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Preface

The efficiency of delivering DNA into mammalian cells has increased tre-
mendously since DEAE dextran was first shown to be capable of enhancing
transfer of RNA into mammalian cells in culture. Not only have other chemical
methods been developed and refined, but also very efficient physical and viral
delivery methods have been established. The technique of introducing DNA
into cells has developed from transfecting tissue culture cells to delivering
DNA to specific cell types and organs in vivo. Moreover, two important areas
of biology—assessment of gene function and gene therapy—require success-
ful DNA delivery to cells, driving the practical need to increase the efficiency
and efficacy of gene transfer both in vitro and in vivo.

These two volumes of the Methods in Molecular BiologyTM series, Gene Deliv-
ery to Mammalian Cells, are designed as a compendium of those techniques that
have proven most useful in the expanding field of gene transfer in mammalian
cells. It is intended that these volumes will provide a thorough background on
chemical, physical, and viral methods of gene delivery, a synopsis of the myriad
techniques currently available to introduce genes into mammalian cells, as well
as a practical guide on how to accomplish this. It is my expectation that it will
be useful to the novice in the field as well as to the scientist with expertise in
gene delivery.

Volume 1: Nonviral Gene Transfer Techniques discusses delivery of DNA into
cells by nonviral means, specifically chemical and physical methods. Volume 2:
Viral Gene Transfer Techniques details procedures for delivering genes into cells
using viral vectors. Each volume is divided into sections; each section begins
with a chapter that provides an overview of the basis behind the delivery
system(s) described in that section. The succeeding chapters provide detailed
protocols for using these techniques to deliver genes to cells in vitro and in
vivo. Many of these techniques have only been in practice for a few years and
are still being refined and updated. Some are being used not only in basic sci-
ence, but also in gene therapy applications.

I wish to express my thanks to all of the authors who made Gene Delivery to
Mammalian Cells: Volume 1: Nonviral Gene Transfer Techniques and Volume
2: Viral Gene Transfer Techniques possible. I would especially like to thank
those who contributed the overview chapter to each section. They provided
invaluable discussions, suggestions, and assistance on organizing those sec-
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tions. I would particularly like to mention Joanne Douglas, Tom Daly, and Bill
Goins for their suggestions on topics and authors, Dexi Liu and Shan Lu for
their helpful discussions, and Mark Jaroszeski for his suggestions on organiz-
ing the entire editing process.

William C. Heiser
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Gene Transfer into Mammalian Cells Using 
Calcium Phosphate and DEAE-Dextran

Gregory S. Pari and Yiyang Xu

1. Introduction
Simplicity and cost are just two of the factors that have sustained the popu-

larity of calcium phosphate and, to a lesser extent, DEAE-dextran transfection
methods. However, notwithstanding these factors, the calcium phosphate
method, especially use of N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid
(the BES variation), has proven to be the only method sufficient for the co-
transfection of multiple plasmids into a wide variety of cell types. Although not
as widely used today, DEAE-dextran-mediated transfection is a highly repro-
ducible method for transient expression of a foreign gene.

The DEAE-dextran-mediated transfection method was widely used in the
early to mid-1980s because of the simplicity, efficiency, and reproducibility of
the procedure (1–5). One major drawback of this method is the poor efficiency
in forming stable cell lines. In addition, cellular toxicity is high because it is
necessary to expose the cells to dimethyl sulfoxide (DMSO). Consequently,
DEAE-dextran-mediated transfection has fallen out of favor with many inves-
tigators, giving way mostly to lipid-mediated transfection. However, because
lipid-mediated transfection can be costly and inefficient in some cell types,
many laboratories may want to consider the DEAE-dextran method. Some in-
vestigators have found DEAE-dextran-mediated transfection to be highly ef-
fective in certain cell lines. Several reports demonstrated that this is the method
of choice for delivering DNA to primary cultured human macrophages (6,7). In
addition, it appears that DEAE-dextran enhances the transfection efficiency of
mammalian cells when using electroporation (8).



In contrast to DEAE-dextran, the calcium phosphate co-precipitation proce-
dure has remained a popular method to efficiently deliver DNA to a wide vari-
ety of cell types. The main advantage of calcium phosphate DNA transfection
is the high efficiency for the generation of constitutively expressing cell lines.
Calcium phosphate is the method of choice for the simultaneous transfection of
multiple plasmids. In our laboratory, we routinely co-transfect as many as 12
different plasmid constructs at the same time into mammalian cells. Plasmid
DNA to be transfected must be of the highest purity, usually only double-banded
CsCl DNA is used for transfection.

The original calcium phosphate method used a HEPES-based buffer sys-
tem (9). This method is simple to use, but is limited in the range of cell lines
that can be efficiently transfected. Many variations of the HEPES-based system
exist, and some have optimized this method for a particular cell type (10). A
variation of the original calcium phosphate transfection method, one that uses
BES buffer, has emerged as a very versatile and highly efficient transfection
method (11). The BES method uses a different buffer system in which the pH
is lower than the HEPES-based procedure. A lower pH, coupled with incuba-
tion in a reduced CO2 atmosphere for 15 h, allows the DNA-calcium phosphate
precipitate to form slowly on the cells. This results in a significant increase in
the efficiency of transfection and a higher percentage of stably expressing cell
lines than the HEPES-based procedure. Co-transfection efficiencies are also
much higher using the BES method versus the original HEPES-based buffer
transfection method. This feature is of particular importance to establish a co-
transfection replication assay (12,13). Because of these advantages, we present
only the BES method in this chapter.

The following are representative protocols for DEAE-dextran transfection of
adherent and suspension cells, as well as a protocol for the BES method for cal-
cium phosphate-mediated transfection.

2. Materials
2.1. DEAE-Dextran Transfection

1. Tris-buffered saline (TBS): Prepare the following sterile solutions: Solution
A: 80 g/L NaCl, 3.8 g/L KCl, 2 g/L Na2HPO4, 30 g/L Tris base. Adjust pH to
7.5. Solution B: 15 g/L CaCl2, 10 g/L MgCl2. Filter-sterilize both solutions
and store at �20°C. To make 100 mL of working solution, add 10 mL of So-
lution A to 89 mL of water and then add 1 mL of Solution B, filter-sterilize
and store at 4°C.

2. Suspension Tris-buffered saline (STBS): 25 mM Tris-HCl, pH 7.4, 137 mM
NaCl, 5 mM KCl, 0.6 mM Na2HPO4, 0.7 mM CaCl2, 0.5 mM MgCl2. Dis-
solve in distilled H2O and filter-sterilize.
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3. Phosphate-buffered saline (PBS): 137 mM NaCl, 2.7 mM KCl, 4.3 mM
Na2HPO4, 1.4 mM KH2PO4, pH 7.3.

4. Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (FBS).

5. DEAE-dextran: 10 mg/mL in TBS.
6. 10% DMSO.
7. For suspension cultures, cells are grown in RPMI 1640 medium supple-

mented with 10–20% FBS.

2.2. Calcium Phosphate Co-Precipitation

1. DMEM supplemented with 10% FBS.
2. CsCl-purified double-banded DNA.
3. 2.5 M CaCl2 filter sterilized through a 0.45-lm filter.
4. 2X BES-buffered saline (BBS): 50 mM N,N-bis(2-hydroxyethyl)-2-

aminoethanesulfonic acid, 1.5 mM Na2HPO4, 280 mM NaCl. Adjust pH to
6.95 with 1 N NaOH (see Note 1).

5. 35°C 3% CO2 humidified incubator.

3. Methods
3.1. DEAE-Dextran Methods

Two DEAE-dextran methods are commonly used. The first is the basic pro-
tocol, which can be used on all anchorage-dependent cells. The second can be
used on cells that normally grow in suspension or with anchorage-dependent
cells that have been trypsinized and are in suspension. This procedure may in-
crease transfection efficiency in some cells. For adherent cells, it is advisable to
try the basic protocol first, then if transfection efficiency is low, try the suspen-
sion procedure.

3.1.1. Anchorage-Dependent Cells

1. Plate 5 � 105 cells in a 10 cm tissue culture dish (see Note 2). Cells should
be plated at least 24 h before transfection and should be no more than
40–60% confluent.

2. For each plate of cells to be transfected, ethanol precipitate 5 lg of DNA
in a 1.5-mL microcentrifuge tube and resuspend the pellet in 40 lL of TBS.
If the same DNA is used for multiple plates, precipitate all the DNA in one
tube. Ethanol precipitation sterilizes DNA.

3. Remove media from the cells and wash cells with 10 mL of PBS. After wash-
ing, add 4 mL (for a 10-cm dish) of DMEM supplemented with 10% FBS.

4. Aliquot 80 lL of DEAE-dextran into 1.5-mL microfuge tubes and warm to
37°C in a water bath. Add the resuspended DNA (5 lg of DNA per 80 lL
of DEAE-dextran) slowly to the tube while vortexing gently.
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5. Add 120 lL of the DNA/DEAE-dextran mixture to the plate in a dropwise
fashion using a 200 lL pipet tip. Swirl the plate after each drop is applied
to ensure that the mixture is distributed evenly (see Note 3).

6. Incubate the plates for 4 h in a 37°C incubator with a 5% CO2 atmosphere.
This incubation time can be shortened for some cell types.

7. Remove the medium. At this point, the cells may look a little sick but this
is normal.

8. Add 5 mL of 10% DMSO in PBS. Incubate for 1 min at room temperature.
Remove the DMSO and wash the cells with 5 mL of PBS. Replace the PBS
with 10 mL of DMEM supplemented with 10% FBS.

3.1.2. Cells in Suspension

1. Ethanol precipitate DNA and resuspend the pellet in 500 lL of STBS (see
Subheading 2). Use 10 lg of DNA per 2 � 107 cells. Cells can be either
normally growing suspension cells, for example B-cells, or trypsinized an-
chorage-dependent cells.

2. Pellet cells in a 50-mL conical centrifuge tube.
3. Resuspend cells in 5 mL of STBS and re-pellet as in step 2.
4. Prepare a 2X solution of DEAE-dextran (200–1000 lg/mL) in STBS and

add 500 lL of this solution to 500 lL of the DNA resuspended in 500 lL of
STBS from step 1. Mix well. Resuspend pelleted cells with this DEAE-dex-
tran/DNA solution. Use a final concentration of 100–500 lg/mL of DEAE-
dextran.

5. Incubate cells in a CO2 incubator for 30–90 min. Tap cells occasionally to
keep them from clumping. Incubation times vary and should be determined
experimentally.

6. Add DMSO to cells dropwise to a final concentration of 10%, mix well
while adding.

7. Incubate cell with DMSO for 2–3 min. Add 15 mL of STBS to cell.
8. Pellet cells, wash with 10 mL of STBS and pellet again. Wash cells in

medium with serum and pellet. After this centrifugation, resuspend cells in
complete medium (RPMI plus 10–20% FBS). If cells are normally anchor-
age-dependent, re-plate on a 10 cm dish or in a 75-cm2 flask. If cells are nor-
mally grown in suspension, incubate cells in normal growth media in 25-cm2

flasks. The onset of expression from transfected plasmids varies depending
on cell type. Usually expression begins between 24–48 h post-transfection.

3.2. Calcium Phosphate Co-Precipitation Method

Like DEAE-dextran transfection, two calcium phosphate transfection meth-
ods are routinely used: a HEPES-based method and a BES buffer method. Both
are good for transient expression, but the BES-buffer procedure is much more
efficient for making established constitutively expressing cell lines, in some
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cells 50% efficiency can be achieved. In addition, this procedure works better
on a wider variety of cell types, is excellent for co-transfection, and is easier to
perform than the traditional HEPES-based method. Because the BES method is
so versatile and offers these advantages, this method is presented here.

1. Plate approx 5 � 105 cells on a 10-cm tissue culture dish 24 h before trans-
fection. The cells should be no more than 50% confluent for making estab-
lished cell lines and about 70% confluent for transient expression. Smaller
plates (e.g., 6 cm) may be used and in some cases this is actually sufficient
and easier.

2. Dilute the 2.5 M CaCl2 solution to 0.25 M with sterile water.
3. Precipitate plasmid DNA in 17 � 100 mm polypropylene tubes as follows:

Add 20–30 lg of plasmid DNA per tube (Falcon # 2058) or 10–20 lg for a
6-cm plate (see Note 4). For transfecting cells in a 100-mm dish or in two
60-mm dishes, add 20–30 lg of DNA to the tube followed, in order, by 500
ll of 0.25 M CaCl2, then 500 lL of 2X BBS. Use one-half of this mixture on
each plate when using 60-mm dishes. For transfecting cells in one 60-mm
dish, add 10–20 lg of DNA followed, in order, by 250 lL of 0.25 M CaCl2,
then 250 ll of 2X BBS. In both cases, mix well and incubate at room tem-
perature for 10–20 min (see Note 5).

4. Add the calcium phosphate/DNA mixture to cells in a dropwise fashion,
swirling the plate after each drop. Incubate the cells overnight in a 35°C 3%
CO2 incubator (see Note 6).

5. Wash cells twice with 5 mL of PBS, then add 10 mL of DMEM with 10%
FBS. Incubation of cells from this point on is done in a 5% CO2 37°C in-
cubator.

6. For transient expression, harvest cells 48 h post-transfection. For selection
of stably integrated expression clones, split cells (1:10) 48 h post-transfec-
tion into selection medium. For co-transfection see Note 7. Many investi-
gators have used the BES method to elucidate genes required for viral DNA
replication. The BES method is well-suited for this purpose because of the
high co-transfection efficiency (see Note 8).

4. Notes
1. BBS pH is critical. Make three solutions ranging in pH from 6.93–6.98.

Usually a visual inspection of cells after an overnight transfection will in-
dicate which BBS mixture and DNA concentration works best. A coarse
and clumpy precipitate will form when DNA concentrations are too low, a
fine, almost invisible precipitate will form when DNA concentration are too
high. An even granular precipitate forms when the concentration is just
right. This usually correlates to the highest level of gene expression or for-
mation of stably integrated cell lines.
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Fig. 1. Cotransfection of 11 plasmids using BES calcium phosphate coprecipitation.
(A) Replication assay. Human foreskin fibroblasts (HFF) were transfected with 10 plas-
mids encoding human cytomegalovirus (HCMV) replication genes along with a plas-
mid encoding the cloned origin of lytic replication (oriLyt). Total cellular DNA was har-
vested 5 d post-transfection and cleaved with EcoRI and DpnI. DpnI, a four base-pair
recognition enzyme, will cleave input DNA (unreplicated DNA) multiple times and
EcoRI will linearize the HCMV oriLyt. Replicated plasmid is DpnI-resistant and is in-
dicated by the arrow. DNA is separated on an agarose gel and hybridized with the par-
ent plasmid vector. Lanes: 1, All required plasmids plus HCMV oriLyt; 2, omission of
one plasmid required for oriLyt replication. (B) HCMV replication compartment for-
mation requires cotransfection of essential replication proteins. Cotransfections in-
cluded a replication protein fused in frame with EGFP. HFF cells were transfected with
10 plasmids encoding HCMV replication proteins along with a plasmid encoding a
replication protein fused in-frame with EGFP. Transfected cells were fixed and visual-
ized using a confocal microscope. Panel 1: cotransfections were performed the same as
in A sample number 1, cells were fixed and visualized using a confocal microscope.



2. Smaller dishes may be used; adjust the number of cells and DNA used pro-
portionally. Higher densities of some cell types may be necessary to
achieve good transfection efficiencies. If cell death is too high owing to the
toxicity of DEAE, then try plating cells at a higher density.

3. It may be necessary to determine the optimal concentration of DEAE-dex-
tran needed for good transfection efficiencies. Vary the volume of TBS used
to resuspend DNA and the amount of DEAE-dextran. For example:

DNA in TBS, lL DEAE-dextran, mg/mL

80 160
40 80
20 40

4. Only high-quality plasmid DNA will work. Use only double-banded CsCl
purified DNA. Carrier DNA is not necessary and actually will decrease ef-
ficiency. Also, linear DNA does not transfect well.

5. At this point no precipitate should be visible. Use three different concen-
trations of DNA to help identify the DNA concentration necessary for op-
timal transfection.

6. CO2 level is critical. Measure the level with a Fyrite gas analyzer. Temper-
ature is somewhat less critical. A 37°C incubator can be used.

7. When performing cotransfections, vary the amount of effector plasmid in
relation to the other plasmids in the mix keeping the total amount of DNA
the same. The ratio of plasmids used in the mixture can be the difference
between success and failure. We routinely find that a higher concentration
of effector plasmid in the mix yields better results. We commonly use this
cotransfection method to assay the level of promoter activity effected by
certain vital transactivators.

8. The co-transfection-replication assay involves the co-transfection of sev-
eral different plasmids (in the case of HCMV 11 different plasmids) each
encoding a gene required for DNA replication. Depending on the number
of plamids in the transfection mixture, vary the amount of transactivators
and effector plasmid. As many as 11 plasmids can be tranfected at one time.
Each plasmid can contain one or many genes required for replication of a
cloned origin of DNA replication (Fig. 1).
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Panel 2: cotransfections were the same as in (A), sample number 2, in which one plas-
mid encoding an essential protein was omitted from the transfection mixture. Inclusion
of all of the essential proteins results in a more organized pattern of fluorescence typi-
cal of DNA replication compartments.
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