the scheme of Wallner et al. is presented. By using pseudo-

2.3 Requirements for Centralized Group Key Management 13

random generators, their scheme reduces the usage of communication re-
sources by a factor of two. Similarly, Balenson et al. [9] were able to reduce
the communication requirements by a factor of two using one-way function
trees. The security of the Canetti et al. scheme can be rigorously proven,
while the security of the approach using one-way function trees is based
upon non-standard cryptographic assumptions and has therefor not been
rigorously shown. In [11] Canetti et al. examine the tradeoffs between stor-
age and communication requirements, and a modification to the tree-based
schemes of [7, 8] is presented that achieves sublinear server-side storage.
Further, in [12], it was shown that the optimal key distribution for a group
leads to Huffman trees and the average number of keys assigned to a mem-
ber is related to the entropy of the statistics of the member deletion event.

2.3 Requirements for Centralized Group Key
Management

A conditional access system for group communications must be able to
cope with the demands of the application. These demands must not only
address the security and access requirements of the service provider, but
also address the convenience and satisfaction of the client. Below we have
listed several functionalities that are desirable in a conditional access system
for dynamic group communication scenarios:

1. The solution should be able to refresh the keys used to protect content.

Due to the bulk quantities of data being multicast, it is feasible that
session keys may become compromised. Therefore, it is important
that there is a means available to refresh the session key and interme-
diate keying material in order to maintain a desirable level of content
protection.

2. The solution should provide the ability for members to join and depart
the service at will, as well as allow the content distributor to easily
revoke a member’s ability to access content.

Unlike unicast communication, the departure of a group member does
not imply the termination of the communication link. In addition,
upon departing the service, users must be de-registered and prevented
from obtaining future multicasts. Similarly, when new members join
the service, it is desirable to prevent them from accessing past content.
Additionally, situations might arise where the content provider desires
to prevent a user from accessing future content.

3. The solution should be resistant to member collusion.

No subset of the members should be able to collude and acquire keying
information of non-colluding members.

14 2. Centralized Multi-user Key Management

4. The solution should provide a means for an end-user to recover from
missed rekeying messages.

In many application environments, the connection between a client
and the server may be severed. For example, in cellular applications,
a client might move temporarily through a region of severe fading.
Adverse communication conditions and common accidents, such as
a system crash, might mean that the client misses several rekeying
messages needed to update his key database. Users might also desire
to switch from terminal to terminal, with the possibility of not being
able to receive communication while moving across terminals. It is
important to have a means that allows the client to resume access to
the service.

5. The solution should allow the user to temporarily transfer access rights
to another party.

In many business scenarios, a client will subscribe to a service where
content, such as multimedia or stock quotes, is streamed. Users may
wish to transfer their access rights to the data stream to their friends
without canceling or transferring their subscription.

6. The solution should address the issue of resource scalability for sce-
narios consisting of large privileged groups.

In many applications, the size of the group may be very large and
possibly on the order of several million users. The required commu-
nication, storage, and computational resources should not become a
hindrance to providing the service as the group size increases.

Some of these functionalities have been discussed in other tree-based key
management schemes. However, many of these objectives are not consid-
ered. For the remainder of this chapter we shall present an architecture for
the management of keys in a conditional access multicast system that is ca-
pable of achieving each of these requirements. The system that we describe
makes use of a tree-structured key hierarchy and basic primitive operations
to provide a solution that satisfies the above requirements.

Additionally, whereas most of the multicast key management schemes in
the literature do not consider the issue of flagging to the user which rekey-
ing messages are intended for them, we provide this important functionality
in our message structure and factor this additional overhead into our con-
siderations. We will focus on the usage of communication resources and
calculate the amount of communication needed to perform a member join
and a member departure operation for different tree degrees and different
amount of users. We determine the optimal tree degree for scenarios where
member join is most important, member departure is most important, and
where both operations are equally important. Then, in order to better study
the optimization of the key management scheme, we present a stochastic

2.4 Basic Polynomial Interpolation Scheme 15

occupancy model that allows one to study the mean behavior of a key tree
under different degrees of occupancy. Additionally, we compare the amount
of communication overhead needed in our scheme with the amount of com-
munication overhead that a conventional tree-based rekeying scheme, such
as [8], would need to flag users which component of a rekeying message is
intended for them.

Looking forward, in Section 2.4 we introduce a method for distributing
keys using polynomial interpolation and parametric one-way functions. This
basic scheme is used as a building block for a protocol primitive described
later in the chapter. Therefore, we present a study of its security and com-
munication features. In Section 2.5 we present some protocol primitives and
use these to construct more complex key management operations capable of
maintaining the key hierarchy in scenarios with dynamic membership. The
size of the messages needed for updating the keys is computed in Section 2.6
and are used to determine the optimal degree of the key distribution tree.
Additionally, we examine the computational requirements of the tree-based
polynomial interpolation scheme proposed in this chapter.

2.4 Basic Polynomial Interpolation Scheme

The heart of the new multicast key management scheme that we will de-
scribe involves the use of a polynomial interpolation algorithm that is ca-
pable of reducing the communication overhead needed for key management
compared with multicast key management schemes that use messages that
are concatenations of individual rekeying messages.

In this section we describe the basic scheme for distributing keys that will
be used in the scalable key management protocol of Section 2.5. The basic
key distribution scheme that we describe is a modification of the polynomial
interpolation scheme of [4]. We have introduced the use of one-way functions
and a broadcast seed to protect private user KEKs from compromise and
allow private user KEKs to be reused.

We shall use keyed (parametric) one-way functions in our work to provide
computational security. A one-way function h is a function from X×Y → Z
such that given z = h(x, y) and y it is computationally difficult to determine
x [13]. Keyed one-way functions, or parametric one-way functions (POWF)
are families of one-way functions that are parameterized by the parameter
y. Symmetric block ciphers can be used to construct POWFs. Let x ∈ X
and y ∈ Y, and consider a symmetric cipher Ex(y) : Y → Y where the
subscript denotes the key used in the encryption of the plaintext y. Thus
X is the key space of the cipher E, while Y is the space of plaintexts
and ciphertexts. Define a hash function f : Y → Z. Then the function
h(x, y) = f(Ex(y)) is a POWF parameterized by y since any reasonable
cryptosystem can withstand a known-plaintext attack, that is knowledge of
Ex(y) and y does not make it easy to determine the key x. Note that it is

16 2. Centralized Multi-user Key Management

u
1

u
n-1 nuu

2

K K K. . .K

K

K

n

s

ε

1 2 n-1

FIGURE 2.1. The basic key distribution scheme used in the polynomial interpo-
lation method.

not necessary that the hash function f have any cryptographic properties
as the required cryptographic strength is provided by E. Throughout this
chapter we shall assume the existence of parametric one-way functions that
map sequences of 2B bits into sequences of B bits.

Consider the basic key distribution scheme depicted in Figure 2.1. Each
user ui has a personal B-bit KEK Ki that is known only by the group
center and user ui. Additionally, all of the users share a B-bit root KEK
Kε(t) and a session key Ks(t) that will vary with time t.

Suppose that user un decides to depart, then we must renew the keys
Kε(t−1) and Ks(t−1) since they were shared by un and the other users. The
first step is to send the new Kε(t) to the remaining users. In the polynomial
scheme, each user ui has the distinct pair (zi,Ki) ∈ Zp × Zp, where Zp

denotes the integers modulo the prime p. The zj are public knowledge, and
are not considered as part of the secret information that the user must
store. Instead, the zj is any quantity that is used to identify the user, for
example a processor id. The GC has made available f , a POWF taking 2B
bits to B bits. The GC first broadcasts the seed µ(t) to everyone. Next, the
GC associates the following quantity with each user uj

wj = Kε(t) + f(Kj , µ(t)) (mod p). (2.24)

2.4 Basic Polynomial Interpolation Scheme 17

The GC generates a degree n − 2 polynomial p(z) that interpolates the
points (zj , wj), i.e. p(zj) = wj . The GC represents p(z) as

p(z) =
n−2∑

i=0

ciz
i (mod p) (2.25)

and transmits the message αε(t) = (c0, c1, · · · , cn−2) to update Kε(t). This
completes the action needed by the GC to update the root KEK, and the
session key is then updated using Kε(t) by transmitting αs(t) = EKε(t)

(Ks(t)).
A member uj can calculate p(zj) = wj and f(Kj , µ(t)), and hence can

recover Kε(t).

2.4.1 Resistance to Attack

There are two sources of adversaries for a key management scheme. The
first type of adversary is an external adversary. This type of adversary is
not a member of the service, but receives the encrypted content as well
as the rekeying messages. In order for the external adversary to cheat the
service, he must mount a successful attack against the rekeying messages
in order to acquire the session key, which is needed to decrypt the content.
The second type of adversary is an internal adversary, who is a member
that uses the rekeying messages and his knowledge of his keys to attempt
to acquire another user’s keys. If an internal adversary can successfully
acquire another user’s keys, he may cancel his membership to the service,
and use the compromised keys belonging to another user to enjoy the service
without having to pay.

In the polynomial scheme, an external adversary receives αε as well as
αs(t). In order for the adversary to acquire the SK, he must mount a suc-
cessful attack against the cipher used in forming the message αs(t). Careful
selection of a strong cipher algorithm that has received serious study, such
as Rijndael [14], will make a successful attack of the SK rekeying message
unlikely. Even should a successful attack of the SK rekeying message take
place, a future update of the SK would require a subsequent successful
attack of the SK rekeying message, which is equally unlikely. Hence, a suc-
cessful attack against the SK rekeying message would only be a short-lived
victory for a pirate.

A second method for acquiring the session key is to attack the message
αε. Given the message αε(t), and knowledge of a zj , it is possible that an
adversary may calculate wj . However, the adversary must either determine
Kε(t) or a user’s f(Kj , µ(t)) given wj = Kε(t)+f(Kj , µ(t)) (mod p). The
modulo operation makes wj independent of either Kε(t) or f(Kj , µ(t)).
Should an external adversary successfully attack Kε(t), then he may acquire
the session key. However, upon the next update of the session key, he must
make another successful attack upon the root KEK.

18 2. Centralized Multi-user Key Management

The only method for an external adversary to be able to repeatedly
acquire the SK is to mount a successful attack on a user’s personal key
Kj . This requires successful determination of f(Kj , µ(t)) given wj , which
requires searching a space of order p possibilities, and then successfully
attacking the one-way function to acquire Kj . The strength of the one-
way function should be as strong as the strength of the encryption used to
protect the SK rekeying message.

We now discuss the susceptibility of the original polynomial scheme of [4]
to internal attacks. In the discussion that follows, we refer the reader to
Section 3.1 of [4]. For simplicity, we shall assume that the same key K is
being distributed to all of the users. Observe that since the zj-coordinates
are public knowledge, an internal adversary may calculate wj by evaluating
the interpolating polynomial at zj . With knowledge of wj , the adversary
may use his knowledge of K to determine user uj ’s private information.
Thus, the polynomial scheme of [4] does not protect the private information
of each user, and hence cannot be used more than once. If both the zj

coordinate and the personal key Kj are kept secret, then an adversary’s
task is to search Zp for any of the n user’s zj coordinate. This is more
difficult for an adversary to attack, but also requires both the server and
the clients to store twice as much secret information.

As we shall describe in Section 2.6.3, we chose to pursue a different ap-
proach to ensuring the sanctity of each user’s private information in order
to reduce the communication overhead in our protocol. An inside adver-
sary ui who desires to calculate another user’s key information Kj can
calculate p(zj) = wj , and therefore can calculate f(Kj , µ(t)) = wj − Kε(t)
(mod p). However, it is difficult for him/her to calculate Kj given µ(t) and
f(Kj , µ(t)) since f is a parametric one-way function. Additionally, should
two or more users collude, their shared information does not provide any
advantage in acquiring another user’s Kj .

2.4.2 Anonymity Reduces Communication Overhead

The above scheme is used in constructing a protocol primitive in the fol-
lowing section. In the protocol primitive, there is a parent key Kε and a
handful of sibling keys Kj that are used to update the parent key. Unlike
the example described above, application of the protocol primitive might
not use all of the sibling keys to update the parent key. This scenario might
occur when the GC knows that a sibling key has become compromised or
invalidated.

Suppose that there are a possible sibling keys and that m of those sibling
keys are used to update the parent key. In a conventional key distribution
scheme, such as [8], the update to the parent key is performed by a rekeying
message of the form

α = {EKj1
(Kε)‖EKj2

(Kε)‖ · · · ‖EKjm
(Kε)} (2.26)

2.5 Extending to a Scalable Protocol 19

where jk denotes the sequence representing the m sibling keys used in
updating parent key, and ‖ denotes message concatenation. In addition to
the rekeying message, it is necessary to transmit the amount m of children
keys, and the user ID message {j1, j2, · · · , jm}, which specifies which portion
of the rekeying message a user needs in order to determine the new session
key.

The transmission of the user ID message in the conventional scheme
reveals which sibling keys are still valid. However, it requires that �log2 a�
bits to represent m and m�log2 a� bits to represent {j1, j2, · · · , jm}. The
total communication overhead of the conventional scheme is thus (m +
1)�log2 a� bits.

The polynomial interpolation scheme creates a composite message that
does not require any user ID message, but instead requires the broadcast of
the seed µ(t). The polynomial scheme defines the rekeying message as the
output of a function PolyInt which returns the coefficients of the interpo-
lating polynomial, thus

α = PolyInt(K, {zj1 , zj2 , · · · , zjm
}, {Kj1 ,Kj2 , · · · ,Kjm

}, µ(t)). (2.27)

The input to PolyInt is the key K that is to be distributed, the set of valid
non-secret ID parameters {zj1 , zj2 , · · · , zjm

}, the broadcast seed µ(t), and
the set of valid sibling keys {Kj1 ,Kj2 , · · · ,Kjm

}. Given a valid sibling key
and the seed µ(t), the new parent key can be determined. On the other
hand, an invalid sibling key is unable to determine the new parent key.

If the prime p used in the polynomial scheme has the same bit length as
the output of one of the encryptions EK , then the message size of the poly-
nomial scheme will be the same as the rekeying message of the conventional
scheme. If Bµ is the bit length of the broadcast seed, then a measure of
comparison between the conventional scheme and the polynomial scheme
is the difference (m + 1)�log2 a� − Bµ. For a single sibling update of the
parent node, this difference might favor the conventional approach. The
advantage of the polynomial scheme becomes more pronounced when used
in a multi-level tree as in Section 2.5.

2.5 Extending to a Scalable Protocol

In the previous section we described the basic scheme for distributing keys
during member departures. The basic polynomial interpolation scheme had
linear communication requirements during member departures. We now
describe a scalable protocol that provides renewal of security levels, handles
membership changes, provides a mechanism for reinserting valid members,
and allows for the transferal of access rights.

In order to achieve improved scalability, we use a tree-based key hierarchy
as depicted in Figure 2.2. In general, the tree can be an a-degree tree.

20 2. Centralized Multi-user Key Management

sK

Kε

K
000

0 1

0 1 0 1

0 1 0 1 0 1 0 1

K
0 1

K
00 K01

K
10 11

K
001

K
010

K
100

K
101

K
110

K
111

K
011

K

K

000
u u

001 010
u u u u u u

011 100 101 110 111

Invalidated Keys

Joining/Departing
Member

FIGURE 2.2. Tree-based key distribution.

Attached to the tree above the root node is the session key Ks. Each node
of the tree is assigned a KEK which is indexed by the path leading to itself.
Additionally, each node has a non-secret ID variable zσ which is used as
a non-secret parameter for the PolyInt function. The symbol ε is used to
denote the root node. Each user is assigned to a leaf of the tree and is
given the KEKs of the nodes from the leaf to the root node. Additionally,
all users share the session key Ks. For example, user u111 is given the keys
K111, K11, K1, Kε, and Ks.

In the protocol that follows, the GC transmits messages to the users via
a broadcast channel. It is assumed that each user has an upstream channel
with minimal bandwidth that is available to convey messages to the GC,
such as informing the GC of the intent to depart the service.

The messages that the GC broadcasts to the users must have a standard-
ized structure that is known to all receivers. There are two basic message
formats as depicted in Figure 2.3. The first contains three components while
the second has five components. The function B() is used to denote the bit
length of its operand, thus B(σ) is the amount of bits needed to repre-
sent σ. The variable Operation ID flags the user which protocol primitive
is about to be performed. Only five primitive operations are used, and we
may therefore represent Operation ID using a 3 bit string. Table 2.1 maps
the primitive operations with their corresponding ID bit string.

2.5 Extending to a Scalable Protocol 21

TABLE 2.1. Mapping between primitive operations and their corresponding ID
bit string.

bit ID primitive
000 Primitive-1
001 Primitive-2
010 Primitive-3
011 Primitive-4
100 Primitive-5

In the discussion that follows, we assume that the tree has degree a, and
that there are L levels to the tree. The amount of multicast group members
n is limited by the amount of leaf nodes on the tree. Thus n ≤ aL.

2.5.1 Basic Protocol Primitives

We have identified five basic operations needed in building a system that
allows for the update and renewal of the key hierarchy. We now describe
each case.

1. Primitive-1(Update SK): This basic operation uses the current root
KEK Kε to update the session key via the rekeying message

α = EKε(t)[Ks(t)] (2.28)

The message format is depicted in Figure 2.3(a). We assume that the
maximum size that α can be is 256 bits, and we therefore need 8 bits
to represent B(α). This choice of bit length for α would allow for the
use of encryption algorithms with a key size of up to 256 bits.

2. Primitive-2(Transmit Seed): The broadcast seed is used in the poly-
nomial scheme to provide protection of secret information. Addition-
ally, it plays a role in reducing the communication overhead associated
with flagging the users which part of the message is intended for them.
The broadcast of the seed µ(t) does not require encryption to protect
it. The message format for the transmission of the broadcast seed is
depicted in Figure 2.3(a). Here α = µ(t), and B(α) is the amount of
bits needed to represent µ(t). Again, we assume that the maximum
size of α is 256 bits, and that 8 bits are used to represent B(α).

3. Primitive-3(Self Update): It is often necessary for a node, indexed
by the a-ary symbol σ, to have its associated key updated using the
key at the previous time instant. Thus we will go from Kσ(t − 1) to
Kσ(t) by the following message

α = EKσ(t−1)[Kσ(t)]. (2.29)

22 2. Centralized Multi-user Key Management

Operation

ID
�B()�

B()� B()��
Operation

ID
�

(a)

(b)

FIGURE 2.3. The two message structures used in the protocol primitives.

In this case, we need to flag the receivers which node is being up-
dated. This requires the transmission of the a-ary representation of
the node, as well as the amount of bits needed to represent the node.
This is depicted in Figure 2.3(b) by the B(σ) and σ components of
the message. The rest of the message contains the bit length of the
message α and the actual rekeying message α. Since the maximum
depth of the tree that needs to be represented is L− 1 and the tree is
an a degree tree, the maximum amount of bits needed to represent σ
is �log2 a�(L− 1) + 1, where the addition of 1 bit was included to ac-
count for the need to represent the empty string ε as a possible choice
for ε. In order to represent B(σ), we use �log2(�log2 a�(L − 1) + 1)�
bits. The maximum bit length for α is 256 bits, and 8 bits are used
to represent B(α).

4. Primitive-4(Update Parent): It is also necessary for the children
nodes to update the key of their parent nodes. If σ is the symbol
representing the parent node to be updated, then the message

α = PolyInt(Kσ(t), {zChild(σ)(t)}, {KChild(σ)(t)}, µ(t)) (2.30)

is used. Here we have defined the function Child(σ) to denote the
set of valid children nodes of σ. For example, if we have a binary
tree and σ = 00, and both children nodes are valid, then Child(σ) =
{000, 001}. Thus, the message α uses the keys of valid children nodes
to update Kσ(t). Observe that this message requires that µ(t) has
already been broadcast using Primitive-2, or that the choice of µ(t)
is implicitly known. The message form is depicted in Figure 2.3(b),
where again we transfer the bit length of σ and the actual symbol
σ to the recipients, followed by the bit length of α and the rekeying
message α. We use the same bit allocation for σ and B(σ) as in
Primitive-3. However, the maximum length for α is aBKEK , and we
therefore need �log2 aBKEK� bits to represent B(α).

5. Primitive-5(Reaffirming Parent): In some operations, it is useful
to have a sibling node reaffirm the value of a parent node’s key. We

2.5 Extending to a Scalable Protocol 23

define a function Par(σ) to denote the symbol corresponding to the
parent of the node indexed by σ. To reaffirm the value of a parent
node’s key, we transmit the message

α = EKσ(t)[KPar(σ)(t)]. (2.31)

The message form is depicted in Figure 2.3(b), and follows the same
structure as used in Primitive-3.

2.5.2 Advanced Protocol Operations

We now describe more advanced protocol operations that can be con-
structed using the primitive operations described above. In particular, we
focus on the operations of an addition to the membership, a deletion of a
user from the membership, the reinsertion of a member into the system,
and the transferal of access rights from one user to a new user.

Before we proceed, we present a few comments about how the primi-
tive operations can be used to perform periodic renewal of keying material.
Primitive-1 provides a method for performing periodic refreshing of the ses-
sion key. Refreshing the session key is important in secure communication.
As a session key is used, more information is released to an adversary, which
increases the chance that a SK will be compromised. Periodic renewal of
the session key is required in order to maintain a desired level of content
protection, and can localize the effects of a session key compromise to a
short period of data. Since the amount of data encrypted using KEKs is
usually much smaller than the amount of data encrypted by a session key,
it is not necessary to refresh KEKs as often. However, the periodic renewal
of a KEK can be performed using Primitive-3.

Member Join

In many applications, such as pay-per-view broadcasts and video confer-
ences, the group membership will be dynamic. It is important to be able
to add new members to any group in a manner that does not allow new
members to have access to previous data. In a pay-per-view system, this
amounts to ensuring that members can only watch what they pay for, while
in a corporate video conference there might be sensitive material that is not
appropriate for new members to know.

Suppose that a new user contacts the service desiring to become a group
member. The new client sends the GC a message detailing the client’s cre-
dentials, such as identity information, billing information, and public key
parameters that the GC may use to communicate with the new client.
Mutual authentication between the new client and the GC should be per-
formed. A public key infrastructure, such as X.509 certificates [15], may be
used for this purpose. Upon verification of the new user’s information, the
GC assigns the client to an empty leaf of the key tree. For simplicity of

24 2. Centralized Multi-user Key Management

presentation, we assume that the tree has empty slots. If the tree is already
full, then the user may either be turned away, or an additional layer must
be added to the tree using a separate operation. The GC then issues the
new client his keys via a communication separate from the communications
sent to the current group members, as well as informing the new user the
time at which those keys will become valid.

Meanwhile, the GC updates the current members of the multicast group.
Suppose that the GC plans on inserting the new member into the leaf
node indexed by the symbol ω. Then the SK as well as the KEKs on the
path from the parent node of ω to the root node ε must be renewed. The
following algorithm describes how this procedure can be accomplished using
the protocol primitives. We use the notation Parj(ω) to denote the parent
function applied j times to ω. Thus Par2(ω) is the grandparent of ω.

for j = 1 : L do
σ = Parj(ω) ;
Update Kσ(t − 1) → Kσ(t) using Primitive-3 ;

end
Update SK using Primitive-1 ;

Member Departure

Members will also wish to depart the service, and must be prevented from
accessing future communication. Assume that user uω contacts the GC
wishing to depart the service. Upon authenticating the user’s identity, the
procedure that the GC enacts to remove member uω and update the keys
of the remaining members is

Generate random µ(t) ;
Broadcast µ(t) using Primitive-2 ;
for j = 1 : L do

σ = Parj(ω) ;
Determine valid children of σ: Child(σ) ;
Update Kσ(t − 1) → Kσ(t) using Primitive-4 ;

end
Update SK using Primitive-1 ;

Member Reinsertion

It might often occur that a valid member, denoted by index ω, misses the
rekeying messages needed to update the key hierarchy. The client must
notify the GC that he missed rekeying messages using an upstream (client

2.5 Extending to a Scalable Protocol 25

to server) channel. Upon verification of the user’s identity, the GC performs
the member reinsertion operation, which sends the new user the specific
keys he needs to be able to resume the service.

If the service provider has a downstream (server to client) channel avail-
able to communicate with the user, then service provider may use this
channel to send the needed keys by encrypting them with the user’s per-
sonal key Kω. In many scenarios, however, after the initial contact with
the service provider, the client has a low-bandwidth channel for upstream
communication, and only the broadcast channel available for downstream
communication. In these cases, although only a single user needs the rekey-
ing messages, the rekeying messages must be multicast. Since this user has
a valid private key Kω, the GC can start with this key to provide KPar(ω)(t)
to the user. We can then proceed up the tree, using the sibling key to con-
vey the current status of the parent key. The procedure for this operation
is as follows:

for j = 1 : L do
σ = Parj(ω) ;
Convey parent key Kσ(t) to siblings using Primitive-5 ;

end
Convey current SK using Primitive-1 ;

An added bonus of using the sibling key to convey the current status of
the parent key is that other users may observe these rekeying messages to
reaffirm the validity of some of their keys.

Transferal of Rights

Suppose that user uω wishes to give his rights to another user who is not
currently a member. We will denote this new user by uωB

to indicate that he
will take over the keys on the path from ω to the root node. For the purpose
of calculating parent and sibling relationships, ω and ωB are identical, thus
Par(ω) = Par(ωB).

In order to transfer access rights, both users must contact the GC, who
performs an authentication procedure to verify that the transferal is le-
gitimate. Then, using a secure channel, the GC gives to user uωB

its own
personal key KωB

. One method for creating a secure channel is to use pub-
lic key cryptography. KωB

replaces Kω on the key tree. All of the keys that
belonged to uω must be changed to prevent uω from accessing content that
he has given up the right to access. The procedure for transferring access
rights is as follows:

We observe that the algorithm for transferring rights is nearly identical
with the algorithm for removing a member from a group. The difference
lies in the fact that user uωB

is considered a valid user, and hence is a valid
child of its parent.

26 2. Centralized Multi-user Key Management

Generate random µ(t) ;
Broadcast µ(t) using Primitive-2 ;
for j = 1 : L do

σ = Parj(ωB) ;
Determine valid children of σ: Child(σ) ;
Update Kσ(t − 1) → Kσ(t) using Primitive-4 ;

end
Update SK using Primitive-1 ;

The procedure for user uω to reclaim his access privileges is similar.
This time, only user uω is required to contact the GC requesting that he
regain his access privileges. The GC performs an authentication procedure
to guarantee that the identity of uω is truthful, and then replaces KωB

with
Kω. The KEKs and SK are changed according to the above algorithm, with
ω replacing ωB .

2.6 Architectural Considerations

2.6.1 Optimization of Tree Degree for Communication

The amount of communication that a rekeying protocol requires affects the
speed at which the rekeying scheme can handle membership changes. It
is therefore important to minimize the size of the communication used by
the key management scheme. In particular, since the two most important
operations performed by a multicast key management protocol are mem-
bership joins and membership departures, we shall focus on optimizing the
tree degree for these two operations.

In what follows, we present a worst-case analysis of the communication
requirements for member join and member departure operations. It is ob-
served that member join and member departure operations lead to con-
flicting optimality criteria. Since a real system will have to cope with both
member joins and member departures, we jointly consider the departure
and join operations, and present optimization results when both member
join and departure operations are equally weighted.

We refer the reader to the protocol descriptions as well as the message
structure in Figure 2.3. We shall denote the degree of the tree by a, and
the number of levels in the tree by L. BSK shall denote the bit length of
session key, BKEK shall denote the bit length of the key encrypting keys,
and Bµ the bit length of the broadcast seed µ(t).

Worst-Case Analysis

It is easy to see that, for a given tree, the scenario that produces the most
communication for the member join operation occurs when one node on

2.6 Architectural Considerations 27

each level from the root to level L − 1 must be updated. In this case, all
of the KEKs on the path from one user to the root must be refreshed. We
now calculate the amount of communication needed to update the tree for
this worst-case scenario.

The member join operation consists of two types of operations: updating
the KEKs, and updating the SK. In order to update the KEKs, we use
Primitive-3 L times. Each step of the loop must send the quintuple (op-
eration ID, bit length of update node B(σ), node ID σ, bit length of the
update message B(α), update message α). The symbol σ starts near the
bottom of the tree, and through application of the Parent function moves
toward the root of the tree.

In order to represent the symbol σ during the jth iteration of the loop, we
need to convert from base a to base 2 and hence B(σ) = �log2 a�(L− j)+1
bits. In addition, we must send B(σ), which requires

�log2 (�log2 a�(L − 1) + 1)�

bits. Here the addition of 1 was to allow for the need to represent the empty
string ε as a possible choice for σ. Similarly, in each stage of the loop the
rekeying message α has bit length B(α) = BKEK and since we have fixed
the maximum key length to be 256 bits, we require 8 bits to represent
B(α). The update to the session key requires sending the ID flag, B(α)
and α. Therefore, the amount of bits needed to update the session key is
3+8+BSK . The total amount of bits needed to update the key tree during
a member join is

CMJ =

�
� L�

j=1

�
3 + �log2(�log2 a�(L − 1) + 1)� + �log2 a�(j − 1) + 9 + BKEK

���
+3 + 8 + BSK .

The amount of communication needed in the member departure case
can be similarly calculated. The main difference between member join and
member departure is that there are three operations: the broadcasting of
µ(t), updating the KEKs, and updating the SK. The most communication
occurs when a − 1 nodes on level L must be used to update the key on
level L − 1, and a nodes are used to refresh each of the remaining KEKs
on the path from the departing member to the root node. After appropri-
ately expanding and gathering terms, the communication for the member
departure can be found to be

CMD = 22 + BSK + Bµ + (La − 1)BKEK + (L)�
4 + �log2 aBKEK� + �log2 (�log2 a�(L − 1) + 1)� +

(L − 1)

2
�log2 a�

�
.

28 2. Centralized Multi-user Key Management

We calculated the worst-case amount of communication required to up-
date an a-degree key tree as a function of the number of users n with the
amount of tree levels set to L = �loga n�. In our calculations, we chose
BSK = BKEK = Bµ = 64 bits. We chose to use 64 bits as the key size since
such a key length can provide strong levels of security when used with some
ciphers, such as RC5 [13]. The amount of communication required for dif-
ferent choices of the degree of the tree a during a member join is depicted in
Figure 2.4(a). This figure shows the general trend that less communication
is required during member join operations if we use a higher degree tree. On
the other hand, Figure 2.4(b) shows the amount of communication needed
during the worst case of a member departure operation. In this case, the
larger tree degrees are definitely not advantageous. It is also evident that
a binary tree is not optimal when considering member departure. In fact,
the values of a = 3 and a = 4 appear to be the best choice, with optimal
choice fluctuating depending on n.

Joint Departure-Join Optimization

In some application scenarios the key tree might start out relatively empty,
and the amount of member join operations would be greater than the
amount of member departure operations. In this case, the membership
grows towards the tree capacity, and the communication required for the
member join operation is more critical than the communication for mem-
ber departure. On the other hand, some scenarios might start out with a
nearly full key tree, and the member departure operation would outweigh
the member join operation.

We therefore would like a communication measure that runs the gamut
between the two extremes of just the member join communication, and
just the member departure communication. This can be accomplished by
considering the convex combination of CMJ and CMD.

Let λ denote the probability of a member departure operation, and as-
sume that 1 − λ is the probability of a member join operation, then the
combined communication measure CC given by

CC = λCMD + (1 − λ)CMJ (2.32)

weights the member departure and member join operations according to
their likelihood. For example, when λ = 0 the emphasis is entirely placed on
the member join operation, while λ = 1 corresponds to when the emphasis
entirely placed on the member departure operation. The case of λ = 0.5
corresponds to equal emphasis on the two operations, which is depicted in
Figure 2.5. From this figure, we see that the choice of a = 4 stands out as
the best choice for n > 10000 when equally weighting the member join and
member departure operation.

2.6 Architectural Considerations 29

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

500

1000

1500

2000

2500

3000

Number of users

N
um

be
r

of
 b

its

Communication for Member Join

a=2
a=3
a=4
a=6
a=8
a=10

(a)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of users

N
um

be
r

of
 b

its

Communication for Member Departure

a=2
a=3
a=4
a=6
a=8
a=10

(b)

FIGURE 2.4. (a) The amount of communication CMJ required during member
join operations for different tree degrees a and different amounts of users n. (b)
The worst case amount of communication CMD required during member depar-
ture operations for different tree degrees a and different amounts of users n.

30 2. Centralized Multi-user Key Management

10
2

10
3

10
4

10
5

10
6

10
7

10
8

500

1000

1500

2000

2500

3000

3500

Number of users

A
ve

ra
ge

d
N

um
be

r
of

 b
its

Communication for Average of MJ and MD

a=2
a=3
a=4
a=6
a=8
a=10

FIGURE 2.5. The average of CMD and CMJ for different tree degrees a and
different amounts of users n.

2.6.2 Binomial Occupancy Model

Since it is very difficult to calculate the amount of communication needed
during membership changes when a specific amount of users n are placed
on the tree, we have devised a stochastic model that allows one to study
the behavior of the system when there are varying amounts of occupancy.
We assume that the leaf nodes of the a-degree key tree with L levels are
occupied according to i.i.d. Bernoulli distributions with a probability of
occupancy qL. This implies that the occupancy n is modeled according to a
binomial distribution with mean occupancy qLaL and variance qL(1−qL)aL.
Hence, when qL is higher, the tree is on average at higher occupancy.

We first calculate the average amount of communication required for
member join when the probability of a node being occupied is qL. Let τa

denote the a-ary representation of the joining member. We may denote the
siblings of τa by τ1, τ2, · · · , τa−1. Define the random variable ZL−1 as

ZL−1 =
{

1 if any τk is occupied
0 if no τk are occupied .

Since the τk are occupied with a probability of qL, we have P (ZL−1 = 1) =
1 − (1 − qL)a−1, and the expected value of ZL−1 is given by E(ZL−1) =
1 − (1 − qL)a−1.

We may perform a similar procedure for the other levels. We denote the
j-siblings as those nodes τ such that Parj(τ) = Parj(τa). For level L − j,

2.6 Architectural Considerations 31

we may define the random variable ZL−j as

ZL−j =
{

1 if any j-sibling node of τa is occupied
0 if no j-sibling nodes of τa are occupied .

In this case, P (ZL−j = 1) = 1 − (1 − qL)aj−1, and the expected value of
ZL−j is given by E(ZL−j) = 1 − (1 − qL)aj−1.

The average communication requirements for member join can be derived
as

CMJ =

(
L∑

j=1

(1 − (1 − qL)aj−1)
[
12 + �log2(�log2 a�(L − 1) + 1)�

+�log2 a�(L − j) + BKEK

])
+ 11 + BSK .

We now apply the model to calculating the average amount of communi-
cation needed during member departure. Again suppose that the departing
member is indexed by the a-ary symbol τa. Label the siblings of τa by
τ1, τ2, · · · , τa−1, and define the random variable Xk by

Xk =
{

1 if τk is occupied
0 if τk is not occupied .

Let us define YL =
∑a−1

k=1 Xk, which is the random variable corresponding
to the amount of occupied sibling nodes of τa at level L. The probability
that i sibling leafs at level L are occupied is given by

P (YL = i) =
(

a − 1
i

)
qi
L(1 − qL)a−1−i. (2.33)

YL is thus a binomial random variable with expected value E(YL) = (a −
1)qL. Hence, the average number of nodes to be updated at level L is
(a − 1)qL.

At level L − 1, we know that the parent node of the departing member
will automatically be used in updating the next higher level. Since the
probability of a node at level L being occupied is qL, the probability that
a node on level L − 1, other than Par(τa), being occupied is

qL−1 = 1 − (1 − qL)a
. (2.34)

This time, we may denote the siblings of Par(τa) by τ1, τ2, · · · , τa−1. Again,
we define the random variable Xk by

Xk =
{

1 if τk is occupied
0 if τk is not occupied .

32 2. Centralized Multi-user Key Management

We now define the random variable YL−1 to be the amount of sibling nodes
of Par(τa) that are occupied, and we find that E(YL−1) = (a − 1)qL−1.
Since we must also include Par(τa) in the updating we must add one.
Thus, the expected number of nodes on level L − 1 that must be updated
is 1 + (a − 1)qL−1. We may similarly perform this calculation for level j,
where qj = 1− (1− qj+1)a, and the expected number of nodes on level j to
be updated is 1 + (a − 1)qj .

In order to calculate the average amount of communication for the mem-
ber departure operations, we must consider both the expected amount of
communication associated with the overhead and the payload of the mes-
sage. The average communication for the overhead consists of the amount
of communication needed to send the operation id, the node id, and the
bit length of the update message. This calculation can be done using the
expected value of ZL−j . The average communication for the payload is cal-
culated using the expected number of nodes on level j to be updated. The
average amount of communication for n users on an a-degree tree with L
levels is therefore given by

CMD = 22 + Bµ + BSK + qL(a − 1)BKEK +

�
�L−1�

j=1

(1 + (a − 1)qj) BKEK

�
�

+

�
	� L�

j=1

�
1 − (1 − qL)

aj−1
�

4 + �log2(�log2 a�(L − 1) + 1)�

+�log2 a�(L − j) + �log2 aBKEK�
����.

We calculated the mean message size for member join and member de-
parture operations as parameterized by q when the tree degree is a = 4
and there are 6, 8 and 10 levels. The key sizes were chosen to be BSK =
BKEK = Bµ = 64 bits. In Figure 2.6, we have indicated the mean commu-
nication as a function of q. One can see that the expected communication
rapidly increases as the probability q becomes slightly greater than 0. In the
member join operation, the communication levels off to a flat plateau as the
probability of occupancy increases. For the member departure operation,
the mean communication also increases rapidly for q < 0.1, but then grows
less dramatically for higher q. From these two curves, we can infer that a
key tree which is roughly half occupied does not have considerably different
communication requirements than the worst-case communication require-
ments, which occur when q = 1. This supports our use of the worst-case
scenarios for optimizing the tree degree.

2.6.3 Communication Overhead

Earlier we mentioned that one motivation for using the broadcast seed
is that it reduces the amount of communication overhead associated with

2.6 Architectural Considerations 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Probablity of occupancy q

B
its

Mean communication for member join

a=4, L=6
a=4, L=8
a=4, L=10

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

Probablity of occupancy q

B
its

Mean communication for member departure

a=4, L=6
a=4, L=8
a=4, L=10

(b)

FIGURE 2.6. The expected amount of communication for a degree 4 tree with
6, 8, and 10 levels as a function of the probability q that a leaf node is occupied.
(a) Member Join, (b) Member Departure.

34 2. Centralized Multi-user Key Management

notifying to the users which rekeying messages are intended for them during
member departures. We now explore this concept in the framework of a
tree-based scheme.

Consider an a degree tree with n users. In a general tree-based scheme,
when a user departs, all of the keys on the path from the departing member’s
leaf to the root key must be updated. To update a key associated with a
particular node σ, we must determine the keys associated with populated
children nodes. These keys are then used to encrypt the update, and the
rekeying message is then of the form:

α = {EKj1
(Kσ)‖EKj2

(Kσ)‖ · · · ‖EKjm
(Kσ)}. (2.35)

Here we have used the sequence {jk} to denote index the symbols of the
valid children nodes. In addition to sending the rekeying message, it is
necessary to send the number of valid children nodes m, and the sequence
{j1, j2, · · · , jm}.

The worst case scenario for communication overhead in updating a tree
is when a of the children nodes are used to update each parent node. In
this case, the communication overhead required is

CO = (a + 1)�log2 a��loga n�. (2.36)

This equation is obtained by considering both the communication needed
to send the amount of valid children nodes, and the symbols for each valid
child node.

This amount of communication overhead was calculated for different
group sizes n and different tree degrees a. The resulting amount overhead
is depicted in Figure 2.7. In this figure we have also drawn a baseline corre-
sponding to Bµ = 64 bits, which is the amount of communication overhead
required if one uses the Member Departure protocol of Section 2.5. Ex-
amining the case of a = 4, which corresponds to the optimal value of the
tree-degree as previously determined, shows that for values of n > 10000,
the Member Departure protocol described in this chapter requires less com-
munication overhead in the worst case scenario. Additionally, observe that
if we use a higher degree tree, which is better suited to scenarios where
more users are joining than departing, then the efficiency of the Member
Departure protocol is even more pronounced.

The use of a broadcast seed can gain further improvement if we choose
to use µ(t) = Ks(t−1). In this case, the broadcast seed does not have to be
sent since it is known by the remaining users. Therefore, there is no com-
munication overhead associated with updating during member departure,
and we may consider the baseline at Bµ = 0. In this case, the benefits of
using a broadcast scheme becomes even more pronounced.

2.6 Architectural Considerations 35

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

50

100

150

200

250

Number of Users

N
um

be
r

of
 B

its

Communication Overhead

a=2
a=3
a=4
a=6
a=8
Baseline

Baseline

FIGURE 2.7. The worst-case member departure communication overhead re-
quired in a conventional tree-based rekeying for different tree degrees versus
the baseline communication required when using the polynomial interpolation
scheme. The baseline communication corresponds to Bµ = 64 bits.

2.6.4 Computational Complexity

We have seen that one advantage of broadcast schemes is that they re-
duce the amount of communication overhead associated with sending flag-
ging messages. It should be apparent that a message form like equation
(2.26) takes less computation to form than a message form like equation
(2.27) assuming that calculating EK(Kσ) has comparable computation as
f(Kσ, µ(t)). Hence, to rekey using our message form requires more compu-
tation than when using a conventional rekeying message structure.

In the scheme we have described in this chapter, we have L levels of
KEKs to update. At each level of the tree we must calculate the coefficients
of a degree a−1 interpolating polynomial, except at the bottom level where
we must calculate the coefficients of a degree a − 2 polynomial.

In order to calculate the coefficients of a s-degree interpolating polyno-
mial, we use the Newton form of the interpolating polynomial [16]. Algo-
rithm 1 is a modification of the polynomial interpolation algorithm of [17],
which can be used to determine the coefficients βj of the s-degree polyno-
mial that interpolates the points (zj , gj) ∈ Zp ×Zp, where j ∈ {0, 1, · · · , s}.
The algorithm writes the βj values into the input array values gj .

This algorithm requires addition, multiplication, inversion, and modulo
operations to take place modulo p. The most intensive operation of these
is that of inverting a number. Assume that the prime p is chosen to have
B bits, then the amount of bits operations needed to calculate the inverse

36 2. Centralized Multi-user Key Management

for k=0:s-1 do
for j=s:-1:k+1 do

g(j) = (g(j) − g(j − 1))(z(j) − z(j − k − 1))−1 (mod p)
end

end
for k=s-1:-1:0 do

for j=k:s-1 do
g(j) = g(j) − g(j + 1)z(k) (mod p)

end
end

Algorithm 1: Algorithm for determining the coefficients of an interpo-
lating polynomial.

of a number modulo p using the Euclidean algorithm is O(B3) [18]. The
above algorithm requires s(s+1)

2 inversions in order to determine a degree s
interpolating polynomial. Therefore, the amount of bit operations needed
to update an L level degree a key tree using the polynomial interpolation
scheme is O(a2LB3).

2.7 Chapter Summary

In order to address the problem of managing keys for securing multicasts,
we proposed a framework that is suitable for dynamic group environments.
Advanced protocol operations that update the keys during member joins,
member departures, and the transferal of access rights were built using
basic protocol operations which we call protocol primitives.

We described several desirable features for a multicast key management
scheme, and which our scheme satisfied. In particular, our architecture pro-
vides a method for renewing session keys and key encrypting keys needed
to control access to content. By using either the basic protocol operations,
or more advanced protocol operations, the session key or key encrypting
keys can be refreshed when a key’s lifetime expires due to age or changes
in membership. It is also evident that if users were to collude, they would
not be able to figure out keys that they did not have. Users may survive
accidents or move across terminals by sending a request for reinsertion to
the server, upon which the server performs the member reinsertion proto-
col operation. We also provided a description of a protocol operation that
would allow users to transfer their access rights to other parties. The server
can revoke access to an individual by using the member departure operation
to remove the member from the key hierarchy. Finally, our protocol uses a
tree-structured key hierarchy in order to achieve desirable communication
requirements during changes in the group membership.

2.7 Chapter Summary 37

A novel feature of this scheme is that it uses polynomial interpolation
in conjunction with a broadcast seed to handle member departure opera-
tions. We studied the communication associated with performing member
join and member departure operations. It was observed that higher tree
degrees are best for member join operations, whereas a tree degree of 3 or
4 was best for the member departure operation. When equally weighting
the join and depart operations, a degree 4 tree stood out as optimal. The
communication overhead of the polynomial interpolation scheme is reduced
in comparison to a model conventional scheme. We provided a comparison
between the communication overhead of our scheme and the overhead of
an example conventional scheme that used ID messages to flag the users
which parts of the rekeying message were intended for them. As group size
and tree degree increased, the communication overhead for the conventional
scheme increases and ultimately becomes more burdensome than sending
the broadcast seed. For example, when the group size was n = 100000 and
the tree degree was a = 4, the communication overhead in the conventional
scheme was approximately 25 % more than the overhead associated with
a broadcast seed of size Bµ = 64 bits. Finally, if one uses the previous
session key Ks(t − 1) as the seed µ(t), then no communication overhead is
associated with our protocol during member departures.

We presented a study of the communication needed when using our ar-
chitecture to perform member joins and member departures. These two
operations are the most important operations that a multicast server will
have to face when operating in dynamic environments. The communication
requirements of the member join and member departure operations lead
to conflicting tree design considerations. By explicitly computing these two
quantities as functions of the degree of the tree and computing the commu-
nication overheads, we studied the tree selection criterion. From our com-
putations, the communication during a member join is reduced when using
a higher degree tree, while the optimal tree degree for a member departure
is either a = 3 or a = 4. We considered the average of the communica-
tions for the two operations, which gave strong support to choosing a = 4
as the optimal tree degree. We presented a stochastic population model
that allows one to study the mean behavior of our architecture for varying
amounts of users. It is observed that for both the join and departure oper-
ation, the amount of communication needed to update the key tree rapidly
increases as the tree approaches 10% population. Above 10% occupancy,
the communication needed for both operation stabilizes. We also examined
the computational requirements of the tree-based rekeying schemes using
polynomial interpolation.

