
2
Time-Frequency Transforms

Since its introduction in the early nineteenth century, the Fourier transform
has become one of the most widely used signal-analysis tools across many
disciplines of science and engineering. The basic idea of the Fourier transform
is that any arbitrary signal (of time, for instance) can always be decomposed
into a set of sinusoids of different frequencies. The Fourier transform is
generated by the process of projecting the signal onto a set of basis functions,
each of which is a sinusoid with a unique frequency. The resulting projection
values form the Fourier transform (or the frequency spectrum) of the original
signal. Its value at a particular frequency is a measure of the similarity of
the signal to the sinusoidal basis at that frequency. Therefore, the frequency
attributes of the signal can be revealed via the Fourier transform. In many
engineering applications, this has proven to be extremely useful in the charac-
terization, interpretation, and identification of signals.

While the Fourier transform is a very useful concept for stationary
signals, many signals encountered in real-world situations have frequency
contents that change over time. The most common example is music, where
the harmonic content of the acoustic signal changes for different notes. In
this case, it is not always best to use simple sinusoids as basis functions
and characterize a signal by its frequency spectrum. Joint time-frequency
transforms were developed for the purpose of characterizing the time-varying
frequency content of a signal. The best-known time-frequency representation
of a time signal dates back to Gabor [1] and is known as the short-time
Fourier transform (STFT). It is basically a moving window Fourier transform.
By examining the frequency content of the signal as the time window is
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26 Time-Frequency Transforms for Radar Imaging and Signal Analysis

moved, a 2D time-frequency distribution called the spectrogram is generated.
The spectrogram contains information on the frequency content of the signal
at different time instances. One well-known drawback of the STFT is the
resolution limit imposed by the window function. A shorter time window
results in better time resolution, but leads to worse frequency resolution,
and vice versa. To overcome the resolution limit of the STFT, a wealth of
alternative time-frequency representations have been proposed.

In this chapter, we provide an overview of various time-frequency
transforms developed by researchers in the signal processing community.
They are broadly divided into two classes: linear time-frequency transforms
and quadratic (or bilinear) transforms. In Section 2.1, we first discuss linear
time-frequency transforms. The discussion commences with the STFT and
moves on to two other linear transforms, the continuous wavelet transform
(CWT) and the adaptive time-frequency representation. In Section 2.2, we
discuss quadratic time-frequency transforms. We begin with the Wigner-
Ville distribution (WVD) and discuss Cohen’s class and the time-frequency
distribution series (TFDS). The main purpose of this chapter is to lay the
groundwork for subsequent chapters on radar applications of time-frequency
transforms. Emphasis is therefore placed on the application perspective. More
detailed theoretical discussions on time-frequency transforms can be found
in two excellent texts by Cohen [2] and Qian and Chen [3].

2.1 Linear Time-Frequency Transforms

We begin our discussion of linear time-frequency transforms with a review
of the Fourier transform. The Fourier transform of a time signal s (t ) is
defined as

S (v ) = E
∞

−∞

s (t ) exp{−jv t }dt (2.1)

where v = 2p f is the angular frequency. In the context of functional
expansion, S (v ) can be interpreted as the projection of the signal onto a
complex exponential function exp{ jv t } at angular frequency v . Since the
set of exponentials forms an orthogonal basis set, the original function can
be constructed from the projection values by the process of

s (t ) =
1

2pE
∞

−∞

S (v ) exp{ jv t }dv (2.2)
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which is the inverse Fourier transform of S (v ). A well-known property of
the Fourier transform pair s (t ) and S (v ) is the uncertainty principle. It
states that the time duration Dt of s (t ) and the frequency bandwidth Dv of
S (v ) are related by

DtDv ≥
1
2

(2.3)

where

Dt = 3E
∞

−∞

(t − m t )
2 | s (t ) |

2
dt

E
∞

−∞

| s (t ) |
2
dt 4

1/2

Dv = 3E
∞

−∞

(v − m v )2 |S (v ) |
2
dv

E
∞

−∞

|S (v ) |
2
dv 4

1/2

and the mean time m t and mean frequency m v are defined as

m t =

E
∞

−∞

t | s (t ) |
2
dt

E
∞

−∞

| s (t ) |
2
dt

m v =

E
∞

−∞

v |S (v ) |
2
dv

E
∞

−∞

|S (v ) |
2
dv
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Thus, the larger the time duration of s (t ), the smaller the frequency
bandwidth of S (v ). Conversely, the larger the frequency bandwidth of S (v ),
the shorter the time duration of s (t ).

When we use (2.1) to estimate the frequency spectrum of a signal, we
assume that the frequency content of the signal is relatively stable during
the observation time interval. If the frequency content changes with time,
it is not possible to monitor clearly how this variation takes place as a
function of time. The reason can be attributed to the nature of the complex
sinusoidal basis, which is of infinite duration in time. While the frequency
spectrum can still be used to uniquely represent the signal, it does not
adequately reflect the actual characteristics of the signal. In the following
three subsections, three linear time-frequency transforms (viz., STFT, the
CWT, and the adaptive time-frequency representation) are presented. They
can be considered as a generalization of the Fourier transform with alternative
basis sets that can better reflect the time-varying nature of the signal frequency
spectrum.

2.1.1 The STFT

The most standard approach to analyze a signal with time-varying frequency
content is to split the time-domain signal into many segments, and then
take the Fourier transform of each segment (see Figure 2.1). This is known
as the STFT operation and is defined as

STFT (t , v ) = E s (t ′ )w (t ′ − t ) exp{−jv t ′ }dt ′ (2.4)

This operation (2.4) differs from the Fourier transform only by the
presence of a window function w (t ). As the name implies, the STFT is
generated by taking the Fourier transform of smaller durations of the original
data. Alternatively, we can interpret the STFT as the projection of the
function s (t ′ ) onto a set of bases w*(t ′ − t ) exp{ jv t ′ } with parameters t
and v . Since the bases are no longer of infinite extent in time, it is possible
to monitor how the signal frequency spectrum varies as a function of time.
This is accomplished by the translation of the window as a function of time
t , resulting in a 2D joint time-frequency representation STFT (t , v ) of the
original time signal. The magnitude display |STFT (t , v ) | is called the
spectrogram of the signal. It shows how the frequency spectrum (i.e., one
vertical column of the spectrogram) varies as a function of the horizontal
time axis.
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Figure 2.1 Illustration of the STFT.

The definition of the STFT can also be expressed in the frequency
domain by manipulating (2.4), with the result

STFT (t , v ) =
1

2p
exp{−jv t }ES (v ′ )W (v − v ′ ) exp{ jv ′t }dv ′ (2.5)

Here W (v ) is the Fourier transform of w (t ). The dual relationship
between (2.4) and (2.5)1 is apparent (i.e., the time-frequency representation
can be generated via a moving window in time or a moving window in
frequency). In addition, we make the following observations: (1) Signal
components with durations shorter than the duration of the window will
tend to get smeared out [i.e., the resolution in the time domain is limited
by the width of the window w (t )]. Similarly, the resolution in the frequency
domain is limited by the width of the frequency window W (v ). (2) The
window width in time and the window width in frequency are inversely
proportional to each other by the uncertainty principle. Therefore, good
resolution in time (small time window) necessarily implies poor resolution
in frequency (large frequency window). Conversely, good resolution in fre-

1. Equation (2.5) has also been referred to as the running-window Fourier transform [4].
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quency implies poor resolution in time. (3) The window width in each
domain remains fixed as it is translated. This results in a fixed resolution
across the entire time-frequency plane. Figure 2.2 shows the basis functions
of the STFT and the resulting fixed-resolution cells in the time-frequency
plane.

So far, we have not discussed the specific shape of the window function.
In general, to cut down on sidelobe interference in the spectrogram, the
window function should taper to zero smoothly. Examples of window func-
tions include Hamming, Hanning, Kaiser-Bessel, and Gaussian windows.
An STFT using a Gaussian window function is sometimes called the Gabor
transform [1]. If we let

w (t ) =
1

p1/4√s
expH−

t2

2s2J (2.6)

the corresponding frequency window is

W (v ) = (2s )1/2p1/4 expH−
s2v2

2 J (2.7)

From (2.3), we have m t = 0, m v = 0, Dt = s /√2, Dv = 1/(√2s ), and
DtDv = 1/2. We can see that the uncertainty equality in (2.3) holds for the

Figure 2.2 Basis functions and the resulting fixed-resolution cells of the STFT.
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Gaussian function. Therefore, the Gaussian window function achieves the
best time-frequency product among all the possible window functions.

Figure 2.3 shows an example of a signal containing four nonoverlapping,
finite-duration sinusoids. Figure 2.3(a) is the time-domain waveform and
Figure 2.3(b) shows its corresponding frequency spectrum. Although the
four frequencies are well resolved, their time duration information cannot
be seen in the frequency domain. Figure 2.3(c) is the STFT spectrogram
generated using a Hanning window of 32 points. It shows both the frequency
locations and time durations of the four signal components. Figure 2.3(d)
is the spectrogram obtained by using a longer time window of 128 points.
As expected, a longer time window results in better frequency localization
in the time-frequency plane, at the expense of worse time resolution. These
results (as well as subsequent examples in this chapter) were generated using
the demonstration version of the Joint Time-Frequency Analyzer developed
by the National Instruments Corporation [3].

Figure 2.3 (a) A test signal in time consisting of four nonoverlapping, finite-duration
sinusoids; (b) its frequency spectrum obtained via the Fourier transform;
(c) its spectrogram obtained using STFT with a Hanning window of width 32
points; and (d) its spectrogram with a window of width 128 points. (Plots
obtained using the demonstration version of the Joint Time-Frequency Analyzer
developed by the National Instruments Corporation [3].)
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2.1.2 The CWT

As described in the last section, the spectrogram generated by the STFT is
limited in resolution by the extent of the sliding window function. A smaller
time window results in better time resolution, but leads to worse frequency
resolution, and vice versa. Contrary to the fixed resolution of the STFT,
the wavelet transform is a time-frequency representation capable of achieving
variable resolution in one domain (either time or frequency) and multiresolu-
tion in the other domain [5–8]. The CWT of a signal s (t ) can be defined
as

CWT (t , v ) = S v
v0
D1/2Es (t ′ )c*S v

v0
(t ′ − t )Ddt ′ (2.8)

c (?) is usually termed the ‘‘mother wavelet’’ in wavelet theory. The ratio
(v0 /v ) is the scale parameter and the resulting 2D magnitude display of
the above expression is called the scalogram. Let us assume that the mother
wavelet is centered at time zero and oscillates at frequency v0. Essentially,
(2.8) can be interpreted as a decomposition of the signal s (t ′ ) into a family
of shifted and dilated wavelets c [(v /v0)(t ′ − t )]. The wavelet basis function
c [(v /v0)(t ′ − t )] has variable width according to v at each time t . The
c [(v /v0)(t ′ − t )] is wide for small v and narrow for large v . By shifting
c (t ′ ) at a fixed parameter v , the (v0 /v )-scale mechanisms in the time
response s (t ′ ) can be extracted and localized. Alternatively, by dilating c (t ′ )
at a fixed t , all of the multiscale events of s (t ′ ) at t can be analyzed according
to the scale parameter (v0 /v ). This is the multiresolution property of the
wavelet transform and is an advantage over the STFT for analyzing multiscale
signals.

The wavelet transform can also be carried out on the inverse Fourier
transform S (v ) of the signal s (t )

CWT (t , v ) =
(v0 /v )1/2

2p ES (v ′ )C*Sv0
v

v ′D exp{ jv ′t }dv ′ (2.9)

where C(v ′ ) is the Fourier transform of c (t ′ ). Notice that (2.9) is essentially
the Fourier transform of S (v ′ )C*[(v0 /v )v ′ ]. By comparing (2.9) and
(2.5), we observe that C*(v ′ ) is similar to the frequency window function
W (v ′ ) in the running window Fourier transform. However, C(v ′ ) must
satisfy the ‘‘admissibility condition’’ in wavelet theory, namely, C(0) = 0,
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(i.e., it contains no dc components). To satisfy this condition, C(v ′ ) can
be thought of as a shifted window function with a center frequency of v0.
By changing v , C[(v0 /v )v ′ ] is shifted to v ′ and the width of the window
is dilated by the factor (v /v0). The ratio between the window width and
the window center (or the Q-factor of the window function) remains fixed
for all v values. This is the constant-Q property of the wavelet filter and is
in contrast to the STFT where the window width does not change as it is
being shifted.

Figure 2.4 illustrates the basis functions in the CWT and the resulting
time-frequency grid. Note that both the CWT and the STFT can be interpre-
ted as the decomposition of the time signal s (t ) into a family of basis functions
that determine the properties of the transform. The STFT and the CWT
are similar to each other in that they both use finite basis functions. This
is in contrast to the Fourier transform, which uses bases of infinite extent.
As is shown in Figure 2.4, however, the width of the basis function in the
CWT changes according to the frequency parameter, leading to variable
resolution of the time-frequency plane.

2.1.3 Adaptive Time-Frequency Representation

Wavelet use is a step toward variable resolution in the time-frequency plane.
However, it is still rather rigid in its particular form of the time-frequency

Figure 2.4 Basis functions and the resulting variable-resolution cells of the CWT.
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grid. More flexible resolution in the time-frequency plane to accommodate
components of the signal with different resolutions is sometimes desirable.
Several signal-adaptive time-frequency representations have been proposed
in the literature for this purpose, the best known of which are the adaptive
Gaussian representation [9] and the matching pursuit algorithm [10]. The
adaptive spectrogram (ADS), which we will discuss here, uses adaptive nor-
malized Gaussian functions to represent the signal. In the algorithm, the
time and frequency resolutions, as well as the time-frequency centers, are
adjusted to best match the signal. The objective of this method is to expand a
signal s (t ) in terms of normalized Gaussian functions hp (t ) with an adjustable
standard deviation s p and a time-frequency center (t p , v p ) as follows:

s (t ) = ∑
∞

p=1
Bp hp (t ) (2.10)

where

hp (t ) = (ps2
p )−1/4 expH−

(t − t p )2

2s2
p

J exp{ jv p t } (2.11)

Note that the modulated Gaussian basis has a dual form in its Fourier
transform representation

Hp (v ) = (p (1/2ps p )2)−1/4 expH−
(v − v p )2

2(1/s p )2 J exp{−j (v − v p )t p }

(2.12)

Therefore, these basis functions have a time-frequency extent given by
s p and (1/s p ), respectively (see Figure 2.5).

The coefficients Bp are found one at a time by an iterative procedure.
We begin at the stage p = 1 and choose the parameters s p , t p , and v p such
that hp (t ) is the basis with the maximum projection onto the signal

Bp = max
sp , tp ,vp

E s p−1(t )hp*(t )dt (2.13)

where s0(t ) = s (t ). For p > 1, s p (t ) is the remainder after the orthogonal
projection of s p−1(t ) onto hp (t ) has been removed from the signal
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Figure 2.5 Time-frequency representation of a modulated Gaussian basis function cen-
tered at (t p , v p ) with standard deviation s p . (Source: [11]  1997 IEEE.)

s p (t ) = s p−1(t ) − Bp (t )hp (t ) (2.14)

This procedure is iterated to generate as many coefficients as needed
to accurately represent the original signal.

Several comments can be made about the adaptive Gaussian representa-
tion. First, it can be shown that the norm of the residue monotonically
decreases and converges to zero. Therefore adding a new term in the series
does not affect the previously selected parameters. Second, because this
representation is adaptive, it will generally be concentrated in a very small
subspace. As a result, we can use a finite summation of the terms in (2.10)
to approximate the signal with a small residual error. Also, since random
noise is in general distributed uniformly in the entire time-frequency space,
this subspace representation actually increases the signal-to-noise ratio.
(Chapter 3 discusses the denoising issue in detail.) Finally, the major difficulty
in implementing this algorithm is the determination of the optimal elemen-
tary function at each stage. One implementation strategy is to start with a
large s p and scan the data in frequency and time for a peak. We then divide
s p by two and find the new peak. This procedure is continued until the
standard deviation is small enough (as shown in Figure 2.6). We then select
the highest peak and extract the residual using (2.14). It should be pointed
out that the fast Fourier transform can be used during this search procedure
to obtain the coefficients for all the frequency centers at once, speeding up
a search that would otherwise be very time consuming.

The result of applying the adaptive Gaussian extraction can be effectively
displayed in the time-frequency plane using the so-called ADS:
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Figure 2.6 Illustration of the search strategy for the adaptive Gaussian representation:
(1) start with large s basis and locate the time-frequency position of the peak;
(2) divide s and the search region by two and repeat the search; and (3)
repeat this procedure until the highest peak is found. (Source: [11]  1997
IEEE.)

ADS (t , v ) = 2∑
p

|Bp |
2

expF−
(t − t p )2

s2
p

− s2
p (v − v p )2G (2.15)

This representation is obtained by calculating the WVD (to be discussed
in Section 2.2.1) of (2.10) and then deleting the cross terms. It can be shown
that the energy contained in the ADS is identical to the energy contained
in the signal. Therefore it can be considered as a signal energy distribution
in the time-frequency domain. It is also nonnegative, free of cross-term
interference, and of high resolution. Figure 2.7 shows the ADS of the test
signal shown in Figure 2.3(a).

Further extension of the Gaussian basis functions to include other
higher-order phase terms such as chirps have also been reported in [12, 13].

2.2 Bilinear Time-Frequency Transforms
The power spectrum of a signal s (t ) is the magnitude square of its Fourier
transform, |S (v ) |2. It can also be expressed as the Fourier transform of the
autocorrelation function of s (t )
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Figure 2.7 The ADS of the test signal with four nonoverlapping, finite-duration sinusoids.

|S (v ) |2 = ER (t ′ )e −jv t ′dt ′ (2.16)

where the autocorrelation function is given by

R (t ′ ) = E s (t )s*(t − t ′ )dt (2.17)

The power spectrum indicates how the signal energy is distributed in
the frequency domain. While the Fourier transform S (v ) is a linear function
of s (t ), the power spectrum is a quadratic function of s (t ). Therefore, time-
frequency distributions derived directly from the Fourier transform, such as
those discussed in Section 2.1, can be classified as linear transforms, while
it is customary to call those distributions derived from the power spectrum
quadratic (or bilinear) time-frequency distributions. The main impetus for
quadratic time-frequency distribution is to define an appropriate time-
dependent power spectrum. In this section, we shall discuss three such time-
frequency transforms, the WVD, Cohen’s class, and the TFDS.

2.2.1 The WVD

The most basic of the quadratic time-frequency representations, the WVD,
was first developed in quantum mechanics by Wigner in 1932 [14] and
later introduced for signal analysis by Ville [15]. In the WVD, a time-
dependent autocorrelation function is chosen as

R (t , t ′ ) = sSt +
t ′
2 Ds*St −

t ′
2 D (2.18)
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The WVD of s (t ) is then defined as the Fourier transform of this
time-dependent autocorrelation function

WVD (t , v ) = E sSt +
t ′
2 Ds*St −

t ′
2 D exp{−jv t ′ }dt ′ (2.19)

The WVD can also be defined based on the Fourier transform of s (t )
as follows:

WVD (t , v ) =
1

2pESSv +
v ′
2 DS*Sv −

v ′
2 D exp{ jv ′t }dv ′

(2.20)

The WVD has a number of desirable properties that make it a good
indicator of how the energy of the signal can be viewed as a function of
time and frequency. First the WVD of any signal is always real. Second, it
satisfies the time marginal condition

1
2pEWVD (t , v )dv = | s (t ) |

2
(2.21)

That is, by summing the time-frequency distribution over all frequen-
cies, we obtain the instantaneous energy of the signal at a particular time
instance. Similarly, the WVD also satisfies the frequency marginal condition
given by

EWVD (t , v )dt = |S (v ) |
2

(2.22)

In this case, by summing the time-frequency distribution over all
time, we obtain the power spectrum of the signal at a particular frequency.
Third, the WVD satisfies the instantaneous frequency property. If s (t ) =
A (t ) exp{ ja (t )}, then the average frequency for a given time t is

m v /t =
EvWVD (t , v )dv

EWVD (t , v )dv

=
d
dt

a (t ) (2.23)
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That is, the mean frequency computed from the WVD is equal to the
derivative of the phase (i.e., the mean instantaneous frequency of the signal).
Similarly, the WVD also satisfies the group delay property. If S (v ) =
B (v ) exp{ jb (v )}, then the group delay for a given v is

m t /v =
E tWVD (t , v )dt

EWVD (t , v )dt
= −2p

d
dv

b (v ) (2.24)

It implies that the mean time computed from the WVD is equal to
the derivative of the spectral phase (i.e., the group delay of the signal).

Although the WVD has many nice properties and gives nearly the best
resolution among all the time-frequency techniques, its main drawback comes
from cross-term interference. Simply put, the WVD of the sum of two
signals is not the sum of their WVDs. If s = s1 + s2, it can be shown that

WVDs (t , v ) = WVDs1
(t , v ) + WVDs2

(t , v ) + 2Re{WVDs1s2
(t , v )}

(2.25)

where the last term is the cross WVD of s1 and s2 given by

WVDs1s2
(t , v ) = E s1St +

t ′
2 Ds2*St −

t ′
2 D exp{−jv t ′ }dt ′ (2.26)

As a result, if a signal contains more than one component in the joint
time-frequency plane, its WVD will contain cross terms that occur halfway
between each pair of autoterms. The magnitude of these oscillatory cross
terms can be twice as large as the autoterms and yet they do not possess
any physical meaning. Figure 2.8 shows an example of a signal containing
four finite-duration sinusoids shown earlier in Figure 2.3(a). We can see
that even though the WVD has very good time-frequency localization, there
are cross-term interference terms between every pair of signal components.
This drawback severely hinders the usefulness of the WVD for detecting
signal characteristics in the time-frequency plane.

2.2.2 Cohen’s Class

In addition to the WVD, a number of bilinear distributions have also been
proposed by researchers for time-frequency signal analysis [16–18]. In 1966,
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Figure 2.8 The WVD of the test signal with four nonoverlapping, finite-duration sinusoids.

Cohen showed that all these existing time-frequency distributions could be
written in a generalized form [19]. Moreover, this general form can be used
to facilitate the design of new time-frequency transforms. This class of
transforms is now known simply as Cohen’s class. We shall describe the
general form of Cohen’s class, followed by two well-known members of the
class for reducing the cross-term interference problem in the WVD.

The general form of Cohen’s class is defined as

C (t , v ) = EE sSu +
t ′
2 Ds*Su −

t ′
2 Df (t − u , t ′ ) exp{−jv t ′ }dudt ′

(2.27)

The Fourier transform of f (t , t ′ ), denoted as F(u, t ′ ), is called the
kernel function. It can easily be seen that if F(u, t ′ ) = 1, then f (t , t ′ ) =
d (t ) and (2.27) reduces to the WVD defined in (2.19). Therefore, the WVD
is a member of Cohen’s class. More generally, other types of kernel functions
can be designed to reduce the cross-term interference problem of the WVD.
Two such time-frequency distributions are the Choi-Williams distribution
(CWD) and the cone-shaped distribution (CSD).

The CWD [20] uses as its kernel function

F(u, t ′ ) = exp{−a (u t ′ )2} (2.28)

Along the u-axis and the t ′-axis, the kernel function is identically one
while away from the two axes, the function decays with the damping con-
trolled by a . The inverse Fourier transform of F(u, t ′ ) is given by
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f (t , t ′ ) =
1

√4pa (t ′ )2
expH−

t2

4a (t ′ )2J (2.29)

and the CWD is defined as

CWD (t , v ) = EE 1

√4pa (t ′ )2
(2.30)

expH−
(t − u )2

4a (t ′ )2JsSu +
t ′
2 Ds*Su −

t ′
2 D exp{−jv t ′ }dudt ′

Note that the kernel function is essentially a low-pass filter in the
u-t ′ plane. It preserves all cross terms that are on the u-axis and t ′-axis. As
a result, the CWD usually contains strong horizontal and vertical cross terms
in the time-frequency plane. Figure 2.9 shows the CWD of the same test
signal containing four finite-duration sinusoids. It preserves the property of
the WVD while reducing cross-term interference.

The CSD was introduced by Zhao, Atlas, and Marks [21]. Its name
comes from the definition of a cone-shaped f (t , t ′ )

f (t , t ′ ) = Hg (t ′ ), | t ′ | ≥ 2 | t |
0 otherwise

(2.31)

which is confined to the region bounded by lines t ′ = 2t and t ′ = −2t . In
this case, the corresponding kernel function is of the form

F(u, t ′ ) = g (t ′ ) | t ′ | sincSu t ′
2 D (2.32)

Figure 2.9 The CWD of the test signal with four nonoverlapping, finite-duration sinusoids.
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For example, if we choose g (t ′ ) = (1/ | t ′ | ) exp{−a (t ′ )2}, then the ker-
nel function is F(u, t ′ ) = exp{−a (t ′ )2} sinc(u t ′ /2). In this case, the kernel
function is one along the u-axis and exp{−a (t ′ )2} along the t ′-axis where
a controls the decay. Figure 2.10 shows the CSD of the same test signal.
Again, the CSD reduces cross-term interference while nearly maintaining
the resolution of the WVD.

2.2.3 The TFDS

Another approach to overcoming the cross-term interference problem of the
WVD is the TFDS, proposed by Qian and Chen [22]. They suggested that
if the WVD can be decomposed into a sum of localized and symmetric
functions, it may be possible to suppress cross-term interference by selecting
only the low-order harmonics. This is accomplished by first decomposing
the original signal into the Gabor expansion

s (t ) = ∑
m

∑
n

Cm ,nhm ,n (t ) (2.33)

where

hm ,n (t ) = (ps2)−1/4 expH(t − mDt )2

2s2 + jnDv tJ (2.34)

are time-shifted and frequency-modulated Gaussian basis functions. In the
above expression, m and Dt are respectively the time sampling index and
time sampling interval, while n and Dv are the sampling index and sampling
interval in frequency. In other words, Cmn represents the STFT of the
function s (t ) using a Gaussian window and evaluated on a sampled grid.

Figure 2.10 The CSD of the test signal with four nonoverlapping, finite-duration sinusoids.
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By taking the WVD of both sides of (2.33), we obtain

WVD (t , v ) = ∑
mn

∑
m ′n ′

Cm ,nC *m ′,n ′ WVDh,h ′ (t , v ) (2.35)

where WVDh,h ′ denotes the WVD between any pair of basis functions and
is available in closed form. Next, the above expression can be regrouped
based on the ‘‘interaction distance’’

D = |m − m ′ | + |n − n ′ | (2.36)

between the pairs of bases (m , n ) and (m ′, n ′ ). This results in what is
termed the TFDS, also called the Gabor spectrogram:

TFDSD (t , v ) = ∑
mn

|Cm ,n |
2
WVDh,h ′ (t , v ) (D = 0 terms)

+ ∑
mn

∑
m ′n ′

Cm ,nC *m ′,n ′ WVDh,h ′ (t , v ) (D = 1 terms)

+ ∑
mn

∑
m ′n ′

Cm ,nC *m ′,n ′ WVDh,h ′ (t , v ) (D = 2 terms)

+ . . . (2.37)

Clearly, if we take all the terms in the series (D = ∞), the right-hand
side of (2.37) converges to the WVD of the original signal. This yields the
best resolution but is plagued by cross-term interference. At the other extreme,
if we take only the self-interaction terms in the series (D = 0), the resulting
right-hand side is equivalent to the spectrogram of the signal using a Gaussian
window function. It has no cross-term interference problem but has the
worst resolution. As the order D increases, we gain in resolution but pay a
price in cross-term interference. It is often possible to balance the resolution
against cross-term interference by adjusting the order D . The optimal value
for D was reported to be around 2 to 4.

Figure 2.11 shows the effect of the order D on the frequency-hopping
signal discussed in earlier examples. For D = 0 [Figure 2.11(a)] the signal
has the least time-frequency resolution, but is devoid of cross-term effects.
Figure 2.11(b, c) show respectively the TFDS for D = 3 and D = 6. We
see that at D = 3 it is possible to capture the most useful information in
the time-frequency plane without the degrading effect of the cross terms.
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Figure 2.11 The TFDS of the test signal with four nonoverlapping, finite-duration sinusoids:
(a) D = 0; (b) D = 3; and (c) D = 6.

In summary, we have described a number of popular time-frequency
distributions in this chapter. The list includes the STFT, the CWT, the
adaptive joint time-frequency representation, the WVD, Cohen’s class, and
the TFDS. These time-frequency transforms will be used in subsequent
chapters of this book for various applications of radar imaging and signal
analysis.
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