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FOREWORD

Turing’s deep 1937 paper made it clear that Godel’s astonishing earlier
results on arithmetic undecidability related in a very natural way to a class
of computing automata, nonexistent at the time of Turing’s paper, but
destined to appear only a few years later, subsequently to proliferate as the
ubiquitous stored-program computer of today. The appearance of
computers, and the involvement of a large scientific community in
elucidation of their properties and limitations, greatly enriched the line of
thought opened by Turing. Turing’s distinction between computational
problems was rawly binary: some were solvable by algorithms, others not.
Later work, of which an attractive part is elegantly developed in the present
volume, refined this into a multiplicity of scales of computational difficulty,
which is still developing as a fundamental theory of information and
computation that plays much the same role in computer science that
classical thermodynamics plays in physics: by defining the outer limits of
the possible, it prevents designers of algorithms from trying to create
computational structures which provably do not exist. It is not surprising
that such a thermodynamics of information should be as rich in
philosophical consequence as thermodynamics itself.

This quantitative theory of description and computation, or
Computational Complexity Theory as it has come to be known, studies the
various kinds of resources required to describe and execute a computational
process. Its most striking conclusion is that there exist computations and
classes of computations having innocent-seeming definitions but
nevertheless requiring inordinate quantities of some computational resource.
Resources for which results of this kind have been established include:

(a) The mass of text required to describe an object;
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(b) The volume of intermediate data which a computational process would
need to generate;

(c) The time for which such a process will need to execute, either on a
standard ‘“‘serial” computer or on computational structures unrestricted
in the degree of parallelism which they can employ.

Of these three resource classes, the first is relatively static, and pertains
to the fundamental question of object describability; the others are dynamic
since they relate to the resources required for a computation to execute. It
is with the first kind of resource that this book is concerned. The crucial
fact here is that there exist symbolic objects (i.e., texts) which are
“algorithmically inexplicable,” i.e., cannot be specified by any text shorter
than themselves. Since texts of this sort have the properties associated with
the random sequences of classical probability theory, the theory of
describability developed in Part II of the present work yields a very
interesting new view of the notion of randomness.

The first part of the book prepares in a most elegant, even playful, style
for what follows; and the text as a whole reflects its author’s wonderful
enthusiasm for profundity and simplicity of thought in subject areas ranging
over philosophy, computer technology, and mathematics.

J. T. Schwartz
Courant Institute
February, 1987
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PREFACE

The aim of this book is to present the strongest possible version of Godel’s
incompleteness theorem, using an information-theoretic approach based on
the size of computer programs.

One half of the book is concerned with studying €, the halting
probability of a universal computer if its program is chosen by tossing a
coin. The other half of the book is concerned with encoding £ as an
algebraic equation in integers, a so-called exponential diophantine equation.

Godel’s original proof of his incompleteness theorem is essentially the
assertion that one cannot always prove that a program will fail to halt. This
is equivalent to asking whether it ever produces any output. He then
converts this into an arithmetical assertion. Over the years this has been
improved; it follows from the work on Hilbert’s 10th problem that Godel’s
theorem is equivalent to the assertion that one cannot always prove that a
diophantine equation has no solutions if this is the case.

In our approach to incompleteness, we shall ask whether or not a
program produces an infinite amount of output rather than asking whether it
produces any; this is equivalent to asking whether or not a diophantine
equation has infinitely many solutions instead of asking whether or not it is
solvable.

If one asks whether or not a diophantine equation has a solution for N
different values of a parameter, the N different answers to this question are
not independent; in fact, they are only log, N bits of information. But if
one asks whether or not there are infinitely many solutions for N different
values of a parameter, then there are indeed cases in which the N different
answers to these questions are independent mathematical facts, so that
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Preface X

knowing one answer is no help in knowing any of the others. The equation
encoding {2 has this property.

When mathematicians can’t understand something they usually assume
that it is their fault, but it may just be that there is no pattern or law to be
discovered!

How to read this book: This entire monograph is essentially a proof of
one theorem, Theorem D in Chapter 8. The exposition is completely
self-contained, but the collection CHAITIN (1987¢) is a useful source of
background material. While the reader is assumed to be familiar with the
basic concepts of recursive function or computability theory and probability
theory, at a level easily acquired from DAVIS (1965) and FELLER (1970),
we make no use of individual resuits from these fields that we do not
reformulate and prove here. Familiarity with LISP programming is helpful
but not necessary, because we give a self-contained exposition of the
unusual version of pure LISP that we use, including a listing of an
interpreter. For discussions of the history and significance of
metamathematics, see DAVIS (1978), WEBB (1980), TYMOCZKO
(1986), and RUCKER (1987).

Although the ideas in this book are not easy, we have tried to present
the material in the most concrete and direct fashion possible. We give many
examples, and computer programs for key algorithms. In particular, the
theory of program-size in LISP presented in Chapter 5 and Appendix B,
which has not appeared elsewhere, is intended as an illustration of the more
abstract ideas in the following chapters.
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