

Clusters of Galaxies

Probes of Cosmological Structure and Galaxy Evolution

Clusters of galaxies are the largest and most massive collapsed systems in the universe, and as such they are valuable probes of cosmological structure and galaxy evolution. The advent of extensive galaxy surveys, large ground-based facilities, space-based missions such as *HST*, *Chandra*, and *XMM-Newton* and detailed numerical simulations makes now a particularly exciting time to be involved in this field. The review papers in this volume span the full range of current research in this area, including theoretical expectations for the growth of structure, survey techniques to identify clusters, metal production and the intracluster medium, galaxy evolution in the cluster environment and group—cluster connections. With contributions from leading authorities in the field, this volume is appropriate both as an introduction to this topic for physics and astronomy graduate students, and as a reference source for professional research astronomers.

JOHN S. MULCHAEY's research has focused on groups of galaxies. In 1993, he provided some of the strongest evidence to date that galaxy groups are dominated by dark matter. More recently he has played an important role in the discovery and study of "fossil groups," massive systems that contain very few galaxies.

ALAN DRESSLER has made many fundamental contributions to the study of large-scale structure in the Universe over the last 30 years. Recently, he participated in the MORPHS project, using *Hubble Space Telescope* images to show that bursts of star formation were much more common in galaxies 5 billion years ago than they are today.

AUQUSTUS OEMLER has devoted much of his research career to understanding how galaxies have evolved to their present form. In collaboration with H. Butcher, he showed that clusters at intermediate redshifts contain a large excess of blue galaxies (now known as the Butcher–Oemler effect). He recently finished a seven-year term as director of Carnegie Observatories.

All three editors are staff astronomers at the Carnegie Observatories.

This series of four books celebrates the Centennial of the Carnegie Institution of Washington, and is based on a set of four special symposia held by the Observatories in Pasadena. Each symposium explored an astronomical topic of major historical and current interest at the Observatories, and each resulting book contains a set of comprehensive, authoritative review articles by leading experts in the field.

Series Editor: Luis C. Ho.

Luis Ho received his undergraduate education at Harvard University and his Ph.D. in astronomy from the University of California at Berkeley. He is currently a staff astronomer at the Carnegie Observatories, where he conducts research on black holes, accretion physics in galactic nuclei, and star formation processes.

Carnegie Observatories Astrophysics Series Volume 3

CLUSTERS OF GALAXIES

Probes of Cosmological Structure and Galaxy Evolution

Edited by

JOHN S. MULCHAEY

ALAN DRESSLER

and

AUGUSTUS OEMLER

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011–4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

© The Observatories of the Carnegie Institution of Washington 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

http://www.cambridge.org

Printed in the United Kingdom at the University Press, Cambridge

Typeface Computer Modern 10/12.5pt. System LATEX 2ε [TB]

A catalog record for this book is available from the British Library

ISBN 0 521 75577 8 hardback

The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

	Introduction	page xi
	List of Participants	xiii
1	Galaxy clusters as probes of cosmology and astrophysics	
	August E. Evrard	1
1.1	Introduction	1
1.2	Clusters as Dark Matter Potential Wells	4
1.3	Connecting Mass to Observables: Virial Scaling Relations	11
1.4	The Dark Matter Virial Relation	15
1.5	Interpreting $n(T)$: An Example of Cosmological-Astrophysical Confusion	18
1.6	Discussion	20
	References	21
2	Clusters of galaxies in the Sloan Digital Sky Survey	
	Robert C. Nichol	24
2.1	Introduction	24
2.2	SDSS Cluster Catalogs	25
2.3	The C4 Algorithm	26
2.4	Luminous Red Galaxies	32
2.5	Galaxy Properties as a Function of Environment	34
2.6	Strangulation of Star Formation	37
	References	40
3	Clustering studies with the 2dF Galaxy Redshift Survey	
	Warrick J. Couch, Matthew M. Colless, and Roberto De Propris	42
3.1	Introduction	42
3.2	Galaxy Clustering: Key Results	43
3.3	Cluster Luminosity Functions	45
3.4	Star Formation Versus Environment	50
	References	57
4	X-ray surveys of low-redshift clusters	
	Alastair C. Edge	58
4.1	Introduction	58

vi

	Contents	
4.2	An Historical Perspective	60
	X-ray Imaging Begins with Einstein	61
	The X-ray Dark Ages	61
	The Middle Age of X-ray Astronomy?	65
	Can "Edge's Law" Hold?	68
	Conclusions	69
4.8	A Coda	69
	References	69
5	X-ray clusters at high redshift	
	Piero Rosati	72
5.1	Introduction	72
5.2	Evolution of the Cluster Abundance	73
5.3	Cosmology with X-ray Clusters	76
5.4	Distant X-ray Clusters: the Latest View from Chandra	80
5.5	Galaxy Populations in the Most Distant Clusters	82
5.6	Conclusions and Future Challenges	84
	References	86
6	The red sequence technique and high-redshift galaxy clusters	
	Michael D. Gladders	89
	Cluster Surveys	89
	The CRS Method in Detail	91
	The Red Sequence and Cluster Confirmation	94
	The Red Sequence Cluster Survey	95
6.5	Summary and Future Directions	103
	References	106
7	Probing dark matter in clusters	
	Ian Smail	108
	Introduction	108
	Lensing Methods	109
	Comparing X-ray and Lensing Masses	114
	Cluster Mass Profiles	117
	Relating Galaxy Properties to their Dark Matter Environment	119
7.6	Summary	120
	References	121
8	Clusters of galaxies: an X-ray perspective	
0.1	Richard F. Mushotzky	123
	Introduction	124
	Temperature Structure of Clusters	126
	Luminosity-Temperature Relation for Clusters	128
	Optical Light, Velocity Dispersion, and X-ray Properties	129
	Surface Brightness Profiles	131
8.6	Mass of Baryons and Metals and How They Are Partitioned	132

	Contents	vi
8.7	Mass Scaling Laws	133
	Form of the Potential	133
8.9	Merges, Structures, etc.	134
	Abundances	135
8.11	Conclusion	139
	References	140
9	Cool gas in clusters of galaxies	
	Megan Donahue and G. Mark Voit	143
	A Census of Cool Gas	143
	The Cooling Flow Hypothesis	145
	The Trouble with Cooling Flows	146
	The Galaxy-Cluster Connection	150
	The Revival of Conduction	155
9.6	Paths to a Resolution	156
	References	157
10	Using the Sunyaev-Zel'dovich effect to probe the gas in clusters	
40.4	Mark Birkinshaw	161
	Introduction 7 111 in F.S.	161
	The Physics of the Sunyaev-Zel'dovich Effect	162
	Uses of the Sunyaev-Zel'dovich Effect in Cluster Studies	165
	Instruments and Techniques	170
10.5	Summary	175
	References	175
11	The formation of early-type galaxies: observations to $z\approx 1$	
	Tommaso Treu	177
	Introduction	177
	Evolution of the Number Density	179
	Star Formation History	185
11.4	The Mass Density Profile of Distant E+S0 Galaxies	188
	References	192
12	Evolution of early-type galaxies in clusters	
	Marijn Franx	196
	A Working Definition	196
	Homogeneity at Low Redshift	197
	Evolution to $z = 1$	198
	Complex Models of Galaxy Evolution	200
	Comparison of Field and Cluster Early-type Galaxies	200
	Redshifts ≫ 1 Conclusion	202
12./	References	204 204
	Ketetences	∠04

viii	Contents	
13	Star-forming galaxies in clusters	
	Alan Dressler	206
13.1	Introduction	206
	Connecting Star Formation History and Morphology in Cluster Galaxies	207
	Today: The Cold Ashes of Today's Clusters	213
	5 Gyr Ago: Flameouts of Dying Galaxies	214
13.5	One Billion Years ABB: A Cluster is Born	222
	References	222
14	The stellar content of galaxy clusters	
	Roger L. Davies	227
14.1	Introduction	227
	The Stars between Galaxies	228
	Stars in Galaxies	230
	The Decoupled Core in NGC 4365	240
14.5	Summary	241
	References	242
15	Modeling stellar populations in cluster galaxies	
	Bianca M. Poggianti	245
	Introduction	245
	k+a Spectra	246
	Emission-line Spectra and Dust	249
	Passive Galaxies and Evolutionary Links	250
15.5	Summary	256
	References	257
16	The chemistry of galaxy clusters	
	Alvio Renzini	260
	Introduction	260
	The Heavy Elements in Clusters: ICM and Galaxies	261
	Metal Production: The Parent Stellar Population	266
	Metal Production: Type Ia vs. Type II Supernovae	267
	Metals from Galaxies to the ICM: Ejection vs. Extraction	268
	Metals as Tracers of ICM Preheating	269
	Clusters vs. Field at $z = 0$ and the Overall Metallicity of the Universe	270
	The Major Epoch of Metal Production	271
	The Early Chemical Evolution of the Milky Way	272
10.10	Summary References	273
	References	274
17	Interactions and mergers of cluster galaxies	
	J. Christopher Mihos	277
	Interactions of Cluster Galaxies	277
	Lessons from the Field	280
17.3	Applied to Clusters	282

0521755778 - Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution Edited by John S. Mulchaey, Alan Dressler and Augustus Oemler

Frontmatter

More information

	Contents	ix
17.4	Galaxy Evolution: Mergers, Elliptical, and S0 Galaxies	286
	Tidal Stripping and Intracluster Light	288
	References	293
18	Evolutionary processes in clusters	
	Ben Moore	295
18.1	Introduction	295
	The Paradigms for Disk and Spheroid Formation	296
	Mechanisms for Transformation	297
	A New Paradigm for the Formation of S0/dS0/dE/dSph/UCD Galaxies	299
18.5	Conclusions	303
	References	303
19	Interaction of galaxies with the intracluster medium	
	Jacqueline H. van Gorkom	305
	Introduction	305
	The Statistics of H I Deficiency	307
	Simulations Comparison of Simulations with Hydrocius	309 310
	Comparison of Simulations with H I Imaging Surveys and the Importance of Interactions with the ICM	317
	Surveys and the Importance of Interactions with the ICM Concluding Remarks	320
19.0	References	322
20	The difference between clusters and groups: a journey from cluster	
20	cores to their outskirts and beyond	
	Richard G. Bower and Michael L. Balogh	325
20.1	Introduction	325
20.2	Clusters of Galaxies	326
20.3	The Other Axis: Density	329
20.4	What Does It All Mean?	334
	References	339
21	Galaxy groups at intermediate redshift and the mechanisms of galaxy	
	evolution	
	Ray G. Carlberg	343
21.1	Introduction	343
	Properties of the CNOC2 Groups	344
	Group Galaxy Evolution	346
	Radial Color Gradients of Groups	347
	Merging and the Inward Flow of Group Galaxies	348
	Consequences of Galaxy Evolution in Groups	351
21.7	Conclusions	351
	References	351
22	The intragroup medium	
	John S. Mulchaey	353

X

Contents	
22.1 Introduction	353
22.2 ROSAT Studies	354
22.3 Spatial Properties of the Intragroup Medium	355
22.4 Spectral Properties of the Intragroup Medium	359
22.5 Mass and Baryon Fraction Estimates	362
22.6 Evidence for "Additional" Physics	363
22.7 The Intragroup Medium in The Local Group	366
22.8 Concluding Remarks	367
References	367
23 Symposium summary	
Jeremiah P. Ostriker	371
23.1 Introduction	371
23.2 Important Results Addressed by Speakers	371
23.3 EROs	372
23.4 Observations, Phenomenology, and Data Interpretation	374
23.5 Methodology and Technology	375
23.6 Important Results Based on Clusters Not Addressed	376
23.7 Discussion	376
References	376
Credits	378

Introduction

While the term "cluster of galaxies" dates back to at least the 18th century (and the work of Charles Messier), it was the discovery of Cepheids in M31 in the 1920's by Carnegie astronomer Edwin Hubble that established the extragalactic nature of these objects. With this realization, the study of clusters of galaxies was born. In the decades that followed, many Carnegie astronomers made important contributions to this growing field. Milton Humason, Allan Sandage and others measured redshifts for many clusters including Virgo and Coma, at the Mount Wilson and Palomar Observatories. These observations provided an essential database for the early study of clusters and helped establish that few galaxies occur in isolation. These early studies also included much poorer systems (i.e. groups). Edwin Hubble was responsible for noting that we live in such a system, which he named the Local Group. In 1958, Abell published a paper that included his famous cluster catalog. This work extended far beyond the catalog, however. In his paper, Abell showed there was a large variation in cluster richness, and the richness scale he defined is still widely used today. Walter Baade, for which one of the Magellan 6.5 meter telescopes is named, suggested in a 1951 paper with Spitzer that collisions between galaxies in clusters could transform a spiral into an early-type galaxy. This was the first paper on galaxy evolution in clusters.

Given Carnegie's extensive role in the study of clusters of galaxies, it was an easy decision to dedicate one of the Centennial Symposia to this topic. For me it was a great pleasure to organize this event with two of my colleagues who themselves have made fundamental contributions to this field. In fact, it is fair to say that one could not write a fair history of cluster research in the last three decades without mentioning the work of Alan Dressler and Gus Oemler.

The third Carnegie Observatories Centennial Symposium, "Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution" was held January 27–31, 2003 in Pasadena, California. Although we formally limited the attendance to 140 people, well over 160 people attended the meeting. Over the course of four days, there were 28 invited review talks, 21 contributed talks and over 60 poster presentations. Some of the highlights of the meeting included detailed numerical simulations of clusters, new results from the Sloan and 2dF redshift surveys, and exciting new results from *Chandra*, *XMM-Newton*, *HST* and Sunyaev-Zel'dovich surveys. I had many people tell me during the course of the meeting and in the months since that this was one of the most exciting meetings on clusters of galaxies in recent memory. I believe the quality of the scientific presentations is reflected in the review articles that appear in this volume.

The Symposium was made possible with the help of many people. Steve Wilson, Silvia

xii Introduction

Hutchison and Becky Lynn were responsible for handling the meeting logistics. Scott Rubel was the Symposium photographer. Many people helped referee the invited review papers in this volume and I believe their participation greatly improved the quality of these articles. Finally, I'd like to extend my personal gratitude to Luis Ho for the tremendous amount of effort he put into the entire Centennial series and the resulting volumes. It was Luis' idea to hold these Symposia, and he was involved with every aspect of these events from the very beginning. I'm particularly indebted to him for his work on this volume. His guidance and insight have assured the content of these books will have a long-lasting impact on astronomy.

John Mulchaey Carnegie Observatories October 2003

0521755778 - Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution

Edited by John S. Mulchaey, Alan Dressler and Augustus Oemler

Frontmatter

More information

List of Participants

Barrientos, Felipe Universidad Catolica, Chile

Bautz, Mark MIT, USA

Birkinshaw, Mark University of Bristol, UK

Biviano, Andrea Osservatorio Astronomico di Trieste, Italy

Blanton, Elizabeth University of Virginia, USA Blindert, Kris University of Toronto, Canada

Borys, Colin Caltech, USA

Bower, Richard University of Durham, UK

Brown, Michael National Optical Astronomy Observatory, USA

Burns, Jack University of Colorado, USA
Carlberg, Ray University of Toronto, Canada
Carrasco, Rodrigo Gemini Observatory, USA
Cavaliere, Alfonso University of Rome, Italy

Chapman, Scott Caltech, USA Choi, Philip Caltech, USA

Christlein, Daniel University of Arizona, USA

Cohen, Judith Caltech, USA

Couch, Warrick University of New South Wales, Australia

Crawford, Carolin
Dave, Romeel
Davies, Roger
University of Arizona, USA
University of Durham, UK

Demarco, Ricardo European Southern Observatory, Germany

Desai, Vandana University of Washington, USA Diaferio, Antonaldo Universita' di Torino, Italy

Dickinson, Mark Space Telescope Science Institute, USA Donahue, Megan Space Telescope Science Institute, USA

Dressler, Alan Carnegie Observatories, USA

Duc, Pierre-Alain CEA-Saclay, France

Dwarakanath, K. S. NRAO, USA

Edge, Alastair University of Durham, UK

Eisenhardt, Peter JPL, USA

Ellingson, Erica University of Colorado, USA

0521755778 - Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution

Edited by John S. Mulchaey, Alan Dressler and Augustus Oemler

Frontmatter

More information

xiv List of Participants

Ellis, Richard Caltech, USA

Ellis, Simon University of Birmingham, UK

Ettori, Stefano European Southern Observatory, Germany

Evrard, Augustus University of Michigan, USA

Feldmeier, John Case Western Reserve University, USA Ferrari, Chiara Observatoire de la Cote d'Azur, France

Finn, Rose University of Arizona, USA Franx, Marijn Leiden University, Netherlands

Fritz, Alexander Universitots-Sternwarte Gottingen, Germany Fujita, Yutaka National Astronomical Observatory, Japan

Gal, Roy Johns Hopkins University, USA

Gioia, Isabella IRA-CNR, Italy

Gladders, Michael
Gonzalez, Anthony
Goto, Tomo
Helsdon, Stephen
Hinz, Joannah
Ho, Luis

Carnegie Observatories, USA
University of Florida, USA
Carnegie Mellon University, USA
Carnegie Observatories, USA
University of Arizona, USA
Carnegie Observatories, USA

Holden, Bradford University of California at Davis, USA

Huchra, John Harvard-Smithsonian Center for Astrophysics, USA

Im, Myungshin SIRTF Science Center, USA

Jeltema, Tesla MIT, USA

Jones, Laurence
Kauffmann, Guinevere
Kelson, Dan
Kocevski, Dale
Koo, David
Krick, Jessica
University of Birmingham, UK
MPA-Garching, Germany
Carnegie Observatories, USA
University of Hawaii, USA
UCO/Lick Observatory, USA
University of Michigan, USA

Lapi, Andrea Univ. di Roma, Italy

Lin, Kai-Yang National Taiwan University, Taiwan Lin, Lihwai National Taiwan University, Taiwan

Lopez-Cruz, Omar INAOE-Tonatzintla, Mexico Madau, Piero U. C. Santa Cruz, USA

Malkan, Matt UCLA, USA

Margoniner, Vera
Marmo, Chiara
Martini, Paul
Bell Laboratories, USA
University of Padova, Italy
Carnegie Observatories, USA

Maurogordato, Sophie Observatoire de la Cote d'Azur, France

McNamara, Brian
Medvedev, Mikhail
Melott, Adrian
Metevier, Anne
Mihos, Chris
Miles, Trevor

Ohio University, USA
University of Kansas, USA
University of Kansas, USA
University of Kansas, USA
U. C. Santa Cruz, USA
Case Western University, USA
University of Birmingham, UK

Miles, Trevor
University of Birmingham, UK
Miller, Christopher
Carnegie Mellon University, USA
MILES NASA/GSEC, USA

Miller, Neal NASA/GSFC, USA
Moore, Ben University of Durham, UK
Morrison, Glenn Caltech-IPAC, USA

0521755778 - Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution

Edited by John S. Mulchaey, Alan Dressler and Augustus Oemler

Frontmatter

More information

List of Participants

Motl, Patrick University of Colorado, USA Mulchaey, John Carnegie Observatories, USA

Mullis, Christopher European Southern Observatory, Germany

Mushotzky, Richard NASA/GSFC, USA

Nagai, Daisuke University of Chicago, USA Nanduri, Vidyardhi Cosmology Research Center, India Nichol, Robert Carnegie Mellon University, USA

Norman, Michael University of California at San Diego, USA

Oegerle, William NASA/GSFC, USA

Oemler, Augustus Carnegie Observatories, USA
Olowin, Ronald Saint Mary's College, USA
O'Shea, Brian U. C. San Diego, USA

O'Sullivan, Ewan
Ostriker, Jeremiah
Ouchi, Masami
Harvard-Smithsonian CfA, USA
Institute of Astronomy, UK
University of Tokyo, Japan

Perlman, Eric University of Maryland at Baltimore County, USA

Poggianti, Bianca Osservatorio Astronomico di Padova, Italy

Ponman, Trevor University of Birmingham, UK

Postman, Marc Space Telescope Science Institute, USA Pracy, Michael University of New South Wales, Australia

Rakos, Karl Institute for Astronomy, Austria

Renzini, Alvio European Southern Observatory, Germany

Roeser, Hermann-Josef MPI fuer Astronomie, Germany Carnegie Mellon University, USA

Rosati, Piero European Southern Observatory, Germany Rudnick, Gregory Max-Planck-Institut fuer Astrophysik, Germany

Sakai, Shoko UCLA, USA

Sanderson, Alastair
University of Illinois at Urbana-Champaign, USA
Schade, David
National Research Council of Canada, Canada
Scharf, Caleb
Columbia Astrophysics Laboratory, USA

Schombert, James University of Oregon, USA

Shapley, Alice Caltech, USA

Smail, Ian University of Durham, UK

Smith, Graham Caltech, USA Steidel, Charles Caltech, USA

Tran, Kim-Vy U. C. Santa Cruz, USA

Treu, Tommaso Caltech, USA
Tucker, Douglas Fermilab, USA
van Breugel, Wil LLNL, USA

van Gorkom, Jacqueline Columbia University, USA
Webb, Tracy Leiden Observatory, Netherlands
Wechsler, Risa University of Michigan, USA
White, Simon MPA-Garching, Germany
Willman, Beth University of Washington, USA

Yamada, Toru National Astronomical Observatory of Japan, Japan

Yee, Howard University of Toronto, Canada

ΧV