
Introduction

In academic and industrial groups substan-
tial interest has been directed toward under-
standing the fast-growing industry of soft-
ware through the study of its products. By
product we mean the concept, the code, the
data, and the documentation that constitute
a homogeneous unit and that can be sold in
several copies. These kinds of studies focus
on several issues, including technical, user,
and commercial ones. For instance, some
studies show how a product works, what
benefits it delivers to the user, and how it is
selling in the market. Addressing these
issues for single products gives some inter-
esting results. However, single products give
partial information on the software industry.
A more complete view requires that we
focus on groups of products. There are visi-
ble reasons for this: software firms generally
produce more than one software product
and users generally use more than one soft-
ware product.

These characteristics are also common to
other industries�automakers produce more

1

1
C H A P T E R



than one car model and car users use more than one car model. How-
ever, they assume a higher relevance in the software industry. Producing
several products rather than one is better because there are advantages to
reusing experience and software across the products. Using several prod-
ucts rather than one is better because it is possible to assemble better and
more complex software systems from different products.

This is an extreme approach that does not work. In the multitude of
available software products, we may think that any product is somehow
connected to any other product and that all the products must be consid-
ered together. This �group all� approach is of little use, much like the
�single product� approach: It is impossible to deal with all products at
once. The solution is to recognize that there are �domains� which gather
software products into groups of reasonable size. The analysis of these
domains yields interesting results for those who wish to understand the
software industry.

In its simplest definition, a domain is a collection of related products.
Relatedness of products is a very broad and manifold concept. Products
can be related if they perform similar tasks, if they use similar technolo-
gies, or if they are used in similar contexts. Domain analysis is the analysis
of products in a given domain. Domain engineering is the production of
products in a given domain. The distinction between domain analysis and
domain engineering is not very sharp, because analysis and production
are closely related. While the distinction exists in literature, most people
now refer to a single concept: domain analysis and engineering (DA&E).
This book describes the theory and the application of Sherlock, a method-
ology for DA&E.

Traditionally, the motivation for doing DA&E has been to foster soft-
ware reuse. Reuse means that software artifacts�like requirement and
design documents, code, documentation, and so forth�are used in sev-
eral products, which is the scope of DA&E. The reuse approach requires
(1) the creation of reusable artifacts and (2) the integration of those arti-
facts into final systems. In current practice, firms perform both the crea-
tion and the integration. The proportion between creation and
integration varies, covering the full range between pure creators (e.g.,
library producers) and pure integrators.

Software reuse tackles the issues of productivity in software engi-
neering and is seen as one of the most promising approaches to software
production. Its potential benefits range from decreased development
time and increased product quality to improved reliability and decreased
maintenance costs. As an investment, reuse works only if the software

2 Strategic Software Production With Domain-Oriented Reuse



fits a variety of situations and is actually reused many times. The larger
the variety, the greater the potential for reuse and to reap the benefits of
that reuse. However, dealing with variety bears some risks, like the fact
that unknown or unforeseen requirements can challenge the reusability
of software, or that quality can decrease as a consequence of adaptations.
Variety is generally the result of variability, a leitmotiv of this book.

Variability comes from many sources: customers� unique needs, dif-
ferences between versions, mutability of the environment, localization,
and so on. All of these can potentially disrupt the efforts of reuse. A fun-
damental task of DA&E and Sherlock is to explore all the sources of
variability within a domain. Sherlock is the recognition that variability is
a characteristic of modern software that every software firm needs to
confront. In this way, variability is no longer a source of trouble and
unpleasant surprises. Rather, from a competitive viewpoint, it is a feature
to exploit more effectively than your competitors.

Variability is a crucial part of decision-making in all software projects.
Variability shows that a project can be undertaken in different ways�
adopting one of several alternative solutions, or implementing different
strategies. Decisions determine the purpose and shape of the final prod-
ucts, and thus determine their impact on the market. Decisions can be
made on a range of possible alternatives�which derive, for instance,
from the market positioning, the technology, and the software architec-
ture. Sherlock finds the benefits and the costs of the alternatives and pro-
vides the tools to evaluate these alternatives objectively. Moreover, it
finds the interactions between the various aspects of variability�market,
technology, architecture, and so on�which are often critical but also
very difficult to dominate. In this way, Sherlock gives the DA&E practi-
tioner the tools and confidence to make clear-cut decisions about soft-
ware product strategies.

Decisions are made at all levels. Using a top-down approach, the
following is a list of areas where decisions are encountered:

1. Strategic positioning in the market. Decisions concern the role of the
firm and its products in the market. The elements to consider are
the competitive relations in the market. The alternatives to choose
from are those that allow the DA&E practitioner to achieve its
long-term goals.

2. Definition of the strategic positioning in terms of product lines. Product
lines are the ultimate implementation of a strategy. A product line

Introduction 3



is the combination of products that embeds a strategic idea. A
product line has the breadth to support a strategy over a long
period of time. Decisions here should determine the shape of the
product lines, considering the relations between them and com-
peting product lines. Decisions should also make clear how many
product lines are necessary and, in case there is more than one,
what different objectives they address.

3. Definition of product lines in terms of products. This is the DA&E prac-
titioner�s tactic. Here, decisions are made with regard to the articu-
lation of each product line in terms of products. Decisions should
evaluate the best options to ensure that products are cohesive in
terms of the product line�s strategy. Products should also support
each other, exploiting the synergies (or network externalities)
between them and other products. The result of these decisions
can be a plan for the development and coordination of the product
line�s products.

4. Development of products. The decisions should determine which
design and implementation solutions best support the develop-
ment of the products. Development is conducted exploiting the
benefits�like synergies and reuse�of working in the larger con-
text of product lines.

By taming variability, Sherlock also makes it more friendly to reuse.
More precisely, it formalizes variability into manageable schema through
which reuse is possible. A major difficulty in the practice of software
reuse is that reusability of a software artifact is difficult to assess. Reus-
ability can only be proved in the future: A piece of software is not reus-
able until it is actually reused! A piece of software may seem reusable in
the current situation, but, if the assumptions of the current situation
change, reusability can be compromised. In stable domains, assumptions
rarely change, which results in predictable levels of reusability. However,
not all domains are stable.

Instability may come from several sources, such as immature tech-
nology or competition between firms pulling the domain in different
directions. The goal of Sherlock is to foster software reuse in domains
with high variability. On one hand, this is a matter of tracking the evolu-
tion of the domain, so that changes in the assumptions do not come as an
unpleasant surprise. On the other hand, it is also a matter of influencing

4 Strategic Software Production With Domain-Oriented Reuse



the evolution of the domain according to a plan and exploiting all the
strengths that a software firm has, such as network externalities, com-
patibility, coordination, installed bases, and so on. Of course, Sherlock
cannot foresee the unpredictable. However, Sherlock is a valid guide for
spotting variability, evaluating the variants, and picking the choices that
are thought to be most profitable and least risky. In this sense, Sherlock
improves the quality of decision-making in software development.

From a practical point of view, Sherlock delivers a set of documents
describing the domain and a strategy to use to move within the domain.
In addition to this, Sherlock delivers a software framework on which
developers can build a variety of applications in the domain, thus exploit-
ing reuse. Object orientation is the underlying paradigm of the documen-
tation and the framework.

This book assumes the DA&E practitioner to be the central point of
the discussion. The DA&E practitioner is surrounded by the entities that
are typically present in a domain�namely products, competitors, and
partners. This book teaches the DA&E practitioner how to perform cer-
tain activities, which are organized in phases. The activities may follow
different paths, depending on the DA&E practitioner�s decisions and the
situation of the domain. We provide examples, criteria, and templates to
address a large variety of situations.

Throughout the book we assume an entire software firm to be the
DA&E practitioner. This is reasonable because of the multitude of the
required skills and activities. For this reason, readers of this book can be
more than one person in the firm and the profile of those readers is mani-
fold. Certainly, a lot of decision-making is involved in Sherlock; compe-
tence is needed to set the strategy for the development of the firm�s
products. Other skills are also essential. Knowledge of the firm�s products
should reside with the architects and builders of the products. Mastery of
the technology is usually with those who research it, or at least know its
trends. Knowledge of sales and network externalities lies with the mar-
keting experts. Potentially, any person who envisions, studies, plans, or
designs the products is likely to participate in DA&E. Practice shows that
these competencies and activities belong to high or medium-high roles
within the firm.

Sherlock shares some aspects with other DA&E methodologies. As
Arango [1] points out, a basic scheme is common to all DA&E method-
ologies. The differences between Sherlock and other methodologies are
evident in its form and substance. The formal differences involve the
use of different terminology and representation techniques. As to the

Introduction 5



substantial differences�in the authors� opinion, most of the other DA&E
approaches focus too much on modeling the domain and too little on the
characterization of the products. Moreover, very few of them give guide-
lines as to how to move from the analysis to the development of actual
software. Conversely, Sherlock precisely characterizes the relations
between the products in the domain and generates a tangible asset�the
domain framework�which constitutes the basis of real software
products.

As mentioned, Sherlock characterizes the relations between the
products in the domain. Informally, some examples of the considerations
that this characterization may generate are as follows:

◗ Competition is not a pure marketing matter. Product features can
be designed to defeat competitors.

◗ There is little space for a new product that does not offer radical
improvements over the existing products in an established domain.

◗ Even a poor product produced in a timely manner can be highly
profitable in a domain with high demand and little competition.

◗ Coordinated products can help each other penetrate hostile markets.

A clear understanding of phenomena like these sets the stage for the
development of any successful software product�one who starts out on
the right foot is already halfway there! Such understanding is essential in
DA&E. DA&E aims at multiproduct development and, without a very
clear strategy regarding what each product should do and how they
should interact, coordination, synergy, and economies of scope will not
happen.

Once the domain is characterized, it is necessary to select the func-
tional and nonfunctional features the products should have. This selec-
tion process is a core part of DA&E. More precisely, for the products to be
developed, the selection process determines which characteristics should
be constant in all products, which should vary, and which may vary even
though such variability is not implemented right away. Sherlock obtains
relevant information from the study of the target firm and the market. It
then builds a variability space that allows existing products to be ana-
lyzed, which leads to planning for future strategies.

6 Strategic Software Production With Domain-Oriented Reuse



The variability space visualizes the space of available choices. Prod-
ucts are the result of choices, so products can be positioned on the vari-
ability space. The variability space has rules to determine how products
on it are related to each other in terms of users, competition, coordina-
tion, and movement. For instance, a typical problem is to determine how
a product in a certain position on the variability space can be moved to
another position to attract more users from a competing product. The
construction of the variability space, the positioning of the products, the
assessment of the rules, and the planning of the movements are all incre-
mental activities for which Sherlock provides clear specifications. A Sher-
lock practitioner with a military background has compared Sherlock to
military procedures in the sense that �you know what to do next.�

This book contains many concepts�from market analysis to techni-
cal implementation, decision-making to object-oriented modeling. It is
meant to be a self-contained package that explains the benefits of DA&E
from the very beginning to the very end, and shows how to obtain those
benefits. We did not want a theory book or a book only for DA&E �hack-
ers.� Moreover, Sherlock is not a �toy� methodology�it has already been
applied with extreme success in several firms. In this book we have tried
to provide all the material needed to replicate our experience in other
contexts.

Understanding by means of examining examples is easier than learn-
ing from pure theory. The last part of this book contains four case studies
obtained from the analysis of three different domains�telecommunica-
tions, neural networks, and control systems. In addition to these case
studies, simpler examples accompany the presentation of the concepts,
pointing out difficulties and proposing workable solutions. We want
readers to be able to start practicing DA&E now!

Reference

[1] Arango, G., �Domain Analysis Methods,� in Software Reusability, W.
Schaefer, R. Prieto-Diaz, and M. Matsumoto, Eds., New York: Ellis
Horwood, 1994.

Introduction 7


	1 Introduction 1

