This book provides a pedagogical introduction to the perturbative and non-perturbative aspects of quantum chromodynamics (QCD).

Introducing the basic theory and recent advances in QCD, it also reviews the historical development of the subject up to the present day, covering pre-QCD ideas of strong interactions such as the quark and parton models, the notion of colours, current algebra and the *S*-matrix approach. The author then discusses tools of quantum field theory, the symmetry and quantization of gauge theory, techniques of dimensional regularization and renormalization, QED high-precision tests, deep inelastic scattering and hard processes in hadron collisions, hadron jets, and inclusive processes in e + e- annihilations. Other topics include power corrections and the technologies of the Shifman–Vainshtein–Zakharov (SVZ) operator product expansion, renormalizations and phenomena beyond the SVZ expansion. The final parts of the book are devoted to modern non-perturbative approaches to QCD, such as lattice and effective theories, and the phenomenological aspects of QCD spectral sum rules.

The book will be a valuable reference for graduate students and researchers in high-energy particle and nuclear physics, both theoretical and experimental.

STEPHAN NARISON graduated from the University of Antananarivo, Madagascar and received his Doctorat d'Etat from the University of Marseille. He is currently Director of Research in theoretical physics at the French Centre National de la Recherche Scientifique (CNRS), at the Laboratoire de Physique Mathématique et Théorique de l'Université Montpellier II. He has conducted research in laboratories and university departments throughout the world. Starting his research in the high-precision tests of QED, his main area of research is in non-perturbative aspects of QCD, using QCD spectral sum rules to study the properties of hadrons and low-energy phenomena in terms of the fundamental parameters from QCD first principles. He has worked in this field for more than two decades and has actively participated in its development. Professor Narison has had numerous publications in leading journals, as well as contributing to several books on high-energy physics. He is also the founder and chairman of the QCD Montpellier International Conference Series.

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS NUCLEAR PHYSICS AND COSMOLOGY 17

General Editors: T. Ericson, P. V. Landshoff

- 1. K. Winter (ed.): Neutrino Physics
- 2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
- 3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume I: Electroweak Interactions, the 'New Particles' and the Parton Model
- 4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
- 5. C. Grupen: Particle Detectors
- 6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
- 7. B. Andersson: The Lund Model
- 8. R. K. Ellis, W. J. Stirling and B. R. Webber: QCD and Collider Physics
- 9. I. I. Bigi and A. I. Sanda: CP Violation
- 10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
- 11. R. K. Bock, H. Grote, R. Frühwirth and M. Regler: *Data Analysis Techniques for High-Energy Physics, Second edition*
- 12. D. Green: The Physics of Particle Detectors
- 13. V. N. Gribov and J. Nyiri: Quantum Electrodynamics
- 14. K. Winter (ed.): Neutrino Physics, Second edition
- 15. E. Leader: Spin in Particle Physics
- 16. J. D. Walecka: Electron Scattering for Nuclear and Nucleon Structure
- 17. S. Narison: QCD as a Theory of Hadrons
- 18. J. F. Letessier and J. Rafelski: Hadrons and Quark-Gluon Plasma
- 19. A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann: Pomeron Physics and QCD
- 20. A. Hofmann: The Physics of Synchrotron Radiation
- 21. J. B. Kogut and M. A. Stephanov: The Phases of Quantum Chromodynamics

Cambridge University Press 0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison Frontmatter <u>More information</u>

QCD AS A THEORY OF HADRONS From Partons to Confinement

STEPHAN NARISON

Laboratoire de Physique Mathématique et Théorique Université de Montpellier II

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

© Stephan Narison 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/13 pt. *System* $\square T_E X 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Narison, S.

QCD as a theory of hadrons from partons to confinement / Stephan Narison. p. cm. – (Cambridge monographs on particle physics, nuclear physics, and cosmology; 17) Includes bibliographical references and index. ISBN 0 521 81164 3 1. Quantum chromodynamics. 2. Hadrons. I. Title. II. Series. QC793.3.Q35 N34 2004

539.7′548–dc21 2002073609

ISBN 0 521 81164 3 hardback

Cambridge University Press 0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison Frontmatter <u>More information</u>

To Larry and Rindra

Contents

	About Stephan Narison							
	Οı	ıtline	line of the book					
	Pr	xxix						
	Ac	know	ledgem	ents	xxxii			
Part I	Ge	enera	l introd	luction	1			
	1	A sh	ort flas	h on particle physics	3			
	2	The	pre-QC	pre-QCD era				
		2.1	The qu	uark model	10			
		2.2	Curren	nt algebras	13			
			2.2.1	Currents conservation	13			
			2.2.2	Currents and charges	13			
			2.2.3	Chiral symmetry and pion PCAC	15			
			2.2.4	Soft pion theorem and the Goldberger-Treiman				
				relation	16			
			2.2.5	The Adler–Weisberger sum rule and soft pion				
				theorems	17			
			2.2.6	Soft pion theorem for $\rho \rightarrow \pi^+\pi^-$ and the KSFR				
				relation	19			
			2.2.7	Weinberg current algebra sum rules	21			
			2.2.8	The DMO sum rules in the $SU(3)_F$ symmetry limit	22			
			2.2.9	π^+ - π^0 mass difference	24			
		2.3	Parton	model and Bjorken scaling	24			
		2.4	The S	-matrix approach and the Veneziano model	27			
			2.4.1	The S-matrix approach	27			
			2.4.2	The Veneziano model and duality	27			
			2.4.3	Duality diagrams	28			
	3	The	QCD st	tory	31			
		3.1	QCD a	and the notion of quarks	31			
		3.2	The no	otion of colours	33			
		3.3	The co	onfinement hypothesis	34			
		3.4	Indire	ct evidence of quarks	34			

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

viii	Contents	
	3.5 Evidence for colours	35
	3.6 The $SU(3)_c$ colour group	37
	3.7 Asymptotic freedom	38
	3.8 Quantum mechanics and non-relativistic aspects of QCD	39
	4 Field theory ingredients	40
	4.1 Wick's theorem	40
	4.2 Time-ordered product	41
	4.3 The S-matrix	42
	4.3.1 Generalities	42
	4.3.2 Applications: cross-section and decay rate	42
	4.4 Reduction formula	44
	4.5 Path integral in quantum mechanics	45
	4.5.1 Transition matrix of quantum mechanics in one	
	dimension	45
	4.5.2 The Green's functions	48
	4.5.3 Euclidean Green's function	50
	4.6 Path integral in quantum field theory	50
	4.6.1 Scalar field quantization	50
	4.6.2 Application to $\lambda \phi^4$ theory	51
	4.6.3 Fermion field quantization	53
	4.6.4 Gauge field quantization	53
Part II	QCD gauge theory	55
	5 Lagrangian and gauge invariance	57
	5.1 Introduction	57
	5.2 The notion of gauge invariance	58
	5.3 The QED Lagrangian as a prototype	58
	5.4 The QCD Lagrangian	60
	5.5 Local invariance and BRST transformation	61
	6 Quantization using path integral	63
	6.1 Path integral technique for QCD	63
	6.2 Feynman rules from the path integral	65
	6.2.1 Free-field propagators	65
	6.2.2 Vertices	66
	6.3 Quantization of QED	68
	6.4 Qualitative feature of quantization	68
	7 QCD and its global invariance	70
	7.1 $U(1)$ global invariance	70
_	7.2 $SU(n)_L \times SU(n)_R$ global chiral symmetry	71
Part III	MS scheme for QCD and QED	73
	Introduction	74
	8 Dimensional regularization	76
	8.1 On some other types of regularization	76

Cambridge University Press 0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison Frontmatter More information

			Contents	ix
		8.1.1	Pauli–Villars regularization	76
		8.1.2	Analytic regularization	76
		8.1.3	Lattice regularization	77
	8.2	Dimensi	ional regularization	77
		8.2.1	Naïve dimensional regularization (NDR)	77
		8.2.2	Dimensional reduction for supersymmetry	78
		8.2.3	't Hooft-Veltman regularization (HV)	78
		8.2.4	Momentum integrals in <i>n</i> dimensions	79
		8.2.5	Example of the pseudoscalar two-point	
			correlator	81
9	The \overline{M}	S renorm	alization scheme	84
	9.1	Renorm	alizability and power counting rules	84
	9.2	The QC	D Lagrangian counterterms	86
	9.3	Dimensi	ional renormalization	86
	9.4	Renorm	alization constants	87
	9.5	Check o	f the renormalizability of QCD	89
10	Renorr	nalizatior	n of operators using the background field method	91
	10.1	Outline	of the background field approach	91
	10.2	On the U	JV divergences and β -function calculation	93
	10.3	Renorm	alization of composite operators	93
		10.3.1	The vector and axial-vector currents	94
		10.3.2	Renormalization of $G_{\mu\nu}G^{\mu\nu}$	94
		10.3.3	Renormalization of the axial anomaly	96
		10.3.4	Renormalizations of higher-dimension	
			operators	97
11	The rea	normaliza	ation group	98
	11.1	The rend	ormalization group equation	99
	11.2	The β fu	unction and the mass anomalous dimension	99
	11.3	Gauge in	nvariance of $\beta(\alpha_s)$ and γ_m in the <i>MS</i> scheme	101
	11.4	Solution	as of the RGE	102
	11.5	Weinber	g's theorem	104
	11.6	The RG	E for the two-point function in the MS scheme	104
	11.7	Running	g coupling	106
		11.7.1	Lowest order expression and the definition of	
			the QCD scale Λ	106
		11.7.2	Renormalization group invariance of the first	
			two coefficients of β	107
	11.0	11.7.3	Higher order expression	108
	11.8	Decoup	ling theorem	109
	11.9	Input va	lues of α_s and matching conditions	109
	11.10	Running	g gauge	110
	11.11	Running	g masses	111

х				Contents	
		11.12	The per	turbative pole mass	112
			11.12.1	The <i>b</i> and <i>c</i> pole mass difference	117
		11.13	Alterna	tive definitions to the pole mass	118
		11.14	\overline{MS} sch	eme and RGE for the pseudoscalar two-point	
			correlat	or	118
			11.14.1	Lowest order perturbative calculation	119
			11.14.2	Two-loop perturbative calculation in the	
				\overline{MS} scheme	120
	12	Other	renormali	zation schemes	123
		12.1	The MS	5 scheme	123
		12.2	The mo	mentum subtraction scheme	124
		12.3	The We	inberg renormalization scheme	125
		12.4	The BL	M scheme	125
		12.5	The PM	S optimization scheme	127
		12.6	The effe	ective charge (ECH) scheme	129
	13	\overline{MS} s	cheme for	QED	131
		13.1	The QE	D Lagrangian	131
		13.2	Renorm	alization constants and RGE	131
		13.3	β functi	on, running coupling and anomalous dimensions	132
		13.4	Effectiv	e charge and link between the \overline{MS} and on-shell	
			scheme		132
	14	High-	precision	low-energy QED tests	135
		14.1	The lep	ton anomaly	135
			14.1.1	The electron anomaly and measurement of fine	
				structure constant α	135
			14.1.2	The muon anomaly and the rôle of the hadronic	
				contributions	136
			14.1.3	The lowest order hadronic contributions	137
			14.1.4	The higher order hadronic contributions	141
			14.1.5	The total theoretical contributions to a_{μ}	143
			14.1.6	The τ anomaly	144
		14.2	Other h	igh-precision low-energy tests of QED	144
			14.2.1	Lowest order hadronic contributions	144
			14.2.2	QED running coupling $\alpha(M_Z)$	145
			14.2.3	Muonium hyperfine splitting	146
		14.3	Conclus	sions	148
Part IV	Dee	ep inela	stic scatte	erings at hadron colliders	149
	15	OPE f	or deep in	elastic scattering	151
		15.1	Introduct	ion	151
		15.2	The OPE	for free fields at short distance	152

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

	Contents	xi
	15.3 Application of the OPE for free fields: parton mode	el and
	Bjorken scaling	153
	15.4 Light-cone expansion in $\phi_6^3(x)$ theory and operator	twist 158
16	Unpolarized lepton-hadron scattering	160
	16.1 Moment sum rules	160
	16.2 RGE for the Wilson coefficients	164
	16.3 Anomalous dimension of the non-singlet structure	
	functions	164
	16.4 Strategy for obtaining the Wilson coefficients	167
	16.4.1 Non-singlet part of the Bjorken sum rule	167
	16.4.2 Callan–Gross scaling violation	169
	16.5 Singlet anomalous dimensions and moments	171
17	The Altarelli–Parisi equation	174
	17.1 The non-singlet case	174
	17.2 The singlet case	175
	17.3 Some physical interpretations and factorization the	orem 176
	17.4 Polarized parton densities	177
18	More on unpolarized deep inelastic scatterings	180
	18.1 Target mass corrections	180
	18.2 End points behaviour and the BFKL pomeron	180
	18.2.1 The limit $x \to 1$	180
	18.2.2 The limit $x \to 0$ for the non-singlet case	181
	18.2.3 The limit $x \to 0$ for the singlet case and the	ie
	BFKL pomeron	181
	18.3 Experimental tests and new developments	182
	18.4 Neutrino scattering sum rules	185
	18.5 Summary of α_s measurements from DIS	187
19	Polarized deep-inelastic processes	188
	19.1 The case of massless quarks	188
	19.2 Extension of the method to massive quarks	188
	19.3 Further tests of the universal topological charge scre	eening 190
	19.3.1 Polarized Bjorken sum rule	190
	19.3.2 Semi-inclusive polarized <i>ep</i> scattering	190
	19.4 Reprinted paper	192
	1. Introduction	192
	2. The first moment sum rule for g_1^p	195
	3. QCD spectral sum rule estimate of $\chi'(0)$	199
	4. Tests of the Bjorken sum rule and estimate	of
	higher twist effects	205
	5. Further discussion	206

xii		Contents	
	20	Drell–Yan process	216
		20.1 Kinematics	216
		20.2 Parton model	217
		20.2.1 Cross-section	217
		20.2.2 Approximate rules	218
		20.3 Higher order corrections to the cross-section	218
		20.4 The K factor	220
	21	One 'prompt photon' inclusive production	221
Part V	Ha	rd processes in e^+e^- collisions	223
		Introduction	224
	22	One hadron inclusive production	225
		22.1 Process and fragmentation functions	225
		22.2 Inclusive density, correlations and hadron multiplicity	226
		22.3 Parton model and QCD description	227
	23	$\gamma\gamma$ scatterings and the 'spin' of the photon	232
		23.1 OPE and moment sum rules	232
		23.2 Unpolarized photon structure functions	234
		23.3 Polarized process: the 'spin' of the photon	235
		23.3.1 Moments and cross-section	235
		23.3.2 The g_1^{γ} sum rule and the axial anomaly	236
	24	QCD jets	241
		24.1 Introduction	241
		24.2 IR divergences: Bloch–Nordsieck and KLN theorems	241
		24.3 Two-jet events	244
		24.4 Three-jet events	246
		24.4.1 Thrust as a jet observable	247
		24.4.2 Other event-shape variables	248
		24.4.3 Event-shape distributions	249
		24.4.4 Energy-energy correlation	250
		24.4.5 Jade and Durham algorithms	251
		24.5 QCD tests from jet analysis	252
		24.6 Jets from heavy quarkonia decays	253
		24.7 Jets from ep , $\bar{p}p$ and pp collisions	255
	25	Total inclusive hadron productions	256
		25.1 Heavy quarkonia OZI-violating decays	256
		25.2 Alternative extractions of α_s from heavy quarkonia	258
		25.3 $e^+e^- \rightarrow$ hadrons total cross-section	259
		25.4 $Z \rightarrow$ hadrons	262
		25.5 Inclusive semi-hadronic τ decays	263
		25.5.1 Running of α_s below the τ -mass	270
		25.6 Some other τ -like processes	271
		25.6.1 α_s from other τ widths	271

				Contents	xiii
			25.6.2	$\alpha_{\rm e}$ from $e^+e^- \rightarrow I = 1$ hadrons data	272
			25.6.3	Strange quark mass from τ -like processes	273
Part VI	Sur	nmarv	of OCD	tests and α_s measurements	275
		VI.1	The dif	ferent observables	276
		VI.2	Differe	nt tests of OCD	276
			VI.2.1	Deep inelastic scatterings	276
			VI.2.2	QCD jets	277
		VI.3	Summa	ry of the α_s determinations	277
Part VII	Pov	ver con	rrections	in QCD	283
	26	Intro	duction	-	285
	27	The S	SVZ expa	insion	287
		27.1	The ana	atomy of the SVZ expansion	287
		27.2	SVZ ex	pansion in the $\lambda \phi^4$ model	288
		27.3	Renorm	nalization group invariant (RGI) condensates	290
			27.3.1	Scale invariant $D = 4$ condensates	290
			27.3.2	D = 5 mixed quark-gluon condensate	292
			27.3.3	D = 6 gluon condensates	293
			27.3.4	D = 6 four-quark condensates	294
			27.3.5	Higher dimensions gluonic condensates	295
			27.3.6	Relations among the different condensates	296
			27.3.7	Non-normal ordered condensates and	
				cancellation of mass singularities	297
	28	Techr	nologies	for evaluating Wilson coefficients	299
		28.1	Fock-S	chwinger fixed-point technology	299
			28.1.1	Fock-Schwinger gauge	299
			28.1.2	Gluon fields and condensates	299
			28.1.3	Light quark fields and condensates	301
			28.1.4	Mixed quark-gluon condensate	301
			28.1.5	Gluon propagator	302
			28.1.6	Quark propagator	302
		28.2	Applica	ation of the Fock-Schwinger technology to the	
			light qu	arks	
			pseudo	scalar two-point correlator	303
			28.2.1	Quark condensate $\langle : \bar{\psi}\psi : \rangle$	304
			28.2.2	Gluon condensate $\langle : \alpha_s G^2 : \rangle$	305
			28.2.3	Mixed quark-gluon condensate	306
			28.2.4	Four-quark condensates	307
			28.2.5	Triple gluon condensate	308
		28.3	Fock-S	chwinger technology for heavy quarks	308
			28.3.1	General procedure	308
			28.3.2	D = 4 gluon condensate of the electromagnetic	
				correlator	309

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

xiv				Contents	
			28.3.3	D = 6 condensates of the electromagnetic correlator	310
			28.3.4	Matching the heavy and light quark expansions	311
			28.3.5	Cancellation of mass singularities	312
		28.4	The plan	ne wave method	313
		28.5	On the c	calculation in a covariant gauge	314
	29	Renor	rmalons		315
		29.1	Introduc	ction	315
		29.2	Converg	gence of the Borel integral	317
		29.3	The Bor	el plane in QCD	318
		29.4	IR renor	malons	318
		29.5	UV rend	ormalons	321
		29.6	Some pl	nenomenology in the large β -limit	322
			29.6.1	The <i>D</i> -function	322
			29.6.2	Semi-hadronic inclusive τ decays	323
		29.7	Power c	orrections for jet shapes	324
		29.8	Power c	orrections in deep inelastic scattering	325
			29.8.1	Drell–Yan process	325
			29.8.2	Non-singlet proton structure functions F_2	326
			29.8.3	Gross–Llewellyn Smith and polarized Bjorken	226
		• • • •	-	sum rules	326
	20	29.9 D	Power c	orrections to the heavy quark pole mass	327
	30	Beyon	nd the SV	Z expansion	329
		30.1	Tachyon	nic gluon mass	329
		30.2	Instanto	ns	331
			30.2.1	't Hooft instanton solution	331
			30.2.2	Instanton phenomenology	333
			30.2.3	Dilute gas approximation	333
		• • •	30.2.4	The instanton liquid model	335
	~	30.3	Lattice 1	neasurements of power corrections	336
Part VIII	Q	CD two	o-point fu	inctions	341
	31	Refe	rences gu	ide to original works	343
		31.1	Electro	magnetic current	343
		31.2	(Pseudo	o)scalar and (axial-)vector currents	343
		31.3	Quark	mass corrections to the (pseudo)scalar and	
			(axial)-	vector quark correlators	343
		31.4	Tachyo	nic gluon corrections to the (pseudo)scalar and	244
		21.5	(axial)-	vector quark correlators	344
		31.5	Tensor	quark correlators	344
		31.6	Baryon	ic correlators	344
		31.7	Four-qu	uark correlators	344

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

	Contents			
	31.8	Gluonia correlators	344	
	31.9	Hybrid correlators	344	
32	2 (Pseu	do)scalar correlators	345	
	32.1	Exact two-loop perturbative expression in the \overline{MS}		
		scheme	345	
	32.2	Three-loop expressions in the chiral limit	346	
	32.3	Dimension-two	347	
	32.4	Dimension-four	347	
	32.5	Dimension-five	348	
	32.6	Dimension-six	349	
	32.7	Exact two-loop expression of the spectral function	349	
	32.8	Heavy-light correlator	350	
3	3 (Axia	l-)vector two-point functions	352	
	33.1	Exact two-loop perturbative expression in the \overline{MS}		
		scheme	352	
	33.2	Three-loop expression including the m^2 -terms	353	
	33.3	Dimension-four	354	
	33.4	Dimension-five	356	
	33.5	Dimension-six	356	
	33.6	Vector spectral function to higher order	357	
		33.6.1 Complete two-loop perturbative expression of		
		the spectral function	357	
		33.6.2 Four-loop perturbative expression of the		
		spectral function	358	
	33.7	Heavy-light correlator	359	
	33.8	Beyond the SVZ expansion: tachyonic gluon contributions		
		to the (axial-)vector and (pseudo)scalar correlators	360	
		33.8.1 Vector correlator	360	
		33.8.2 (Pseudo)scalar correlator	361	
34	4 Tenso	or-quark correlator	362	
3:	5 Baryo	onic correlators	364	
	35.1	Light baryons	364	
		35.1.1 The decuplet	364	
		35.1.2 The octet	365	
		35.1.3 Radiative corrections	367	
	35.2	Heavy baryons	367	
		35.2.1 Spin 1/2 baryons	367	
		35.2.2 Spin 3/2 baryon	369	
3	6 Four-	quark correlators	371	
	36.1	Four-quark states	371	
	36.2	$\Delta S = 1$ correlator and $\Delta I = 1/2$ rule	372	

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

36.3The $\Delta S = 2$ correlator37436.4The $\Delta B = 2$ correlator37537Gluonia correlators37837.1Pseudoscalar gluonia37837.2Pseudoscalar meson-gluonium mixing38037.3Scalar gluonia38137.4Scalar meson-gluonium mixing38137.5Scalar tri-gluonium correlator38237.6Scalar di- and tri-gluonium mixing38337.7Tensor gluonium38337.8Tensor meson-gluonium mixing38337.9Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators38638.1Light hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
36.4 The $\Delta B = 2$ correlator 375 37 Gluonia correlators 378 37.1 Pseudoscalar gluonia 378 37.2 Pseudoscalar meson-gluonium mixing 380 37.3 Scalar gluonia 381 37.4 Scalar meson-gluonium mixing 381 37.5 Scalar tri-gluonium correlator 382 37.6 Scalar di- and tri-gluonium mixing 382 37.7 Tensor gluonium 383 37.8 Tensor meson-gluonium mixing 383 37.9 Contributions beyond the OPE: tachyonic gluon mass 384 38 Hybrid correlators 386 38.1 Light hybrid correlators 386 38.2 Heavy hybrid correlators 388 39 Correlators in x-space 389 39.2 (Pseudo)scalar correlators 390
37Gluonia correlators378 37.1 Pseudoscalar gluonia378 37.2 Pseudoscalar meson-gluonium mixing380 37.3 Scalar gluonia381 37.4 Scalar meson-gluonium mixing381 37.5 Scalar tri-gluonium correlator382 37.6 Scalar di- and tri-gluonium mixing383 37.7 Tensor gluonium383 37.8 Tensor meson-gluonium mixing383 37.9 Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators386 38.1 Light hybrid correlators38839Correlators in x-space389 39.1 (Axial-)vector correlators389 39.2 (Pseudo)scalar correlators380 39.2 (December of the december of the de
37.1Pseudoscalar gluonia 378 37.2 Pseudoscalar meson-gluonium mixing 380 37.3 Scalar gluonia 381 37.4 Scalar meson-gluonium mixing 381 37.5 Scalar tri-gluonium correlator 382 37.6 Scalar di- and tri-gluonium mixing 382 37.7 Tensor gluonium 383 37.8 Tensor meson-gluonium mixing 383 37.9 Contributions beyond the OPE: tachyonic gluon mass 384 38 Hybrid correlators 386 38.1 Light hybrid correlators 388 39 Correlators in x-space 389 39.1 (Axial-)vector correlators 389 39.2 (Pseudo)scalar correlators 390
37.2Pseudoscalar meson-gluonium mixing 380 37.3 Scalar gluonia 381 37.4 Scalar meson-gluonium mixing 381 37.4 Scalar meson-gluonium mixing 381 37.5 Scalar tri-gluonium correlator 382 37.6 Scalar di- and tri-gluonium mixing 382 37.7 Tensor gluonium 383 37.8 Tensor meson-gluonium mixing 383 37.9 Contributions beyond the OPE: tachyonic gluon mass 384 38 Hybrid correlators 386 38.1 Light hybrid correlators 386 38.2 Heavy hybrid correlators 388 39 Correlators in x-space 389 39.1 (Axial-)vector correlators 389 39.2 (Pseudo)scalar correlators 390
37.3Scalar gluonia38137.4Scalar meson-gluonium mixing38137.5Scalar tri-gluonium correlator38237.6Scalar di- and tri-gluonium mixing38237.7Tensor gluonium38337.8Tensor meson-gluonium mixing38337.9Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators38638.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
37.4Scalar meson-gluonium mixing38137.5Scalar tri-gluonium correlator38237.6Scalar di- and tri-gluonium mixing38237.7Tensor gluonium38337.8Tensor meson-gluonium mixing38337.9Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators38638.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
37.5Scalar tri-gluonium correlator 382 37.6 Scalar di- and tri-gluonium mixing 382 37.7 Tensor gluonium 383 37.8 Tensor meson-gluonium mixing 383 37.9 Contributions beyond the OPE: tachyonic gluon mass 384 38 Hybrid correlators 386 38.1 Light hybrid correlators 386 38.2 Heavy hybrid correlators 388 39 Correlators in x-space 389 39.1 (Axial-)vector correlators 390 39.2 (Pseudo)scalar correlators 390
37.6Scalar di- and tri-gluonium mixing38237.7Tensor gluonium38337.8Tensor meson-gluonium mixing38337.9Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators38638.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
37.7Tensor gluonium38337.8Tensor meson-gluonium mixing38337.9Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators38638.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
37.8Tensor meson-gluonium mixing38337.9Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators38638.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
37.9Contributions beyond the OPE: tachyonic gluon mass38438Hybrid correlators38638.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
38Hybrid correlators38638.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
38.1Light hybrid correlators38638.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
38.2Heavy hybrid correlators38839Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
39Correlators in x-space38939.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators39020.2(Pseudo)scalar correlators390
39.1(Axial-)vector correlators38939.2(Pseudo)scalar correlators390
39.2 (Pseudo)scalar correlators 390
Part IX QCD non-perturbative methods 393
40 Introduction 395
41 Lattice gauge theory 396
41.1 Introduction 396
41.2 Gluons on the lattice: the Wegner–Wilson action 397
41.3 Quarks on the lattice 399
41.4 Quark and gluon interactions 402
41.5 Some applications of the lattice 404
41.5.1 The QCD coupling and the weak coupling
regime 404
41.5.2 Wilson loop, confinement and the strong
coupling regime 405
41.5.5 Some other applications and limitations of the
$\frac{1}{40}$
42 Chiral perturbation meory 409
$42.1 \text{Introduction} \qquad 409$
42.2 FCAC relation from Chr 1 410
42.5 Current algebra quark mass ratios 415 42.4 Chiral perturbation theory to order n^4 414
414 42.4 1 The chiral Lagrangian to order (n^4) 414
42.4.2 Chiral loops 414
42.4.3 The non-Abelian chiral anomaly 416
42.5 Some low-energy phenomenology to order n^4 417
42.5.1 Decay constants 418

Cambridge University Press 0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison Frontmatter More information

			Contents	xvii
		42.5.2	Electromagnetic form factors	419
		42.5.3	K_{I3} decays	420
		42.5.4	Ratios of light quark masses to order p^4	421
43	Model	s of the	QCD effective action	424
	43.1	Introdu	ction	424
	43.2	QCD in	the large– N_c limit	425
		43.2.1	Large N_c counting rules for mesons	425
		43.2.2	Chiral Lagrangian in the large N_c -limit	426
		43.2.3	Minimal hadronic ansatz to large N_c QCD	427
		43.2.4	Baryons in the large N_c limit	430
	43.3	Lowest	meson dominance models	431
	43.4	The cor	nstituent chiral quark model	432
	43.5	Effectiv	e action approach models	433
	43.6	The Ext	tended Nambu–Jona-Lasinio Model	434
44	Heavy	quark e	effective theory	442
	44.1	Introdu	ction	442
	44.2	Heavy-	quark symmetry	442
	44.3	Heavy of	quark effective theory	443
		44.3.1	Introduction	443
		44.3.2	The HQET Lagrangian	444
		44.3.3	Symmetries of the Lagrangian	447
		44.3.4	Heavy quark wave-function renormalization in	
			HQET	448
		44.3.5	Residual mass term and definition of the heavy	
			quark mass	449
	44.4	Hadron	spectroscopy from HQET	450
	44.5	The \overline{B} -	$\rightarrow D^* l \bar{\nu}$ exclusive process	452
		44.5.1	Semi-leptonic form factors: the Isgur–Wise	
			function	452
		44.5.2	The Luke's theorem for the $1/m_Q$ corrections	455
		44.5.3	Short-distance corrections and matching	
			conditions	456
		44.5.4	Determination of $ V_{cb} $ from HQET	457
	44.6	The inc	lusive $\bar{B} \to X l \bar{\nu}$ weak process	458
	44.7	Rare B	decays and CP-violation	462
45	Potent	ial appro	oaches to quarkonia	464
	45.1	The Sch	nrödinger equation	464
	45.2	The QC	CD static Coulomb potential	465
	45.3	Potentia	al models	468
		45.3.1	Cornell potential	468
		45.3.2	Richardson potential	468
		45.3.3	Martin potential	468

xviii		Contents	
	45.4	QCD corrections to the static Coulomb potential:	
		Leutwyler–Voloshin model	469
		45.4.1 Relativistic corrections	469
		45.4.2 Radiative and non-perturbative corrections	471
		45.4.3 Validity range	472
		45.4.4 Some phenomenological applications	472
	45.5	Bell-Bertlmann equivalent potentials	473
	45.6	Stochastic vacuum model	474
		45.6.1 The model	475
		45.6.2 Application to the static potential	477
	45.7	Non-relativistic effective theories for quarkonia	479
	46 On 1	nonopole and confinement	484
Part X	QCD spe	ectral sum rules	487
	47 Intro	oduction	489
	48 The	pretical foundations	491
	48.1	Generalities and dispersion relations	491
	48.2	Explicit derivation of the dispersion relation	492
	48.3	General proof of the dispersion relation	494
	48.4	The QCD side of the sum rules	496
	49 Surv	vey of QCD spectral sum rules	499
	49.1	Moment sum rules in QCD	499
	49.2	Laplace sum rule (LSR)	500
	49.3	Ratio of moments	501
	49.4	Finite energy sum rule (FESR)	503
	49.5	Features of FESR and an example	504
	49.6	The Gaussian sum rules	505
	49.7	FESR from the zeta prescription	508
	49.8	Analytic continuation	508
	49.9	Summary	509
	49.10	Optimization criteria	509
		49.10.1 The harmonic oscillator	510
		49.10.2 Non-relativistic charmonium sum rules	511
		49.10.3 Implications for QCD	512
	49.11	Modelling the $e^+e^- \rightarrow I = 1$ hadrons data using a	
		QCD-duality ansatz	513
	49.12	Test of the QCD-duality ansatz in the charmonium sum	
		rules	513
	49.13	HQET sum rules	515
		49.13.1 Decay constant, meson-quark mass gap,	
		kinetic energy and chromomagnetic operator	516
		49.13.2 Isgur–Wise function	518
	49.14	Vertex sum rules and form factors	518

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

			Contents	xix
		49.14.1	Spectral representation	519
		49.14.2	Illustration from the evaluation of the $g_{\alpha\alpha\pi}$	
			coupling	520
	49.15	Light-c	one sum rules	522
		49.15.1	Basics and illustration by the $\pi^0 \rightarrow \gamma^* \gamma^*$	
			process	522
		49.15.2	Distribution amplitudes	525
50	Wein	berg and	DMO sum rules	527
	50.1	Sacrosa	nct Weinberg sum rules (WSR) in the chiral	
		limit		527
		50.1.1	The sum rules	528
		50.1.2	Matching between the low- and high-energy	
			regions	528
	50.2	L_{10}, m_{π}	$f_{\pi^{\pm}} - m_{\pi^0}$ and f_{π} in the chiral limit	530
	50.3	Masses	and power corrections to the Weinberg sum rules	531
	50.4	DMO s	um rules in QCD	532
51	The (QCD coup	pling α_s	533
	51.1	α_s from	$e^+e^- \rightarrow I = 1$ hadrons and τ -decays data	533
	51.2	α_s from	heavy quarkonia mass-splittings	534
	51.3	Reprint	ed paper	535
		1.	The double ratio of moments	535
		2.	Test of the $1/m$ -expansion	537
		3.	Balmer-mass formula from the ratio of	
			moments	537
		4.	$S_1^3 - S_0^1$ hyperfine and $P - S$ -wave splittings	539
		5.	Leptonic width and quarkonia wave function	540
		6.	Gluon condensate from $M_{\psi(S_1^3)} - M_{\eta_c(S_0^1)}$	541
		7.	Charmonium <i>P</i> -wave splittings	542
		8.	α_s from the $P_1^1 - P_1^3$ axial mass splitting	544
		9.	$\Upsilon - \eta_b$ mass splitting	544
		10.	$\Upsilon - \chi_b$ mass splittings and new estimate of	
			the gluon condensate	545
		11.	Update average value of $\langle \alpha_s G^2 \rangle$	546
		12.	Toponium: illustration of the infinite mass limit	546
		13.	Conclusions	547
_	-	Acknov	vledgements	547
52	The (CD con	densates	550
	52.1	Dimens	ion-two tachyonic gluon mass	550
	52.2	Dimens	ion-three quark condensate	551
	52.3	Dimens	tion-four gluon condensate	551
	52.4	Dimens	ion-five mixed quark-gluon condensate	553
	52.5	Dimens	tion-six four-quark condensates	553

xx

		Contents	
52.6	Dimens	sion-six gluon condensates	555
52.7	52.7 Dimension-eight condensates		
52.8	Instanto	on like-contributions	556
52.9	Sum of	non-perturbative contributions to	
	$e^{+}e^{-}$ -	$\rightarrow I = 1$ hadrons and τ decays	557
52.10	Reprint	ed paper	557
	1.	Introduction	557
	2.	α_s from $e^+e^- \rightarrow I = 1$ hadrons data	558
	3.	The condensates from τ -like decays	561
	4.	The condensates from the ratio of the Laplace	
		sum rules	564
	5.	Instanton contribution	566
	6.	Test of the size of the $1/M_{\tau}^2$ -term	566
	7.	Sum of the non-perturbative corrections to R_{τ}	567
	8.	Implication on the value of α_s from R_{τ}	568
	9.	Conclusion	569
	Acknow	vledgements	570
53 Light	and heav	vy quark masses, etc.	572
53.1	Introdu	ction	572
53.2	Quark 1	mass definitions and ratios of light quark masses	573
53.3	Bounds	s on the light quark masses	574
	53.3.1	Bounds on the sum of light quark masses from	
		pseudoscalar channels	574
	53.3.2	Lower bound on the light quark mass	
		difference from the scalar sum rule	578
	53.3.3	Bounds on the sum of light quark masses from	
		the quark condensate and $e^+e^- \rightarrow I = 0$	
		hadrons data.	578
53.4	Sum of	light quark masses from pseudoscalar sum rules	580
	53.4.1	The (pseudo)scalar Laplace sum rules	580
	53.4.2	The $\bar{u}d$ channel	582
	53.4.3	The $\bar{u}s$ channel and QSSR prediction for the	
		ratio $m_s/(m_u+m_d)$	584
53.5	Direct e	extraction of the chiral condensate $\langle \bar{u}u \rangle$	585
53.6	Final estimate of $(m_u + m_d)$ from QSSR and		
	consequences on m_u , m_d and m_s		
53.7	Light q	uark mass from the scalar sum rules	587
	53.7.1	The scalar $\bar{u}d$ channel	587
	53.7.2	The scalar $\bar{u}s$ channel	588
53.8	Light q	uark mass difference from $(M_{K^+} - M_{K^0})_{\text{QCD}}$	588
53.9	The stra	ange quark mass from e^+e^- and τ decays	588
	53.9.1	$e^+e^- \rightarrow I = 0$ hadrons data and the ϕ -meson	
		channel	588

	Contents	xxi
	53.9.2 Tau decays	589
	53.9.3 Summary for the estimate of light quark masses	590
53.10	Decay constants of light (pseudo)scalar mesons	591
	53.10.1 Pseudoscalar mesons	591
	53.10.2 Scalar mesons	593
53.11	Flavour breaking of the quark condensates	594
	53.11.1 $SU(3)$ corrections to kaon PCAC	594
	53.11.2 Subtraction constant from the scalar sum rule	597
	53.11.3 $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$ from the (pseudo)scalar sum rules	598
	53.11.4 $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$ from the B_s meson	598
	53.11.5 Final sum rule estimate of $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$	599
	53.11.6 $SU(2)$ breaking of the quark condensate	599
53.12	Heavy quark masses	599
	53.12.1 The quarkonia channel	600
	53.12.2 The heavy-light <i>D</i> and <i>B</i> meson channels	602
53.13	The weak leptonic decay constants $f_{D_{(s)}}$ and $f_{B_{(s)}}$	607
	53.13.1 Upper bound on the value of f_D	608
	53.13.2 Estimate of the <i>D</i> decay constant f_D	609
	53.13.3 Ratio of the decay constants f_{D_s}/f_D and f_{B_s}/f_B	610
	53.13.4 Estimate of the <i>B</i> decay constant f_B	612
	53.13.5 Static limit and $1/M_b$ -corrections to f_B	612
53.14	Conclusions	614
54 Hadro	on spectroscopy	615
54.1	Light $\bar{q}q$ mesons	615
54.2	Light baryons	615
54.3	Spectroscopy of the heavy-light hadrons	618
	54.3.1 Beautiful mesons	618
54.4	54.3.2 Baryons with one heavy quark	618
54.4	Hadrons with charm and beauty	620
54.5	Mass splittings of heavy quarkonia	
54.0	Gluoma spectra	621
54.7	Unmixed scalar gluonia	622
	54.7.1 Masses and decay constants $54.7.2$, and π' couplings to $\pi\pi$	622
	54.7.2 σ_B and σ_B couplings to $\pi\pi$	624
	54.7.5 G(1.5) coupling to $\eta\eta$ 54.7.4 $\sigma'(1.37)$ and $G(1.5)$ couplings to 4π	625
	54.7.4 $\sigma_B(1.57)$ and $O(1.5)$ couplings to 4π	626
	54.7.6 $I/\eta \to \gamma S$ radiative decays	627
	54.7.7 $\phi \rightarrow \sigma_{\rm D} \gamma$ and $D \rightarrow \sigma_{\rm D} \mu$ decays	628
54 8	Unmixed scalar quarkonia	628
54 Q	Mixing schemes for scalar mesons	620
57.9	54.9.1 Nature of the σ and $f_0(0.98)$	629
	54.9.2 Nature of the $f_0(1.37)$ $f_0(1.5)$ and $f_1(1.7)$	629
	$J_{1,2,2}$ mature of the $J_{0}(1,37)$, $J_{0}(1,3)$ and $J_{1}(1,7)$	02)

xxii

	Contents	
54.10	Mixing and decays of the tensor gluon	ium 631
54.11	Mixing and decays of the pseudoscalar	gluonium 632
54.12	Test of the four-quark nature of the a_0	(980) 632
54.13	Light hybrids	634
	54.13.1 Spectra	635
	54.13.2 Decay widths of the $\tilde{\rho}$	635
54.14	Heavy hybrids	636
	54.14.1 Conclusions	636
55 D, B	and B_c exclusive weak decays	638
55.1	Heavy to light exclusive decays of the	<i>B</i> and <i>D</i> mesons 638
	55.1.1 Introduction and notations	638
	55.1.2 Estimate of the form factors at	nd of V_{ub} 641
	55.1.3 $SU(3)_F$ breaking in $\bar{B}/D \rightarrow$	$K l \bar{\nu}$ and
	determination of V_{cd}/V_{cs} and	<i>V</i> _{cs} 643
	55.1.4 Large M_b -limit of the form fac	ctors 643
	55.1.5 q^2 -behaviour of the form factor	ors 644
55.2	Slope of the Isgur-Wise function and w	value of V_{cb} 645
55.3	$B^*(D^*) \to B(D) \pi(\gamma)$ couplings and	decays 649
55.4	Weak semi-leptonic decays of the B_c n	nesons 650
	55.4.1 Anomalous thresholds	652
56 $B_{(s)}^0$ -1	$\binom{0}{(s)}$ mixing, kaon CP violation	654
56.1	Standard formalism	654
	56.1.1 Phenomenology of $B^0 - \overline{B}^0$ and	$K^0 - \bar{K}^0$ mixings 654
	56.1.2 The Bell-Steinberger unitarity	constraint 657
	56.1.3 $K \rightarrow 2\pi$ amplitudes	659
56.2	$B^0_{(s)}$ - $\bar{B}^0_{(s)}$ mixing	664
	56.2.1 Introduction	664
	56.2.2 Two-point function sum rule	665
	56.2.3 Results and implications on W	$V_{ts} ^2/ V_{td} ^2$ and
	ΔM_s	667
	56.2.4 Conclusions	668
56.3	The $\Delta S = 2$ transition of the $K^0 - \bar{K}^0$ n	nixing 668
	56.3.1 Estimate of the bag constant <i>B</i>	B_{K} 668
	56.3.2 Estimate of the CP violation p	parameters $(\bar{\rho}, \bar{\eta})$ 668
56.4	Kaon penguin matrix elements and $\epsilon'/$	<i>ϵ</i> 669
	56.4.1 SM theory of ϵ'/ϵ	669
	56.4.2 Soft pion and kaon reductions	of
	$\langle (\pi \pi)_{I=2} Q_{7,8}^{3/2} K^0 \rangle$ to vacuum	n condensates 673
	56.4.3 The $\langle \mathcal{O}_{7,8}^{3/2} \rangle$ condensates from	DMO-like sum
	rules in the chiral limit	674
	56.4.4 The $\langle \mathcal{O}_{7,8}^{3/2} \rangle$ condensates from	hadronic tau
	inclusive decays	676

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

	Contents			
			56.4.5 Impact of the results on the <i>CP</i> violation	
			parameter ϵ'/ϵ	679
			56.4.6 Summary and conclusions	680
	57	Ther	mal behaviour of QCD	681
		57.1	The QCD phases	681
		57.2	Big-bang versus heavy ion collisions	682
		57.3	Hadronic correlations at finite temperature	682
		57.4	Asymptotic behaviour of the correlator in hot hadronic	
			matter	684
		57.5	Quark condensate at finite T	686
		57.6	f_{π} at finite temperature	690
		57.7	Gluon condensate	690
		57.8	Four-quark condensate	690
		57.9	The ρ -meson spectrum in not hadronic matter	691
		57.10	ρ -meson coupling and which	693 604
		57.12	Hedronia couplings	604
		57.12	Nucleon sum rules and neutron electric dipole	094
		57.15	moment	695
	58	More	e on spectral sum rules	696
	50	58.1	Some other applications in OCD	696
		58.2	Electroweak models with dynamic symmetry breaking	696
		Epilo	Deue	697
Part XI	Ap	pendic	Ces	699
	Ā	Phys	ical constants and units	701
		A.1	High-energy physics conversion constants and units	701
		A.2	High-energy physical constants	701
		A.3	CKM weak mixing matrix	702
		A.4	Some astrophysical constants	703
	В	Weig	ght factors for $SU(N)_c$	704
		B .1	Definition	704
		B.2	Adjoint representation of the gluon fields	704
		B.3	Fundamental representation of the quark fields	705
		B.4	The case of $SU(3)_c$	705
	С	Coor	dinates and momenta	707
	D	Dirac	c equation and matrices	709
		D.1	Definition and notations	709
		D.2	CPT transformations	710
		D.3	Polarizations	710
		D.4	FIErz Identifies	/11
		D.3	Dirac algebra in n -dimensions	/11
		D.6	The totally anti-symmetric tensor	/13

xxiv

Cambridge University Press
0521811643 - QCD as a Theory of Hadrons From Partons to Confinement - Stephan Narison
Frontmatter
More information

		Contents	
Е	Feyn	714	
	E.1	Factors induced by external or internal lines	714
	E.2	.2 Factors induced by closed loops	
	E.3	Propagators and vertices	715
	E.4	Composite operators in deep-inelastic scattering	716
	E.5	Rules in the background field approach	717
F	Feyn	719	
	F.1	Feynman parametrization	719
		F.1.1 Schwinger representation	719
		F.1.2 Original Feynman parametrization	719
	F.2	The Γ function	720
	F.3	The beta function $B(x, y)$	721
	F.4	The incomplete beta function $B_a(x, y)$	722
	F.5	The hypergeometric function $_2F_1(a, b, c; z)$	722
	F.6	One-loop massless integrals	722
	F.7	Two- and three-loop massless integrals	724
	F.8	One-loop massive integrals	726
	F.9	A two-loop massive integral	727
	F.10	The dilogarithm function	728
	F.11	Some useful logarithmic integrals	729
	F.12	Further useful functions	731
G	Usef	ul formulae for the sum rules	732
	G.1	Laplace sum rule	732
	G.2	Finite energy sum rule	733
	G.3	Coordinate space integrals	733
	G.4	Cauchy contour integrals	733
Bibliography			735
Index			773

About Stephan Narison

He is, at present, a Directeur de Recherche at the French 'Centre National de la Recherche Scientifique' (CNRS) in theoretical physics (section of high-energy elementary particle physics) at the 'Laboratoire de Physique Mathématique et Théorique de l'Université de Montpellier II' (France). He is the founder and chairman of the Series of Montpellier International Conference in Quantum ChromoDynamics (QCD) since 1985 which has been sponsored from 1996 to 2001 by the European Commission of Brussels.

He graduated at the Lycée Gallieni and University of Antananarivo (Madagascar) in 1972. After his master's degree, he was a teacher in different colleges of Antananarivo (Ambatonakanga, Esca and St Michel). In 1974, he obtained a fellowship from the 'Centre International des Etudiants et Stagiaires' of the European Commision of Brussels for preparing his Doctorat d'Etat at the University of Marseille (France). He was offered a 2-year postdoctoral position at the Abdus Salam Center for Theoretical Physics (former International Center for Theoretical Physics) in Trieste (Italy) from 1979 to 1981, a Scientific Associate position for 1 year at LAPP-Annecy (France) and a 2-year CERN (Geneva) fellowship in the Theory division in 1982. He obtained his permanent position in Montpellier in 1984. Since then, he has visited different world high-energy physics laboratories for the purpose of joint collaborations or by simple invitations. These include the traditional West European Universities and Institutes [Universities of Barcelona, Madrid, Valencia (Spain); University of Heidelberg (as a Von-Humboldt fellow), Munich (Germany), Vienna (Austria); CERN-Geneva, University of Bern (Switzerland); ICTP-Trieste, University of Pisa (Italy)], the Universities and Institutes of East European countries [University of Kracow (Poland), INR-Moscow (Russia)], the American Universities and Institutes [LBL (California), SLAC (Stanford), Brookhaven (Upton)] and the more exotic Asian Universities and Institutes [KEK-Tsukuba (Japan), KIAS-Seoul (Korea), NCTS-Hsinchu (Taiwan)]. He also participates actively in the creation of a new Theoretical Physics Institute in his home country. Finally, he is regularly invited to present contributions in the different large-scale, high-energy physics conferences (EPS, IHEP, ...) and specialized workshops.

His first research activity, which made him known in the field, was the estimate of the hadronic contributions to the anomalous magnetic moment of leptons (subject of his 3ème cycle thesis). Since then, his main research activity has been in the non-perturbative aspects of QCD using the method of QCD spectral sum rules for studying the properties of hadrons

xxvi

About Stephan Narison

and low-energy phenomena. He has worked in this field since the date of its invention in 1979 and participates actively in its theoretical developments and new applications.

He is a member of the European Physical Society, a correspondant member of the 'Academie Nationale Malgache', a member of the New York Academy of Sciences, nominated in the Who's Who biography by the American Biographical Institute (ABI) (USA) and by the International Biographical Center of Cambridge (IBC) (UK), nominated among the 2000 exceptional men of the twentieth and twenty-first centuries by the ABI and the IBC. He has also been the President-Foundator of the 'Association Culturelle Malgache de Montpellier' (France) since 1993.

Outline of the book

This book provides:

- A pedagogical introduction to the perturbative and non-perturbative aspects of Quantum Chromo Dynamics (QCD), which is expected to be accessible by pre-Ph.D. students who want to learn this field.
- A status of the modern developments in the field.
- An update of the different results presented in the older though successful review [2] and book [3], taking into account the developments of the field within these past 10 years.
- An extension and improvements of the presentation used in these previous review and book, where the QSSR results are compared with those from other non-perturbative approaches.

The book is divided into ten parts:

- In the first part, one starts from a general introduction to particle physics and historical survey on the developments of strong interactions prior to QCD. Then, we discuss the main ideas and basic tools of the field.
- In the second part, we present the gauge theory aspect of QCD.
- In the third part, we discuss in details the most popular techniques of dimensional regularization and renormalization and discuss some of its applications both in QCD and QED.
- In the fourth part, we present different QCD hard deep inelastic processes at hadron colliders, and discuss different unpolarized and polarized structure functions.
- In the fifth part, we present the QCD hard processes in e^+e^- processes and discuss jets, fragmentation functions and totally inclusive processes.
- In the sixth part we summarize QCD tests and α_s measurements.
- In the seventh part, we discuss power corrections and mainly the theoretical basis and technologies of the Shifman–Vainshtein–Zakharov operating product expansion (OPE).
- In the eighth part, we present a compilation of different QCD two-point functions obtained from perturbative calculations and the SVZ-expansion. These expressions are basic ingredients for various phenomenological applications.
- In the ninth part, we present different aspects of modern non-perturbative approaches to QCD.
- In the tenth part, we present extensive phenomenological aspects of QCD spectral sum rules.
- The Appendices collect different useful conventions and formulae for QCD practitioners.
- The Contents, References and Index are useful for a quick guide for readers of the book.

xxvii

Preface

Quantum Chromodynamics (QCD) continues to be an active field of research, which one can see from the number of publications in the field, as well as from the number of presentations at different QCD dedicated conferences, such as the regular QCD-Montpellier Conference Series. This continuous activity is due to the relative difficulty in tackling its non-perturbative aspects, although its asymptotic freedom property has facilated perturbative calculations of different hard and jet processes. Therefore, we think it is still useful to write a book on QCD in which, besides the usual pedagogical introduction to the field, some reviews of its modern developments, which have not yet been 'compiled' into a book, will be presented. Elementary introductions at the level of pre-Ph.D. in different specialized topics of QCD will be discussed, which may be useful for a future deeper research and for a guide in a given subject.

We start the book with a general elementary introduction to strong interactions, parton and quark models, ..., and present the basic tools for understanding QCD as a gauge field theory (renormalization, operator product expansion, ...). After, we present the usual hard processes (deep inelastic scattering, jets, ...) calculable in perturbative QCD, and discuss the resummation (renormalons, ...) of the perturbative series. Later, we discuss the different modern non-perturbative aspects of QCD (lattice, effective theories, ...). Among these different methods, we discuss extensively, the method and the phenomenology of the QCD spectral sum rules (QSSR) method introduced in 1979 by Shifman–Vainshtein and Zakharov (hereafter referred to as SVZ) [1]. Indeed, we have been impressed by its ability to explain low-energy phenomena such as the hadron masses, couplings and decays in terms of the first few fundamental parameters of QCD (QCD coupling, quark masses, quark and gluon condensates), and vice versa, we have been fascinated by the success of the method to extract the QCD universal parameters from experiments. In this respect, some parts of this book have been updated, improved, extended and included a latex version of the former review [2]:

Techniques of dimensional regularization and renormalization for the two-point functions of QCD and QED, S.N., *Phys. Rep.* 84 (1982) 263

and of the book [3]:

XXX

Preface

QCD Spectral Sum Rules Lecture notes in Physics, Vol. 26 (1989) World Scientific Publ. Co. Singapore.

However, the discussions in this book cannot replace the previous ones (hereafter referred to as QSSR1), as some detailed analyses carried out in the older review and book are not reported and repeated here. In this present book, we limit ourselves to review the most recent results and new developments in the field, without going into some technical details, and, in this sense, this book is a useful supplement to the former. Various misprints in QSSR1 have also been corrected.

As we have already mentioned, and as in the previous review and book, we have written this book for a large audience, not necessarily working in the field (elementary introduction to QCD,...). However, experts will also appreciate this book, as they will find the most relevant and the latest results obtained so far with the QSSR method. They can also find compilations of non-trivial QCD expressions of the two-point correlators obtained within the Operator Product Expansion (OPE), and technical points relevant to the method itself (mixing of operators under renormalizations, validity of the SVZ expansion...). Experimentalists will find in this book a 'quick review' of most of important results obtained from QSSR.

However, because of the large *horizontal* spectrum of the QSSR applications in different branches of low-energy physics, including nuclear matters, which we (unfortunately) cannot cover in this book, we shall limit ourselves to the well-controlled and simplest applications of the methods, namely the light and heavy quark systems and to a lesser extent the gluonia and hybrid meson channels. At present, these examples are quite well understood and will, therefore, serve as *prototype* applications of QSSR in high-energy physics and quantum field theory. Some other applications of QSSR, such as in the QCD string tension, in the composite models of electroweak interactions (QHD sum rules) and in supersymmetric QCD, were already discussed in QSSR1 and will not be discussed in detail here, since there has been no noticeable recent developments in these fields of applications, since the publication of QSSR1. We shall not discuss the uses of QSSR for nuclear matters, either, since the complexity of these phenomena still needs to be better understood. However, the enthusiasm of nuclear physicists for using this method in the baryonic sector might be restrained, owing to the delicateness of the corresponding analysis, which in my opinion has not yet been improved since the original work, in which the obstacle is due to the optimal choice of the nucleon operators. At the present stage, one can only consider the analysis done in the baryon sector to be very qualitative.

Following (actively) the developments of QCD through those of QSSR since its birth in 1979, my feeling à la Feynman (Omni magazine 1979), advocated in QSSR1 about this field remains unchanged (as already quoted in QSSR1):

... A few years ago, I was very skeptical... I was expecting mist and now it looks like ridges and valleys after all...,

while the *great* success of QSSR in the understanding of the complexity of low-energy nonperturbative phenomena and hadron physics, is well illustrated by the Malagasy saying:

Preface

'Vary iray no nafafy ka vary zato no miakatra!.'

which means: with one grain of rice sowed, one can gather by the thousand!, or in other words, the method has started quite modestly and, with time, it has become more and more underground. Indeed, at present, QSSR (*used correctly*) is one of the most powerful methods for understanding (*analytically*) the low-energy dynamics of hadrons using the few fundamental parameters (coupling, masses and condensates) coming from QCD first principles.

xxxi

Acknowledgements

This book is a result of my attendance (as a chairman) at the QCD–Montpellier International Conference series from which I have learned a lot about the developments of QCD. It also comes from long-term contributions on QCD spectral sum rules and I thank former collaborators and colleagues who have contributed to the developments of this important field. Most of the figures of this book comes from the efficient work of Arlette Coudert from Cern. This work has been completed when I visited different institutes during the last 5 years (Cern–Geneva, Kek-Tsukuba, Ncts HsinChu, Ntu Taipei, Antananarivo University, MPI-Munich, Heidelberg University) and I wish to thank them for their hospitality. Finally, I am grateful for the patience of my family and friends who have sacrificed life-years during the long write-up of these materials, and I wish to thank them for their generous support.