PREFACE

Rapid developments in computer technology and computational techniques, advances
in a wide spectrum of technologies, and other advances have resulted in cross-
disciplinary pursuits between technology and its applications to human body
processes and systems. This set of four volumes with the overall title, “Computational
Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems”, repre-
sents, to my knowledge, the first multi-volume treatment of this broadly significant
subject on the international scene.
The subtitles of the four volumes are:

Volume 1: Algorithm Techniques

Volume 2: Computational Methods
Volume 3: Mathematical Analysis Methods
Volume 4: Diagnostic Methods

The great breadth and significance of this field on the international scene requires
multiple volumes for substantive treatment. Indeed, the great significance of this
subject internationally is very amply testified to by the fact that the coauthors come
from eighteen countries in addition to the USA. Moreover, the authors or coauthors in
a number of cases have the degree combinations of M.D. and Ph.D. or the equivalent
thereof, which is, of course, only to be expected in a work of such magnitude.

Readers will find a logical flow in the treatment of this broad subject through the
respective volumes. The utilization of computers in medical systems starts with a
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“road map”, i.e., algorithms. The first volume, “Algorithm Techniques”, is densely
rich with significant algorithmic methods in a wide variety of areas, as a review of
the contents of this volume will make apparent. Once algorithms are developed, there
remains what is generally a rather formidable task in medical systems, that is, devel-
oping a solution for a given complex problem. Volume 2, “Computational Methods,”
presents numerous significant computational methods in a substantive array of areas.
Next, in order to develop algorithms and then solve them, a given medical system
must be analyzed to a degree sufficient to produce an adequately descriptive model
or set of equations that describes it. Volume 3, “Mathematical Analysis Methods”,
presents numerous significant techniques for the analysis of medical systems. Finally,
the knowledge and insight demonstrated in the first three volumes are applied to the
solving of non-trivial diagnostic problems. Volume 4, “Diagnostic Methods”, presents
a rich variety of diagnostic techniques that reflect a broad spectrum of approaches.

The contributions to these volumes clearly reveal the effectiveness and significance
of the techniques presented and, with further development, the essential role that they
will play in the future. I hope that students, research workers, practitioners, computer
scientists and others on the international scene will find this set of volumes to be a
uniquely valuable and significant reference source for years to come.

Cornelius T. Leondes
University of California, Los Angeles
May, 2002
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1 INTRODUCTION

Acquisition of 3D shape models is one of the most important topics in the computer
vision field because of increasing demands for graphic displays in a virtual space
as well as quantitative shape analysis in medical diagnosis and industrial inspec-
tion. For the purpose of acquiring 3D shape models directly from images, the use of
occluding contours has received considerable attention. There have been two main
approaches to 3D model acquisition using occluding contours: one approach inte-
grates apparent contours from continuously varying viewpoints {1-3], and the other
approach uses deformable models in which model constraints are incorporated such
as symmetries and some other regularities [4-6]. The former has the advantage that
accurate shape recovery is possible. Although several results have been reported for
acquiring 3D models of rigid objects, it seems difficult to recover 3D models from
fragmented contours. On the other hand, the latter has the advantage that 3D models
can be recovered even using contours from one viewpoint or fragmented contours.
Several recovery results including non-rigid moving objects have been demonstrated
from one viewpoint {4,5]. More recently, rigid object recovery from multiple view-
points was reported [6]. However, recovered models were imposed to have rotational
or mirror symmetries, and then they were not regarded as accurate but only as
plausible.

In this paper, we propose a method for acquiring accurate 3D shape models of non-
rigid moving objects directly from images [7]. Especially, we aim at the recovery
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of the left ventricular (LV) shapes, one of the most important types of non-rigid
objects [8]. We use X-ray cineangiocardiograms, that is, the 2D projections of LV,
as an image data source. If we use ultra-fast CT or MRI synchronized with an elec-
trocardiogram, we can directly obtain 3D cross-sectional information to recover 3D
models [9,10]. However, X-ray cineangiocardiography still has the advantages on
temporal resolution, and spatial resolution along an axial direction of tomography as
compared with ultra-fast CT and gated MRI. Furthermore, LV imaging by biplane
or single-plane cineangiocardiography is a procedure commonly performed in car-
diac catheterization, which is a routine examination regarded as the most reliable and
accurate method for cardiac diagnosis by physicians. From the clinical aspect, there
is a need for a more accurate LV recovery method by improving conventionally used
cineangiography without introducing any special examination such as ultra-fast CT
and gated MRI. One of such efforts is to use the density profiles {11] as well as the
apparent contours of LV. The problem of this approach is the difficulty of keeping the
uniform density of contrast media.

Onr recovery method is based on the integration of apparent contours from var-
ious viewpoints in order to acquire not only plausible but also accurate 3D models
for quantitative shape analysis in cardiac diagnosis. We perform direct fitting to
a closed surface model similar to a deformable model in order to deal with frag-
mented contours such as extracted from X-ray cineangiocardiograms. While LV
images are taken from one or two fixed viewing directions in conventional cineangio-
cardiography, we vary viewing directions continuously when LV images are taken,
which can be easily realized using conventional devises. There is previous work
on such an image acquisition method motivated from purely clinical concerns [12].
However, the previous recovery method was very primitive, which reconstructed
cross section shapes one by one and placed side by side along axial and tempo-
ral directions. Therefore, its formulation was quite insufficient as concerns the use
of spatiotemporal smoothness of cardiac motion and shape and the evaluation of
matches between the extracted contours and the projections of recovered shapes.
Also, it was difficult to deal with fragmented contours. In this paper, in order to
overcome those problems, we use a time-varying closed surface represented using
B-spline functions having three variables (two as surface and one as time) to fit
directly and simultaneously to all contour data extracted from time and viewpoint
varying images.

The organization of the paper is as follows: In Section 2, we describe the assump-
tion on non-rigid motion, and clarify the advantages of time and viewpoint varying
images for non-rigid object recovery. In Section 3, we describe the representation of
a time-varying closed surface and clarify the constraints relating the model surface
to contour data extracted from images. An iterative recovery method is formulated in
order to fit the time-varying model surface to contour data. In Section 4, we present
experimental results using synthesized and real image sequences using balloon phan-
toms. In Section 5, we give discussion on the representation issue of time-varying
surface, and the problems toward clinical application.
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2 OBTAINING TIME AND VIEWPOINT VARYING IMAGES

In general, non-rigid motion includes translation and rotation as well as the
time-variations of object shape. In this paper, however, we assume that object motion
originates from only shape variations, but does not include translational and rotational
componenis. When we observe such non-rigid moving 3D objects in order to obtain
their time-varying shape information, it is natural that we should vary viewpoints
while observing them. We try to give a consideration to this intuition in this section.

A viewpoint can be represented as a point on a spherical surface, which can be
parameterized using latitude ¢ and longitude 6. In the case of LV recovery using a
biplane X-ray system, we plan to vary LAO and RAO (left- and right-anterior-oblique
view) angles from 0° to 90° and from 90° to 0°, respectively. When a patient body
is aligned to the polar direction of the spherical coordinate system, the variations of
LAO and RAO angles correspond to the variation of longitude 6. Thus, we consider
the variation of only longitude 6 here. We consider a time-viewpoint space whose
axes are time ¢ and viewpoint . We assume that an object is observed by two cam-
eras (a biplane X-ray sysiem) whose viewing directions are orthogonal and giveir by
(61(2), 6,(2)), where |6, (t) — 6,(¢t)| = n /2. The sample points for image acquisition
are taken along 6, (¢) and 6,(¢) in -0 space. If fixed viewpoints are assumed, sample
points in 8 space are represented as shown in Figure 10.1(a). If time-varying view-
points are assumed, more uniform sampling can be realized in r— space as shown in
Figure 10.1(b). If we can assume both shape and motion are smooth, the recovery of
more accurate 3D shapes can be expected using the combination of uniform sampling
in -6 space and an appropriate spatiotemporal interpolation method as compared
with the combination of images obtained by dense sampling along either ¢ or 6 and
strong constraints on object shape or motion, except for the case of rigid objects (i.e.
no motion) or rotationally symmetric shapes.

In general, cardiac motion can be approximated as periodic motion. When object
motion can be assumed to be periodic, time-varying viewpoints are more advanta-
geous. If observable time is long enough compared with one cycle, we can obtain
dense uniform image sampling in -6 space. In L'V imaging by cineangiocardiography,
observable time is two or three seconds (that is, from three to five cardiac cycles) dur-
ing one injection of contrast medium. The sampling pattern shown in Figure 10.1(c) is
realized using viewpoint variations given by (6, (¢), 6,(¢)) = (m¢t /8Ty, mt [8Tp-+7 /2)
(where Tj is one cycle of periodic motion) and image acquisition by sampling interval
Ty/9. Different sampling patterns can be realized by changing viewpoint variations
(61(1), 6,(¢)) and the sampling interval (Figure 10.1(d)).

3 RECOVERY OF TIME-VARYING 3D SHAPE MODELS
3.1 Representation of time-varying 3D shape models
We represent time-varying 3D shapes using uniform B-spline functions. In order to

parameterize a closed surface, we use spherical coordinates. We specify 3D position
using latitude u and longitude v, and distance r from the origin to the direction



250 10. Time-varying 3D shapes in medical imaging

(2] 0
T b1
2 21 ‘ /
0 { 0 ¢ —¢ t
() To ) To
6 6

0 t t
(C) To 0 ( d) To

/ Camera motion
Sample point

Figure 10.1, Sampling patterns in time—viewpoint space (-6 space) assuming the use of two
cameras whose viewing directions are orthogonal. (a) Sampling pattern for time varying but
viewpoint fixed images. Viewpoints are given by (81 (¢), 62(¢)) = (v /4, 3m /4). (b) Sampling
pattern for time- and viewpoint-varying images of shapes with non-periodic motion. The
velocity of viewpoint variation should be fast enough in order to obtain relatively uniform
sampling. (¢) Sampling pattern for periodic motion with cycle Tp. The velocity of viewpoint
variation can be slow enough in order to obtain dense uniform sampling. This pattern is
realized by viewpoint variations (61 (¢), 62(¢)) = (wt /87y, mt/8Tp + m/2), and sampling
interval Tp/9. (d) Sampling pattern for periodic motion with cycle Ty realized by viewpoint
variations (81 (¢), 02(t)) = (wt/4Ty, 7t /4Ty + 7/2), and sampling interval 27p/9.

specified by latitude u and longitude v. This means that recovered closed surfaces are
limited to star-shaped surfaces with respect to the origin of the spherical coordinate
system. Nevertheless, we believe that this class of surface is useful in many domains,
especially in LV shape representation. Also, we assume that motion is periodic and
its cycle is Ty. Therefore, time-varying 3D shapes are represented by

io—1 jo—1ko—1

rov, =) Y Y RpUi@)Vi@ ), M

i=—3 j=0 k=0

where u € [0, ], v € {0,27], t € [0, Tol, Rt is a coefficient, U;(u) is the basis
function of uniform cubic B-spline for non-periodic functions, and V;(v) and T (¢)
are the basis functions for periodic functions.
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Figure 10.2. Constraints relating 2D coordinates I = (x, y) of contour points in an image to
3D position X(u, v, ¢) and normal n(u, v, ¢) on time-varying surface r(u, v, t).

3.2 Constraints for 3D recovery from contours

Given an image with known viewpoint (¢, 8) and time ¢, we want to derive the con-
straints which relate 2D coordinates of contour points in an image to 3D position and
normal on time-varying surface r (u, v, t) (see Figure 10.2). For simplicity, we assume
that the spherical coordinate system for representing a viewpoint is coincident with
the one for representing a closed surface without loss of generality. Also, we assume
orthography as an image projection model. A viewing direction can be given by

v = {cos ¢ cosf, cos ¢ sin G, sin @). 2)

We define two orthogonal directions of image axes as

i=(—sin#,cosb,0), 3
and,
j=(—sinpcosh, —sin¢sinb, cos ). “)

The optical ray corresponding to image coordinates I = (x, y) is given by
P+ v, o)

where P = xi + yj, and A is a scalar value. Here, we suppose that the optical ray
passing through the origin of the spherical coordinate system is defined as Av.

Now, we derive the constraints on a surface represented by r(u, v, t), given an
image contour point I = (x, y) at viewpoint v and time z. 3D position X(u, v, t) on
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its time-varying surface is obtained by the transformation from spherical coordinates
to Cartesian coordinates. Because r(u, v, t) is the distance from the origin along 3D
direction (cos v cos i, cos v sin u, sin v) at time ¢, 3D position X(u, v, f) is given by

X(u,v,8) = r(u, v, £)(cos v cos i, cos v sin u. sin v). (6)

Surface normal n(u, v, t) at X(u, v, t) is given by

NG v, £) = N [8X(u, v, 1) o oX(u, v, t)] ’

Ju dv M

where N[x} = x/|x|. If there is an image contour point I = (x, y) with viewpoint v
and time ¢ which is a projection of an occluding contour of a surface, the constraints
given by

X(u, v, 1) =P+ Ay, ®
and
nw,v,t) - v=0 9

must be satisfied at the corresponding surface coordinates (u, v), where A =
X(u,v,t)-v,and P = xi + yj.

3.3 Iterative method for time-varying 3D recovery

Based on the constraints given by Egs (8) and (9), we formulate a method for estimat-
ing r(u, v, t). Equations (8) and (9) are the basic constraints for 3D recovery from
occluding contours, which are also described in [3]. In our problems, however, it is
difficult to directly obtain r (u, v, ) satisfying these constraints because it is unknown
what coordinates (u;, v¢) correspond to the optical ray P; + Av, determined by given
image coordinates (xg, yz).

In order to obtain an approximate solution, we decompose the problem into two
stages: First, we use Eq. (9) to find the correspondence between surface coordinates
(ug, vg) and each optical ray determined by image coordinates (x,, y¢) of a given
contour point. Second, we estimate r(u, v, #) by solving a linear equation system
obtained from Eq. (8). We iterate these two stages to finally obtain a solution satisfying
both Egs (8) and (9).

The recovery algorithm is described as follows. We start the algorithm by setting
initial shape @ (u, v, t), and computing X©(u, v, t) and n@ (4, v, £). (In the exper-
iments, we used a sphere as initial shape @ (u, v, £).) Let m be an iteration count.
We set m = 0 initially.

During the first stage, we find tentative correspondence between surface coordinates
(ue, ve, tg) and an optical ray determined by image coordinates (x¢, y,) at time £, (see
Figure 10.3). We find this correspondence for every image contour point at every
viewpoint and time. Given X" (u, v, £), n”(u, v, ¢), and the optical ray Py + Av,
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Figure 10.3. Tentative correspondence between surface coordinates and the optical ray
determined by image coordinates.

which corresponds to image contour point (xg, ye), we find ue, ve, and A¢ satisfying
the constraints

0 (ug, vg, te) - ve =0, (10)
and
Py + Agve = ctg(COS vg COS g, COS g Sin g, Sin vg), (1

where o is a scalar coefficient. If we suppose that A, is given, the 3D position of
P; + X¢v, is determined. By representing this 3D position using spherical coordi-
nates, ug, vg, and o, are uniquely determined using Eq. (11). We can check whether
Eq. (10) is satisfied for determined u, and v,. In order to find u,, ve, and o satisfying
the constraints, we continuously vary A, and search the value of A; which satisfies
Eq. (10). If there are multiple values of A, satisfying Eq. (10), we select A, where
letg — ™ (g, vy, )] is the minimum.

During the second stage, based on u,, v¢, and oty found at the first stage, we estimate
r™+D(y, v, t) by solving a set of linear equations derived from

r ™D (g, vg, 1) = atp. (12)

(m+1)

More precisely, combining with the smoothness constraint, we find R; ik

minimizing

plm+D
ar (u v, t)
Em+D - E [ rm+ g, ve,te)—ae} +w; - 2T07T2//f( )

1 armtDy y ¢ armt Dy y ¢
+<2,, o wunnt gy 0

cosu dv

) dudvdr (13)
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where
ig—1 Jo—tko~1
r v, =3 3 RETVU @)V ) T, (14)

i=—3 j=0 k=0

and wy is a weight parameter for the smoothness constraint. 1/£ and 1/(2T?) are
factors for obtaining average values from the summation and the integral, which nor-
malizes the smoothness constraint and the data constraint based on Eq. (12). , 27,
and Ty (by which the partial derivatives are multiplied) are factors for the normaliza-
tion of each partial derivative. The partial derivative with respect to v is multiplied
by 1/cosu because of the reduction of length along v with approaching the poles.
(In the experiments, the normalized partial derivatives were estimated using discrete
approximations such as (R;jr — Riy1, 1)/ (1/ o). If error E m+1 for newly estimated
r*+D(y, v, t) is almost the same as previous error E™, then we stop the algorithm,
else we set m = m + 1 and go back to the first stage. (Empirically, four iterations
were sufficient for an appropriate weight value of the smoothness constraint.)

4 EXPERIMENTAL RESULTS

We evaluated the method using synthesized and real image sequences. The method
was implemented on a SPARC Station 20.

The synthesized image sequences were generated based on the stationary 3D shape
recovered from viewpoint-varying X-ray images of a stationary balloon filled with
contrast media. The recovered 3D shape was deformed using three different time-
varying periodic scale functions along three orthogonal directions so that the time
variation of its volume was similar to the one of LV. The periodic scale functions
were described by sinusoidal functions. In a normal LV, its shape is roughly rotational
symmetric, and its contraction is relatively uniform everywhere on heart wall. In a
diseased LV, however, it is often that its shape is not rotational symmetric and/or the
contraction is not uniform, which causes non-symmetric shapes. We generated time-
varying shape so as not to be rotationally symmetric. The viewpoint-varying image
sequences were generated under the assumption of orthographic projection.

The real image sequences were obtained by taking X-ray images of a balloon filled
with contrast media using a biplane X-ray system (Siemens BICOR). Although the
shape of a balloon is commonly rotationally symmetric, we deformed the balloon
shape by covering carton frames. We controlled the volume of the balloon using a
pump so that the time variation of the balloon volume was periodic and similar to
the one of LV. Also, we took CT images of the balloon at several time phases and
used the 3D models reconstructed from the CT images as the golden standard. In this
case, perspective projection is more appropriate as an image projection mode] than
orthography. However, we applied the recovery method assuming orthography.

Before the recovery of time-varying surfaces, the detection of image edges is
necessary. We took the zero-crossings of the V2G whose gradient magnitude values
are large as image edges. Our method currently cannot discriminate “spurious” edges
which should be regarded as outliers. So, we manually removed “spurious” edges
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Figure 10.4. Time- and viewpoint-varying images of the synthesized image sequence.

which did not originate from the occluding contours of the balloon. We randomly
selected 25% of all the extracted edges in each image and used them for the 3D
recovery.

In the following experiments, we used a uniform function, that is a sphere, as
initial shape @ (u, v, £). The spherical coordinate system for surface representation
was selected using the following method. The axis of elongation in the projected
shape was manually specified in two images taken from orthogonal viewpoints at the
systolic phase. A 3D line segment was determined as z-axis of the coordinate system
so that its projections were coincident with the specified two axes in these images. The
origin was set at the center of the 3D line segment. The directions of x-axis and y-axis
were set to the two orthogonal directions from which the two images had been taken.

4.1 Synthesized image sequence

The image sequences were synthesized assuming the use of a biplane X-ray system by
which projections from two orthogonal views can be obtained simultaneously. Three
image sequences were generated using sampling patterns in the time—viewpoint space
as shown in Figure 10.1. One of these sampling patterns was the time and viewpoint
varying sequence generated using the sampling pattern shown in Figure 10.1(c). The
other two sequences were generated using fixed viewpoints (0, 7 /2) and (5t /4, 37 /4)
with time interval Ty/36.

Figure 10.4 shows a part of the viewpoint-varying images. The size of each image
was 220 x 220 (pixels). Figure 10.5 shows the shaded displays of time-varying 3D
shapes recovered from the viewpoint-varying sequence. We used iy = 12, jo = 12,
and ko = 12 as the number of knots of B-spline functions in Eq. (14), that is, the
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Figure 10.5. Shaded displays of time-varying 3D shapes of one cycle recovered from time
and viewpoint varying synthesized image sequence.
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Figure 10.6. Time variations of the normalized volume of differences of the recovered
shapes from viewpoint-varying sequence and viewpoint-fixed sequences.

grid was 12 x 12 x 12. We used ws = 0.5 x 1073 as the weight parameter of
the smoothness constraint in Eq. (13). Four iterations were needed for the recovery
algorithm to almost converge. Figure 10.6 shows the time variations of error in the
recovered shapes. We used the volume of the differences between the true shape and
the recovered shape as a measure of error. We further divided the volume of dif-
ferences by the true volume at each time phase to normalize the error. It should be
noticed that the volume of differences is not the difference between the true volume
and the estimated volume. That is, we did not use the difference of volumes, but used
the difference of shapes. In Figure 10.6, the normalized volume of differences in the
results recovered from the viewpoint-fixed images highly depended on the selection
of two viewpoints. We synthesized the time-varying shapes by deforming a roughly
rotational symmetric shape using time-varying scale functions along three orthogonal
directions. Because two orthogonal viewpoints happened to be close to two of these
three orthogonal directions when (6;(2), 62(¢)) = (0, /2), the recovered shapes
were relatively accurate (Figure 10.7). Nevertheless, the accuracy of the result recov-
ered from the viewpoint-varying images was considerably higher through one cycle.
Figure 10.8 shows the projection images of the recovered 3D shapes superimposed on
the projection images of the true shapes. The projection images of the shape recovered
from the viewpoint-varying images and the true shape were almost the same at not only



2. COMPUTER TECHNIQUES FOR SPATIAL
PATTERN ANALYSIS OF OBJECTS IN
BIOMEDICAL IMAGES

G. CEVENINI], M.R. MASSAI AND P. BARBINI

INTRODUCTION

The many definitions of spatial pattern (SP) have subtle differences according to the
context of the application, but all refer to the disposition of a set of objects in a spatial
region of interest [ 1-5]. Here we are concerned exclusively with object locations and
their spatial interplay due to stochastic processes which sometimes are unknown or
inexplicable, sometimes are the subject of study. Any other qualitative or quantitative
property of objects, such as for example color or size, is disregarded. Hence we are
not concerned with the problem of spatial autocorrelation, since this property occurs
whenever there is a systematic change in values across a map and can therefore be
investigated only if the patterns are analyzed by values recorded at locations. For a
detailed treatise on this topic, see [4].

As a direct consequence of the above definition, the objects have to be conceived
without dimension, i.e., as numerable points. Nevertheless we always call them
objects to distinguish them from arbitrary points in the region of study.

A SPis completely identified by the angles between the lines connecting the objects
(Figure 2.1(a)) and does not change with translations, rotations (Figure 2.1(b)) or
enlargements equal in all directions from a reference point (Figure 2.1(c)). Any
other displacement of objects with respect to the others causes pattern distortion
(Figure 2.1(d)).

Approximation of the objects as points depends on the scale on which they are
observed and analyzed. In most cases, the real physical dimension of objects becomes
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Figure 2.1. Three transformations of a spatial pattern (a) leaving it unaltered (b)-(c) and
changing it (d): (a) original spatial pattern; (b) translation of (a) to the right and subsequent
rotation through 90°; (c) enlargement of (b) in all directions; (d) contraction of (c) only in a
horizontal direction.

negligible with a suitable choice of scale. For example, even stars on a cosmic scale
can be taken as points without any error worthy of mention.

Rigorously, SPs can be studied in one, two or three dimensions. However, since we
apply SP analysis to biomedical images, we refer to two-dimensional space unless
otherwise specified. Most of the ideas can be extended to other spaces by introducing
only slight mathematical changes.

The analysis of SPs must begin with a test of complete spatial randomness (CSR)
since rejection of CSR is a prerequisite for even thinking about modeling an observed |
SP [2,3]. Moreover it operates as a dividing hypothesis between aggregated and
regular patterns which are the two main alternatives to random patterns.

This classification of SPs into three categories is of course a simplification but it
is a useful start and allows a glimpse of the main causal mechanisms creating the
patterns. In fact the arrangement of objects in space may range from aggregated or
patchy (Figure 2.2), caused for example by contagious clustering, clumping and local
non homogenous rarefaction processes, through a random pattern (Figure 2.2(a)) to
being, more rarely and regular (Figure 2.2(c)). For example, regular SPs can arise
from inhibition or repulsion mechanisms which constrain objects to remain a certain
distance from each other. Of course, in nature, and hence also in the biomedical field,
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Figure 2.2. Four computer-simulated spatial patterns in a square of 10-unit sides: (a) random
pattern; (b) aggregated pattern; (c) regular pattern; (d) constrained pattern.

there are objects, the spatial organization of which has more complex patterns, for
example in which very small and large distances between neighboring objects are
allowed, but not intermediate distances (Figure 2.2(d)). Such constrained patterns are
found in nature due to growth processes.

Doing a CSR test is also important because most of these tests can be used as
exploratory tools to provide complementary information about pattern characteristics,
even by measuring the strength of evidence of departure from randomness through
significance levels.

Before we can discuss better some specific aims of the different techniques used
in SP analysis, some practical aspects about data collection have to be considered.
Sometimes the region of interest is spatially well-defined and the locations of all the
objects to be analyzed are completely known, as for example the cherries in a cherry
tree. In most of biomedical applications, however, the region containing all the objects
is too large to be measured and/or has poorly defined borders, as for example, neurons
in the human brain or tumor cells in microscope images of histological sections.
A sampling region is therefore chosen and studied using probability sampling schemes
or representative criteria. The results are extended to the whole population of objects
by statistical inference, which may also be useful to prove the consistency of the
results over many replicate choices of sampling region.
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In the latter situations, in which the positions of the objects in the study region
can be determined exactly, we shall refer to mapped patterns. Besides providing a
preliminary test of CSR, the mapping methods can aim at formulating a parametric
stochastic model, fitting it to the data, and explaining the underlying causal processes
by deterministic inferential procedures. Clearly even simple stochastic models admit
many plausible interpretations.

Many different techniques for analyzing mapped SPs have been developed. They
are distinguished on the basis of the type of stochastic variables used [1-5]. They
can be classified in three main categories, although some combined methods do also
exist.

(i) Counts of objects over squared or rectangular disjointed sub-regions of suitable
size, obtained from superimposing grids on the study region {6].

(i1} Measurement of geometric quantities such as areas, perimeters or lengths,
defined either by dividing the study region into some kind of polygonal cells
(tessellation) with specific spatial properties [7-9], or by trees obtained by
connecting all the objects in the shortest way [10,11].

(iii) Computation of distances between objects and between objects and selected
points [12-14].

As an alternative to intensive mapping in a single region, information can be
obtained from a large number of smaller regions, usually called quadrats even if
they are not square. Some of these sub-regions may also partially overlap. Due to
its simplicity, quadrat sampling is a very popular technique in the biological and
biomedical fields, but its results are not always completely reliable {15]. Moreover,
paradoxically, it does not account for the spatial nature of the patterns. Distance meth-
ods are an alternative, and give more sensitive insights into the spatial arrangement of
objects and their interplay. The sampling unit is a point and the information is stored
as distances to neighboring objects.

The objectives of these so-called sparse sampling methods based on quadrat counts
or distance measurements are generally rather different. Besides testing CSR they are
usually only concerned with evaluating intensity, i.e., the mean number of objects per
unit area. Equivalently, if the total area of the region of interest is known, they can
estimate the total number of objects simply as the product of intensity and total area.
The analysis of sparsely sampled SPs can, at the most, provide a qualitative description
of the underlying pattern. In fact, to obtain more and better inferential information,
it is better to deal with mapped data in sub-regions and use the above-mentioned
mapping methods.

Most procedures of SP analysis require intensive use of a computer. The use of
sophisticated techniques requires considerable processing capacity. The availability
of increasingly powerful computers has enabled techniques to be refined and new
ones to be developed [16,17].

The SP is an interesting characteristic of many natural phenomena. In nearly all
fields of human endeavor, point-like objects with spatial organization worthy of
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study can be identified. It is almost impossible to list all the literature on SP analy-
sis. Here we shall mention only the main fields of application, citing a few recent
pertinent books and articles. Other references can be obtained from the bibliogra-
phy of the principal texts on SP analysis [1-5]. Non biomedical disciplines which
have made long and assiduous use of SPs are ecology [1,12,18-26], biology (espe-
cially botany [3,4,6,24,27-31], forestry {3,32,33], zoology {1,18,20,34]), geology
{35], geography {4,36-41], astronomy {42-44] and archaeology [45,46]. Recently
the social sciences [47,48], genetics {49] and even traffic and accidents [50] have
been analyzed by SP techniques. With regard to the many branches of the biomed-
ical fields, the interpretation of object organization in biomedical images is of great
scientific interest. Spatial pattern analysis therefore has and will continue to have
applications in this field. Some of the main areas of application include anatomy
[51-55], histopathology [56-63] and health care {64-66].

In this chapter we consider the main SPs found in biomedical images, especially
the random pattern. We describe statistical tests of CSR, particularly the Monte Carlo
tests which require large processing capacity. After a brief description of the main
count and geometrical methods, distance methods applied to mapped data are dis-
cussed in detail, since they generally give more refined information in biomedical
applications. Sophisticated techniques for the analysis of nearest neighbor (NN) dis-
tances are discussed in relation to interpretation of SPs in biomedical images where
it is not always possible to ignore object size, and where attention can be restricted
to sub-areas of plausible reciprocal influence between objects. The main difficulty
of distance methods, namely the influence of the boundary of the study region, i.e.,
the so called edge effect is then discussed. After this we describe a very subtle and
revealing SP method combining count and distance analysis. In conclusion, we out-
line the meaning, utility and problems arising from extension of these techniques
to multivariate patterns, i.e. patterns of different types of objects, with reference to
spatial independence.

In describing the various methods of SP analysis, except those for multi-type
object SPs, we frequently use the well-controlled computer-simulated data shown
in Figure 2.2. These patterns were obtained by distributing 300 point-like objects
in a plane in four different ways. They are useful for illustrating the proper-
ties of the different techniques. Except for the random pattern of Figure 2.2(a),
obtained by computer simulation of uniformly distributed random numbers, we
purposely do not specify how the other three patterns were simulated. This is
to make the investigation and discussion of the main techniques of spatial data
analysis more stimulating, as if we were seeking the innermost spatial character-
istics of experimental data. The computer algorithms used to distribute the objects
are reported in detail later, before summing up the performance of the various
techniques.

We also explain some computer algorithm techniques of the most informative SP
methods, based on distances. The efficacy of SP methods is also evaluated in relation
to their capacity to provide interesting quantitative or graphic indications of causal
processes underlying pattern formation.
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THE RANDOM PATTERN

The SP is called random if the objects are assigned independently and at random to
the available points in the study region. In other words, the objects in the study region
have a random pattern or are randomly dispersed if every point is as likely as every
other to be the site of an object. The Cartesian spatial coordinates of object locations
are therefore independent and uniformly distributed. The random pattern is the first
step in the description of SPs because an essential prerequisite for detailed study of
SPs is that the objects are not randomly distributed in the study area. The absence of
CSR is also useful because the CSR tests are two-tailed and unequivocally suggests
one of the two possible alternatives, namely aggregated or regular pattern. If the tests
cannot exclude CSR, then the only thing we can say about the SP is that it is random.
On the contrary, even when the SP is clearly anything but random, tests of CSR are
a useful aid in formulating hypotheses about the pattern and its origin. So, in order
to define suitable tests of CSR, it is first necessary to design a stochastic model of
spatial randomness.

THE POISSON DISTRIBUTION
For a random pattern, the number of objects in the study region follows a Poisson
distribution, i.e., the probability that the unit area will contain n objects is

AR —A
S . n=01,..., )

Pn = o
where A is the mean number of objects per unit area, also known as intensity. The
Poisson distribution, also called the distributions of rare events, is particularly used
in counting methods and can be derived from the binomial distribution.

To explain this we refer to Figure 2.3. For a convenient first approximation, it is
supposed that the objects cannot occupy all the infinite point locations of the whole
region of interest R, but only a finite, albeit large, number of them, in each of which
not more than a single object can be present. Here the finite locations are represented
by tiny squares like the pixels on a digital screen and the objects are little black squares
of the same size as the locations. A number, N, of objects are randomly scattered in
R, so that A is simply the ratio of N to the area of R.

Now consider any sub-region, I, of unit area, in R. The probability, p, that a
location will be occupied by an object is p = A/, where [ is the finite number of
point locations in I. The probability that exactly n locations will be occupied is given
by the binomial probability

! _
pn=<n)pn(1—p)l " on=0,1,...,1L @

If we reduce the size of the pixels, or increase the number of finite locations I, p
becomes very small, n negligible with respect to/, but Ip remains equal to the constant
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Figure 2.3. Whole region of interest R with a finite number of discrete locations occupied by
at most one object, like for computer graphic pixels. Sub-region / is conventionally assumed
to be of unit area.

finite value A. Equation (2) can be rewritten and approximated:
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Setting m = 1/1, letting [ tend to infinity, or m to zero, and expanding the logarithm
around m = O with a Taylor series, we obtain the Poisson distribution (1):
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So when there are few objects in the study region (the number can theoretically be
infinite for point-like objects), and all locations have the same probability of being
occupied, the number of objects per unit area will follow a Poisson distribution. If we
have to study a region not of unit area but of area A, we only have to substitute A A for
A in (4) to obtain the Poisson distribution of the number of objects in A. An example
of a random distribution of 300 objects in a square area is also given in Figure 2.2a.
Although the eye perceives a few clusters, they are an illusion.

An important property of the Poisson distribution is that it has only one parameter A
which is equal to the mean and the variance. As we shall see, this enables very simple
indices for detecting non-random patterns, through count techniques, to be defined.
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Figure 2.4. Two stylized complex patterns: (a) regular arrangement of clusters with
randomly located objects; (b) randomly located clusters of regularly arranged objects.

ALTERNATIVE PATTERNS

A preliminary qualitative and graphical distinction between regular and aggregated
alternatives to CSR (see also Figure 2.2) was mentioned above. In an attempt to obtain
a quantitative description of the processes leading to many aggregated and regular
patterns, stochastic models have been proposed in many different applied sciences.
Among those for the biomedical field, an interesting recent one, for example, is based
on the principle of maximum entropy and designed for the description of spatial
interaction of biological entities like cells in a tissue [67]. Comprehensive foundations
for spatial processes can be found in [3,4,39,68,691.

Our approach to the analysis of alternative SPs is to identify some intrinsic charac-
teristics from supplementary information provided by appropriate tests of CSR. Once
CSR has been excluded, we will try to distinguish patterns and interpret them directly
from the distributions of their associated statistics, particularly NN distances.

Aggregated patterns have a higher frequency of small and large intensities, i.e.,
over-dispersion, with respect to the random pattern; regular patterns have a more
uniform distribution of intensities about the mean, i.e., under-dispersion. Aggregated
patterns have many more small NN distances between objects (inter-object NN dis-
tances) with respect to the random patterns, whereas regular patterns have many more
large inter-object NN distances. The opposite is true for the distribution of NN dis-
tances between points arbitrarily selected in the study region and objects (point-object
NN distances). More details about point-object NN distances are given later.

This simplistic classification as aggregated, random and regular patterns, is even
useful for describing and interpreting more complex SPs. For example Figures 2.4(a)
and (b) show a regular arrangement of clusters containing randomly located objects,
and randomly located clusters of regularly arranged objects, respectively. In charac-
terizing SPs, the choice of the size of the region to be explored plays a crucial role. For
example, if we analyze the whole area shown in Figure 2.4(a) we find an aggregated
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pattern of objects, but if we analyze the sub-areas containing a single cluster, we
find random patterns of objects. If we examine the pattern of the clusters, replacing
them with macro objects identified as points through their centroids, we find a regular
pattern. Similar argumentation can be advanced for Figure 2.4b. The two examples
of SPs given in Figure 2.4 are of course simulations of stylized patterns, unlikely to
be encored in reality. However, they are useful for understanding the multiple scale
aspects involved in the interpretation of complex patterns which are not random.

In the interpretation of SPs of biomedical images, it is crucial that the problem
be stated exactly at the beginning. This includes the choice of object type, the def-
inition of area size or scale, and the choice of one technique of SP analysis rather
than another. The results obtained with only slightly different initial choices can be
radically different.

MONTE CARLO TESTS

The Monte Carlo approach for testing models against data is very useful in SP analysis
where even simple stochastic models give rise to distributions which do not lend
themselves to mathematical analysis [3,70]. Because the Monte Carlo tests are based
on onerous computer simulations, they have become more useful since powerful
modern microprocessors reduced computation times.

The Monte Carlo approach to SP analysis can be briefly described as follows. Given
a stochastic variable S, the values s of which are distributed according to a function
F(s), let 5o be an observed value of S. F(s) is used to generate ¢ independent random

valuess;, i = 1, ..., t by computer simulation. The probability that s, be the largest,
Smax, OF the smallest, spin, of the ¢ + 1 equally probable values s;,i =0, 1,...,¢,1is
P(50 = smax) = P(s0 = smin) = (¢ + D7\ ®)

This enables the probability of error level p of rejecting the null hypothesis that so
belongs to F(s) to be determined through the rank of s¢. In fact, for example, in a
one-sided test about the lower side

rank of sg

t+1 ©

The extension to two-sided tests is immediate.

In theory, the number ¢ of computer simulated random values for S must be chosen
as large as possible to obtain the finest resolution of p. In practice, t = 99 (so that
t + 1 = 100) should be sufficient to ensure a resolution of 1% and to allow the
conventional 1% and 5% probabilities of error to be evaluated for rejecting the null
hypothesis. Unfortunately, because of power loss associated with Monte Carlo tests
based on ranks [71] a value of t =99 is recommended for a 5% and t = 499 for a
1% probability.

The main advantage of the Monte Carlo approach is that practically any informa-
tive stochastic variable can be chosen without the need to know its distribution law.
However, if this freedom of choice is not used wisely, there is the risk of choos-
ing variables $ that emphasize only deviant characteristics of the experimental data.
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Figure 2.5. Two quadrat count methods: (a) squared grid of contiguous quadrats;
(b) randomly disposed quadrats.

Furthermore, when the asymptotic distribution laws are known, Monte Carlo test-
ing is a useful tool of inspection. Disagreements between classical and Monte Carlo
approaches are usually due to improper assumptions about distribution.

A disadvantage of Monte Carlo methods is their intrinsic weakness in analyzing
combined aspects and they consequently tend to be conservative, rarely rejecting null
hypotheses when they should. To obviate this, it is necessary to carry out a very large
number of simulations that take many composite hypotheses into account, but this is
seldom practicable. It is therefore a good idea to purge the data first of combined and
undesired effects, if possible.

A problem which however can arise with Monte Carlo tests is that computers
cannot provide a completely random sample of S, since they usually have only a
pseudo-random number generator, albeit of high quality.

QUADRAT COUNTS

One of the more widely used methods of SP analysis evaluates the number of objects in
selected sub-areas of the study region 4 [6,15,28-30,72,73]. All the counting methods
rely on the use of quadrat, i.e., sub-areas, usually but not necessarily squares, as in
Figure 2.5. Rectangular and circular quadrats are also not uncommon. The use of
quadrat counts as indicators of pattern is very popular because of its simplicity, but
this method has some serious problems and paradoxically ignores the spatial nature
of the data.

For mapped patterns one proceeds to divide A into m disjoint sub-areas
A; i =1,...,m,of the same or different areas, but so as to obtain a grid of contigu-
ous quadrats completely covering A. Again, for the sake of simplicity, and because
it is the usual choice, we assume that A has unit area and is partitioned into a regular
grid of m smaller squares (Figure 2.5(a)). Under the hypothesis of CSR, the numbers,
n;, i = 1,...,m, of objects in the quadrats can be regarded as samples extracted



