
Advances in our knowledge of the molecular basis of cancer are at the heart of the
present revolution in clinical oncology. The identification of tumor-specific molecular
alterations has led to new means of diagnosis and classification, and the characteriza-
tion of critical pathways regulating tumor growth is providing the potential for less
toxic, more effective targeted therapy. Nonetheless, these advances had previously
occurred at an agonizingly slow pace, i.e., one gene at a time. That investigative pace
has now been dramatically altered by the completion of a draft of the entire human
genome and the development of miniaturized high-throughput technology for genetic
analysis. These extraordinary accomplishments now permit not only the monitoring of
every gene sequence in a single experiment, but also a comprehensive analysis of the
complex coordinated programs and pathways that contribute to the clinical phenotype
of cancers. This rapid and comprehensive approach to the investigation of tumor biol-
ogy has the potential to dramatically shape the future of clinical oncology.

Expression Profiling of Human Tumors: Diagnostic and Research Applications is in-
tended to provide an introduction and overview to comprehensive gene expression profil-
ing of human tumors, one of the most promising new high-throughput investigative
approaches in molecular biology. The intent was to provide not only a primer for the
technology and analytical methods, but also an early assessment of the state-of-the-art
with respect to both successes and pitfalls. These successes are significant and include
methods of more precise diagnosis, and identification of prognostic markers, therapeutic
targets, and gene expression patterns that predict therapeutic response. Nonetheless, there
are significant challenges to further success, such as procurement and processing of
appropriate samples, improvement and validation of technical approaches, and refine-
ment of analytical methods for the resulting complex datasets. We have attempted to
provide a balance between the basic science aspects of this work and its application to the
clinical setting, but we have focused on the analysis of human tissue samples as providing
the most direct means of translating findings to clinical practice. There are many complex
issues that need to be considered as this type of work goes forward, and we hope this text
will serve as a starting point for future discoveries.

The emphasis here on gene expression profiling is not intended to suggest that this
should be considered the ultimate view of the molecular biology of the cancer cell. On
the contrary, we all look forward to the day when analysis at the protein level is as
comprehensive and provides as much detail as the present attempts of global gene tran-
script measurements. Obviously, the closer we come to assessment of the actual func-
tion of each molecule, the more accurate our abilities to correlate those with the clinical
phenotype. Proteomics holds the promise to better achieve that goal, but is still in its
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infancy, with even greater hurdles to overcome than we presently face with sequence-
based expression analysis. We leave that topic for future publications.

We would like to express our deep appreciation to the many authors who have pro-
vided overviews of work in their fields. These individuals have contributed their time and
effort to provide highly useful information for others (sometimes while being badgered
by the Editors!). We would also like to thank Ms. Fabienne Volel and Ms. Shirley Tung
for excellent assistance. Finally we thank our families for their patience and support.

Expression Profiling of Human Tumors: Diagnostic and Research Applications
clearly depicts the rapid advances that are occurring in clinically important areas and
that will no doubt increasingly impact clinical care. We sincerely hope that our book
provides information useful to all basic or clinical investigators concerned with the
molecular basis of cancer and the improvement of cancer care.

Marc Ladanyi, MD

William L. Gerald, MD, PhD
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cDNA Microarrays

Paul S. Meltzer

INTRODUCTION
Cancer can be viewed as a disease of disturbed genome function. The phenomena of

aberrant growth, differentiation, invasion, and metastasis are the phenotypic manifes-
tations of an underlying genetic process. Ultimately, irrespective of whether this is the
result of point mutation, translocation, deletion, gene amplification, or methylation,
the malignant phenotype is mediated by a characteristic pattern of gene expression.
Identifying the genes whose expression differs between normal tissues and tumors and
among tumor types has long been a focus of cancer researchers. This endeavor was
tremendously accelerated by the development of technologies for the parallel analysis
of gene expression. This chapter will focus on one of these technologies, cDNA
microarrays. The ability to measure the expression of tens of thousands of genes in a
tumor specimen has revolutionized our ability to describe cancers. A rapidly burgeon-
ing literature offers hope that this improvement will translate into improved diagnosis
and prognosis, as well as accelerate the discovery of new therapeutic targets.

The pivotal concept enabling cDNA microarray technology is simple. Rather than
maintaining libraries of cDNA clones as stocks of bacteria mixed in suspension,
libraries can be stored as collections of individual clones arrayed in microtiter plates.
This essential aspect of expressed sequence tag (EST) library sequencing projects pro-
vides a residual physical resource that can be used for other purposes (1). Libraries in
this format can be screened for individual genes of interest by replacing the traditional
colony lift with a filter prepared by transferring bacteria from the source plates to a
hybridization membrane (2). Such filters can also be hybridized with labeled cDNA
prepared from a cell source of interest (3,4). By quantitating the hybridization signal,
an estimate of the expression of the gene corresponding to each cDNA can be obtained.
The cDNA microarray, which has now found wide use in all fields of biomedical
research, is the much refined descendant of this simple concept. The fundamental ele-
ments, which are necessary to carry out this analysis, are arrayed libraries of cDNA
clones, a means for producing hybridizable arrays of these cDNAs, a system to detect
hybridization signal, and a means to quantitate those signals link them to the individual
cDNAs and compare these data across sample sets. The following discussion will
briefly consider the individual elements of the system and the considerations in experi-
mental design that are of particular relevance to cancer research.
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12 Meltzer

cDNA LIBRARIES

One of the great attractions of the cDNA microarray platform is its flexibility, and in
principle, one can construct arrays from any cDNA library that the investigator might
select. One could construct clone arrays that represent specific pathways or protein
classes or even use nonsequenced libraries from a tissue of interest. In practice, most
researchers use clones that have been culled from EST sequencing projects. There are
now over 4.4 million sequences in the National Center for Biotechnology Information
(NCBI) database of ESTs. Given that the number of genes in the human genome is two
orders of magnitude lower, it is apparent that there is considerable redundancy in the
EST sequence data. Using the EST sequence data and the mRNA sequences of known
genes, bioinformatic tools have been used to cluster sequences into groups represent-
ing individual transcripts. The most widely used system, Unigene, is maintained by
NCBI (5,6). Each individual cluster is designated by an identifier that can be used to
extract the set of sequences that constitute that cluster. Clone sets are selected to represent
each Unigene cluster. These clones must then be physically retrieved from their source
plates and rearrayed into sets for microarray fabrication. Ideally, each clone is
sequence-verified at the time it is rearrayed to maintain a high standard for sequence
authenticity in the final rearrayed library.

Each strategy for microarray production has intrinsic strengths and weaknesses.
Ultimately, one would like to have the option of constructing microarrays that include
a complete representation of the genome. To accomplish this, it would be necessary to
retrieve a cDNA clone for each gene, a goal that is limited by a number of factors,
including the still incomplete annotation of the human genome sequence. It is rela-
tively easy to access the genes that have been encountered multiple times in the course
of sequencing EST libraries. However, although over 800 libraries have contributed
data to the Unigene database, some genes, which may be expressed only in special-
ized tissues or at developmental stages that have not been sampled, may not be repre-
sented at all. Genes that have been sequenced only a few times may be difficult to
locate, depending on how effectively libraries have been archived. These consider-
ations have not posed major limitations for expression profiling studies of human can-
cers, but the possibility that key genes may be missing from a given microarray is
important to bear in mind when considering the results of any study. In addition, the
Unigene clustering system undergoes periodic revision (builds) as new data becomes
available, so clusters are not stable over time. There are also significantly more clusters
(over 100,000) than the estimated number of human genes, and there is certainly both
noise (due to artifactual cDNA clones) and redundancy (multiple clusters for the same
gene) within Unigene. Over 36,000 clusters are represented by only a single sequence.
These are difficult to access and may include clones that represent library artifacts or
genes with very low expression.

Another limitation inherent to cDNA libraries is the problem of preserving sequence
authenticity. In general, for microarray applications, libraries of rearrayed sequence-
verified clones are used. However, in the manipulation of tens of thousands of bacterial
stocks, it is inevitable that a residual level of error remains, and investigators must bear
this caveat in mind. Despite all these difficulties, cDNAs have major attractions. They
are readily available at a relatively low cost and can be manipulated with familiar tech-
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niques. Once clones are obtained, an unlimited supply of DNA for printing can be
obtained by polymerase chain reaction (PCR), and the clones themselves are a conve-
nient source of probes for follow-up studies. The cDNA technology lends itself to spe-
cialized projects potentially utilizing special purpose libraries constructed from material
of interest to an investigator and potentially enriched for disease-specific genes, which
might not be included in generic clone collections. Finally, of the various expression
microarray technologies, only cDNA arrays lend themselves to the determination of
gene copy number by comparative genomic hybridization, an analysis that adds a
potentially important dimension to tumor profiling studies (7,8).

How big does a cDNA microarray have to be to generate useful information for
tumor profiling? It is quite clear that full genome-scale arrays are not necessary, as the
world literature to date falls short of this level. Most investigators conclude that they
would like to use the largest available array, because the analysis is a destructive pro-
cess, and sample sets may be more limiting than the arrays themselves. However,
although this issue has not been studied systematically, there seems to be a decline in
useful information as genes are added to arrays. If one imagines a list of genes ranked
as to their frequency of expression in tissues, the lower portion of this list will contain
genes that are very infrequently expressed and, therefore, are less likely to be expressed
in any given tissue of interest. This tends to counterbalance the tendency of cDNA
clone sets to be limited to the 10,000–20,000 Unigene clusters representing the most
commonly expressed genes.

CONSTRUCTING MICROARRAYS

Once a clone set has been selected, fabricating microarrays is quite straightforward.
The technology is dependent on the use of a robotic device to deposit DNA (typically a
PCR product) from each clone on a solid support, usually a glass microscope slide (9).
As an alternative to glass, microarrays can also be printed on nylon membranes for use
in radioactive detection systems rather than the fluorescence-based detection used for
glass microarrays. Detailed protocols for cDNA spotting are readily available. Robots
for printing microarrays are produced by several manufacturers. The printing proce-
dure is sufficiently simple that many institutions have established facilities for con-
structing microarrays, and expertise in array fabrication is now quite widespread.
Commercial sources of spotted cDNAs are now available and represent an alternative
to locally fabricated microarrays. It should be noted that once a spotting facility has
been established, only minor modifications are necessary to spot alternative DNAs,
such as synthetic oligonucleotides.

There is one important consideration that investigators who plan to use microarrays
for tumor classification should bear in mind. It is extremely important that data sets,
which are designed to provide this type of information, be generated in as homoge-
neous a fashion as possible. This maximizes the possibility of recognizing smaller dif-
ferences in expression between sample subgroups and minimizes the number of false
positives due to nonuniformities in technique. Of the many sources of this type of
error, slide-to-slide variation is perhaps the most important. Generally, within a print
batch, this error is relatively small and well compensated for by the use of a two-color
hybridization scheme. However, when comparing batches of slides printed at different
times, a large number of variables can interact to result in significant nonuniformities
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14 Meltzer

between batches. This can present a problem, which is relevant to project design.
For example, if a given printing system can generate a batch of 100 slides, then no
more than 100 specimens can be compared within a single batch. Switching to a second
batch of slides for the next 100 specimens may yield data that can still be useful, but it
will not be as satisfactory for recognizing the smaller differences between samples,
which may be of the greatest interest to clinical investigators. This difficulty can poten-
tially be overcome by improvements in printing technique, but these are most likely to
take place within an industrial environment. This issue, at the very least, deserves con-
sideration in the design of tumor profiling studies using cDNA microarrays.

MEASURING GENE EXPRESSION ON cDNA MICROARRAYS (FIG. 1)

In order to generate the primary expression data, a labeled representation of the
sample mRNAs must be prepared for hybridization to the microarray. Each feature on
the array is referred to as a “probe,” and the mixture derived from the sample is the
“target.” Fluorescence detection has emerged as the most useful methodology when
coupled with the use of glass microarrays (9). Fluorescence allows for simultaneous
hybridization of an unknown and a reference sample, each labeled with distinct fluoro-
chromes. This forgives, to a large extent, any imperfections in array fabrication and
allows a very accurate and sensitive measurement of the unknown relative to the refer-
ence source. As an alternative, radiolabeled targets can be hybridized to nylon mem-
brane microarrays. This presents some difficulties in image analysis, but is a viable
alternative if access to glass arrays is not possible.

For hybridization, the mRNA from the sample is converted to a labeled derivative
by reverse transcription to cDNA. A modified nucleotide is included in the cDNA
synthesis reaction. A fluorochrome can be incorporated directly, coupled to a reactive
group (as in the aminoallyl labeling strategy), or used in secondary detection. The dynamic
range and signal intensity are two of the critical variables affecting labeling methods.
Investigators using tissue samples prefer to minimize sample requirements. The direct
incorporation of a fluorescent dye requires 20–100 µg of total RNA, while aminoallyl
labeling requires 1–20 µg RNA. These are quantities that are easy to achieve with small
tissue specimens. The use of smaller samples requires an amplification step. This can
be accomplished by incorporating one or more cycles of in vitro transcription driven
from a bacteriophage RNA polymerase promoter incorporated in the primer used for
cDNA synthesis. Using this approach, useful data has been obtained from minute quan-
tities of RNA (10,11). Investigators using amplification techniques should be aware
that consistent labeling techniques should be used for a given project. Microdissection,
with comparison of tumor and normal cells, is particularly attractive as an approach to
directly identify genes that are cancer- rather than tissue-specific in their expression
pattern (12,13).

For two-color hybridization, it is necessary to select a reference sample. In prin-
ciple, the primary requirement of this material is a similar pattern of gene expression to
the tumors for which it will be compared. If many genes, which are strongly expressed
in the tumors, are expressed in the reference sample at near background levels, then the
sample-to-reference ratio will be unreliable. This requirement for similar expression
may be difficult to meet. One approach is to use a related cancer cell line or, as an
alternative, a pool of cell lines. There are distinct advantages to using a pool. Specifi-
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16 Meltzer

cally, each component of the pool will eliminate some low denominator genes, and
variations between batches of cells are minimized across the pool. Ideally, a project is
not started until sufficient reference RNA is available to complete the entire project.
It is important to carry out test hybridizations to determine the suitability of a reference
RNA before proceeding. Normal tissue truly representing the cancer progenitor cell is
not generally available in sufficient quantity for use as a reference. The exception may
be those situations where microdissected material will be amplified and where flanking
normal cells might also be obtained for similar processing.

A recurring question in tumor processing is the influence of admixed normal stro-
mal, endothelial, and inflammatory cells on the pattern of gene expression. Because it
is significantly easier to generate data from whole tissues compared to microdissected
cells, the vast majority of data in the literature has been obtained in this fashion.
The signature of many important components of tumors, such as endothelial, smooth
muscle, and inflammatory cells, can be recognized during data analysis, especially if
suitable representatives of these cells are included in the database. One can argue that,
since the biological properties of a tumor depend on the function of all the various cell
types represented in the tumor tissue, information derived from the tissue as a whole
actually adds value to the dataset. For example, it may be important to recognize sub-
sets of tumors with higher content of inflammatory cells. It is important to note that,
although subtraction in silico can provide a reasonable guide to the interpretation of
expression patterns, one cannot formally prove that this result is correct without addi-
tional experimentation. In general, the difficulties of follow-up studies to verify con-
clusions drawn from in silico subtraction (in situ hybridization, immunohistochemistry,
or reverse transcription PCR [RT-PCR]) must be weighed against the limitations
imposed by cDNA amplification methods. In principle, analysis of microdissected
malignant cells will provide a high degree of cell type specificity, but this comes at a
considerable cost in terms of specimen processing, as well as carrying the risk of dis-
torting the relative abundance of mRNAs in the amplified product.

After hybridization, a fluorescence image of the microarray is obtained with a scan-
ning device, and the image file is processed with feature extraction software, which
converts the raw image to numerical data corresponding to the level of fluorescence in
each channel. Commercial instruments and software packages for this purpose perform
well. Microarray users must become familiar with the properties of their scanner and
use appropriate setting to maximize dynamic range and obtain consistent results
between scans. Because it is impossible to use perfectly equivalent amounts of sample
in each channel, it is necessary to normalize the sample and reference channels. Two
strategies are in wide use, normalization by global intensity or by the use of a set of
minimally variable housekeeping genes. The normalized processed data are then out-
put as a spreadsheet for further analysis.

DATA ANALYSIS

Data from a series of tumor samples with expression levels for thousands of genes
can present a challenge for analysis. A method for data storage and retrieval in a data-
base is essential. This need not necessarily require the use of enterprise scale data-
bases, but some form of data storage is required. For example, commonly available
software, such as FileMaker Pro, can accommodate the needs of many projects.
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Although expression profiling studies are sometimes contrasted with traditional
hypothesis-driven research, in order to make sense out of microarray data, the
researcher must still have a concept of the main questions which it is hoped that a given
sample set might answer. Appropriate selection of analysis tools will depend on the
questions to be addressed. Certain key questions pervade most cancer-related
microarray research: Can two or more types of cancer be discriminated? What genes
discriminate them most clearly? Are there genes that discriminate tumors from nor-
mal tissues? Are there subsets within tumors of the same apparent class? Are there
correlations between expression profiles and other molecular or pathological proper-
ties of the tumor? Are there correlations between expression profiles and clinical vari-
ables, such as outcome and response to therapy? With what degree of confidence can it
be said that these results are not due to chance alone? Do the genes, which arise from
these analyses, fall into biologically recognizable pathways? Are these pathways rel-
evant to the tumor phenotype or as potential targets for therapy?

These important questions and the need to develop the mathematical tools to address
them have attracted the attention of computer scientists, engineers, and biostatisticians.
Numerous computational approaches have been developed, and these will not be
reviewed in detail here. However, certain important principles deserve emphasis.
The questions listed above vary in difficulty. Some are very easy. For example, finding
genes that distinguish colon cancer and glioblastoma will not be a great challenge, and
numerous reports support the concept that different cancer types have distinct gene
expression profiles (14,15). On the other hand, finding genes that discriminate among
stages of colon cancer might be significantly more challenging. There is no reason to
be sure, a priori, that every question can be answered with confidence by gene expres-
sion profiling. For example, the chemosensitivity of a metastatic clone may not be
predicted from the gene expression profile of the corresponding primary tumor. As the
differences in gene expression narrow between groups of samples, which define clini-
cally relevant groups, the analysis will be less and less forgiving of noise in the data,
and the importance of the primary data quality increases. Similarly, larger numbers of
samples in each group will be necessary to achieve statistically significant results. Once
gene lists are developed, which appear to answer the question posed, they should be
used to develop a formal rule-based classifier that might be applied to new samples
(16,17). Ideally then, experimental designs should also include a blinded test set, which
can be used to validate the results obtained from a “training” set.

Because the number of genes in microarray data sets is always much larger than the
number of samples, there will always be some number of genes that appear to differ
significantly between groups based on chance alone. There is no method that can prove
that this is not the case for any given gene, but probabilistic methods can provide an
estimate of the probability that the results are due to chance fluctuations in the data.
Alternative methods to address this issue include random permutation tests, leave-one-
out analysis, and the introduction of gaussian noise into the data (18–20). These meth-
ods help establish whether the data contain an overabundance of genes, which
discriminate the samples compared to what would be expected at random. Addition-
ally, it is important to use one of several available methods to rank the genes that
discriminate among samples, in order to identify the genes that have the greatest impact
on separating groups (17,18). Even with apparently good results, there may be aspects
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18 Meltzer

of the data related to sample selection that will not be apparent until a confirmatory
study is attempted. In the end, as in other types of clinical research, there is no substi-
tute for a truly independent confirmatory study.

The methods used to analyze microarray data can be divided broadly into supervised
and unsupervised approaches. Clinical correlative studies will utilize supervised meth-
ods that divide the samples into groups, for example, responders and nonresponders,
according to a known variable, and then search for genes that differ between groups
(21–23). Alternatively, microarray datasets present the opportunity for class discovery.
This entails the use of unsupervised techniques to search for properties of sample sets
that emerge from the data analysis without utilizing the known classification data for
the analysis. Unsupervised analysis provides the opportunity to discover unexpected
complexities among samples sets. There are a number of excellent examples of the
application of this approach to a variety of cancer types (24–28).

VALIDATION OF MICROARRAY DATA

How reliable are microarray data? This question is somewhat laboratory-specific,
depending on the precise methodology used. It is also dependent on where a given data
point falls on the spectrum of gene abundance. Genes expressed at low levels will not
be measured as accurately as more abundant transcripts. In general, when compared to
conventional methods, microarray data from experienced laboratories are remarkably
accurate (29). Although validation by Northern blot or quantitative PCR methods
may be required to confirm or extend important results, inherent data accuracy is usu-
ally not a major concern when a pattern of expression is reinforced by a large number
of samples. It is somewhat problematic that there may not be an alternative technique
that can be used to confirm the expression levels of dozens or hundreds of genes at the
same level of accuracy as microarrays, especially when expression levels between
sample groups vary by less than two-fold. In this case, the best validation will be
obtained from microarray analysis of an additional sample set.

Confirmation at the protein level can also be difficult, since for most genes, a suit-
able antibody will not be available. Even in the case of genes for which good antibod-
ies capable of staining tissue sections exist, the assay may not have the same dynamic
range as hybridization-based methods. In-depth correlation of mRNA and protein
expression levels for multiple genes will not be accomplished until accurate quantita-
tive proteomic methods become available.

Tissue microarrays for in situ mRNA hybridization or immunohistochemistry pro-
vide the possibility of confirmatory studies on large numbers of samples (30). Image
analysis of mRNA in situ hybridization is remarkably quantitative and agrees well with
cDNA microarray data (31). This technology for analyzing a single gene in numerous
samples nicely complements the ability of cDNA microarrays to analyze numerous
genes in relatively small numbers of samples.

INTERPRETING GENE LISTS

Microarray analysis, whether supervised or unsupervised, ultimately generates lists
of genes that discriminate among samples. Making sense of these gene lists presents a
significant challenge. Gene names can be misleading, and the majority of genes are
linked to little or no functional information. Currently, there are only limited tools that
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can automatically parse gene lists into functional categories. Automation of these tasks
is an area of active research, but at the present time, only expert perusal of the gene list
can optimize gene interpretation in the context of a particular biological question. How-
ever, this carries risks. Even if careful statistical methods have been applied to reach
this stage of data analysis, there is a real temptation to overinterpret gene lists by draw-
ing tenuous but attractive connections. Most of the interpretations that arise from
exploring microarray data are better considered hypotheses than conclusions. It is
important to bear in mind that additional forms of experimentation may well be neces-
sary to establish a conclusive connection between a gene and the tumor in which it is
expressed.

DISSEMINATING MICROARRAY DATA

The data generated from microarray research far exceeds, in quantity, the limita-
tions set by the usual journal format. Currently, data are provided to the scientific com-
munity over the Internet by Web supplements to publications and Web sites maintained
by individual laboratories. Public databases have been established at NCBI and Euro-
pean Molecular Biology Laboratory (EMBL), and standards are being developed for
the minimal information that should accompany microarray data for publication (32).
The availability of significant amounts of data via on-line repositories has led to a
number of publications that have reanalyzed existing data, which is a phenomenon that
will surely increase dramatically in the future.

CONCLUSION

Although only a brief period has passed since its introduction, cDNA microarray
technology has been widely adopted. As more and more studies have confirmed the
ability of this technology to contribute to tumor classification and to the recognition of
clinically important endpoints, enthusiasm has continued to grow. With time, the qual-
ity of microarray data has continued to improve, allowing a progressively higher reso-
lution view of gene expression. This information seems certain to improve tumor
classification and, through its impact on therapeutic target discovery, to provide new
opportunities for cancer treatment.
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