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Abstract

We are here concerned with the study of proofs from a geometric perspective.
By first recalling the pioneering work of Statman in his doctoral thesis Structural
Complexity of Proofs (1974), we review two recent research programmes which
approach the study of structural properties of formal proofs from a geometric
perspective: (i) the notion of proof-net, given by Girard in 1987 in the context of
linear logic; and (ii) the notion of logical flow graph given by Buss in 1991 and
used as a tool for studying the exponential blow up of proof sizes caused by the
cut-elimination process, a recent programme (1996-2000) proposed by Carbone
in collaboration with Semmes.

Statman’s geometric perspective does not seem to have developed much fur-
ther than his doctoral thesis, but the fact is that it looks as if the main idea, i.e.
extracting structural properties of proofs in natural deduction (ND) using appro-
priate geometric intuitions, offers itself as a very promising one. With this in
mind, and having at our disposal some interesting and rather novel techniques
developed for proof-nets and logical flow graphs, we have tried to focus our in-
vestigation on a research for an alternative proposal for looking at the geometry
of ND systems. The lack of symmetry in ND presents a challenge for such a kind
of study. Of course, the obvious alternative is to look at multiple-conclusion

*Research partially funded by a grant from PROPESQ/UFPE under the Projeto Enxoval.
YResearch partially funded by a CNPq Bolsa de Produtividade em Pesquisa (“Pesquisador 1-C”), grant

301492/88-3.

3

R.J.G.B. de Queiroz (ed.), Logic for Concurrency and Synchronisation, 3-88.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



LOGIC FOR CONCURRENCY AND SYNCHRONISATION

calculi. We already have in the literature different approaches involving such
calculi. For example, Kneale’s (1958) tables of development (studied 'in depth
by Shoesmith & Smiley (1978)) and Ungar’s (1992) multiple-conclusion ND.

After surveying the main research programmes, we sketch a proposal which
is similar to both Kneale’s and Ungar’s in various aspects, mainly in the presen-
tation of a muitiple conclusion calculus in ND style. Rather than just presenting
yet another ND proof system, we emphasise the use of ‘modern’ graph-theoretic
techniques in tackling the ‘old’ problem of adequacy of multiple-conclusion ND.
Some of the techniques have been developed for proof-nets (e.g. splitting theo-
rem, soundness criteria, sequentialisation), and have proved themselves rather
clegant and useful indeed.

Keywords:  proofs as graphs, natural deduction, multiple-conclusion, geometry of deduction

Motivation

In 1980’s various studies in “Logic and Computation” were pursued with
the intention of giving a logical treatment of computer programming issues.
Some of these studies have brought in a number of interesting proof-theoretic
developments, such as for example:

= the functional interpretation of logical connectives! via deductive sys-

tems which use some sort of labelling mechanism:

(i) Martin-Lof’s Intuitionistic Type theory [53], which contributed to a
better understanding of the foundations of computer science from a type-
theoretic perspective, drawing on the connections between constructive
mathematics and computer programming;

and

(ii) the Labelled Deductive Systems, introduced by Gabbay [34], which,
arising from the need of computer science applications to handle “meta-
level” aspects of logical system in harmony with object-level, helped
providing a more general alternative to the “formulae-as-types” paradigm;

Linear Logic, introduced by Girard in [38]. Since then it has become
very popular in the theoretical computer science research community.
The novelty here is that the logic comes with new connectives forming
a new logical system with various interesting features for computer sci-
ence, such as the possibility of interpreting a sequent as the state of a
system and the treatment of a formula as a resource.

In recent years, linear logic has been established as one of the most widely
used formalisms for the study of the interface between logic and computa-
tion. One of its key aspects represents a rather interesting novelty for studying
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the geometry of deductions: the concept of proof-nets. The theory of proof-
nets developed out of a comparison between the sequent calculus and natural
deduction (ND) Gentzen systems [36] as well as from an analysis of the im-
portance of studying the structural properties of proofs through a geometrical
perspective.

Another recent work which also presents a geometrical analysis in the study
of structural properties of proofs has been developed by Carbone in collabora-
tion with Semmes [14, 15, 16, 17, 18, 22]. Again in the context of “Logic and
Computation”, the analysis of Carbone and Semmes is motivated by questions
which involve the middle ground between mathematical logic and computa-
tional complexity. In the beginning of the 1970’s, Cook used the notion of
satisfiability (a concept from logic) to study one of the most fundamental di-
chotomies in theoretical computer science: P versus NP. By the end of the
decade Cook and Reckhow had established an important observation which
puts emphasis on a relevant direction in complexity theory: NP is closed under
complementation iff there is a propositional proof system in which all tau-
tologies have a polynomial size proof [27]. This represents an important re-
sult linking mathematical logic and computational complexity since it relates
classes of computational problems with proof systems. Motivated by questions
such as the length of proofs in certain classical proof systems (in the style of
Gentzen sequent calculus), Carbone set out to study the phenomenon of expan-
sion of proofs, and for this purpose she found in concept of logical flow graphs,
introduced by S. Buss [13], a rather convenient mathematical tool. Using the
notion of logical flow graph, Carbone was able to obtain results such as, for
example, providing an explanation for the exponential blow up of proof sizes
caused by the cut-elimination process. With appropriate geometrical intuitions
associated with the concept of logical flow graph, Carbone and Semmes devel-
oped a combinatorial model to study the evolution of graphs underlying proofs
during the process of cut-elimination.

Now, if on the one hand we have

» Girard’s proposal of studying the geometry of deductions through the
concept of proof-nets, (in [40] he presents various arguments in defense
of his programme, emphasizing the importance of “finding out the geo-
metrical meaning of the Hauptsatz, i.e. what is hidden behind the some-
what boring syntactical manipulations it involves”),

on the other hand, there is

m Carbone’s systematic use of logical flow graph in a geometrical study
of the cut-elimination process, yielding a combinatorial model which
uncovers the exponential expansion of proofs after cut-elimination.

Although with different ends and means these two works concern the study
of structural features of proofs by a geometric perspective. Back in the 1970’s
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Abstract The essential interaction between classical and intuitionistic features in the sys-
tem of linear logic is best described in the language of category theory. Given
a symmetric monoidal closed category C with products, the category C x C°?
can be given the structure of a *-autonomous category by a special case of the
Chu construction. The main result of the paper is to show that the intuition-
istic translations induced by Girard’s trips determine the functor from the free
*-autonomous category .4 on a set of atoms {P, P’,...} to C x C°?, where C
is the free monoidal closed category with products and coproducts on the set of
atoms {Po, Pr, P5, P}, ...} (apair Po, Py in C for each atom P of A).
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1. Preface

An essential aim of linear logic [16] is the study of the dynamics of proofs,
essentially normalization (cut elimination), in a system enjoying the good proof-
theoretic properties of intuitionistic logic, but where the dualities of classical
logic hold. Indeed classical linear logic CLL has a denotational semantics
and a game-theoretic semantics; proofs are formalized in a sequent calculus,
but also in a system of proof-nets and in the latter representation cut elimina-
tion not only has the strong normalizability property, but is also confluent. Al-
though Girard’s main system of linear logic is classical, considerable attention
in the literature has also been given to the system of intuitionistic linear logic
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ILL, where proofs are also formalized in a sequent calculus and in a natural
deduction system. A better understanding of the relations between CLL and
ILL is one of the goals to which the present work is intended as a contribution.

The fact that intuitionistic logic plays an important role in the architecture
of linear logic is not surprising: as indicated in the introductory section of Gi-
rard’s fundamental paper [16], a main source of inspiration for the system was
its denotational semantics of coherent spaces, a refinement of Scott’s seman-
tics for the A-calculus. Fundamental decisions about the system CLL were
made so that CLL has a semantics of proofs in coherent spaces in the same
way as intuitionistic logic has a semantics of proofs in Scott’s domains. But
linear logic is not just a refinement of intuitionistic logic, such as ILL: there
are expectations that CLL may tell us something fundamental about classical
logic as well, indeed, that through linear logic a deep level of analysis may
have been reached from which the “unity of logic” can be appreciated [17].
Therefore the relations between classical and intuitionistic components of lin-
ear logic deserve careful investigation.

A natural points of view to look at this issue is categorical logic. 1t has been
known for years that monoidal closed categories provide a model for intuition-
istic linear logic, though a fully adequate formulation of the syntax and of
the categorical semantics of ILL especially with respect to the exponentials,
has required considerable subtlety and effort [4, 5, 6]. It is also well known
that *-autonomous categories give a model for classical linear logic [3]. The
appendix to [2] provides a method, due to Barr’s student Chu, to construct
*-autonomous categories starting from monoidal closed ones.

In our proof-theoretic investigation we encounter a special case of Chu’s
construction, namely Chu(C, T) where C is a symmetric monoidal closed cat-
egory with terminal object T. More specifically, given the free *-autonomous
category A on a set of objects (propositional variables) { P, P', ...} and given
the symmetric monoidal closed category C with products, free on the set { Pp,
Py, P, Py, ...} (apair Pp, Py in C for each atom P of A), the category C xCP
can be given the structure of a *-autonomous category by Chu’s construction.
Indeed, since the dualizing object is the terminal object, Chu(C, T) is just
C x C° and the pullback needed to internalize the homsets is in fact a prod-
uct. Here the tensor product (X, X°?) ® (Y,Y°P) must be an object of the
form (X ® Y, (X —o YP) x (Y —o X°P)) and the identity of the tensor
must be (1, T). Dually, the par (X, XP)p(Y,Y ) is defined as ((X? —o
Y) x (Y —o X),X° ® Y°) and the identity of the par must be (T, 1).
Now since A is free, there is a functor F' of *-autonomous categories from A
to (C x C°P) taking P to (Po, Pr). This is well-known, but so far no famil-
iar construction had been shown to correspond to the functor F' given by the
abstract theory. The main contribution of this paper is to show that a familiar
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proof-theoretic construction, namely Girard’s trips [16] on a proof-net, repre-
sent the action of such a functor on the morphisms of .A. Of course one could
state the same result using Danos—Regnier graphs, as it was done in [8], but as
we shall see a simpler definition of orientations is possible in terms of Girard’s
trips.

The key idea is simple enough and may be illustrated as a logical translation
of formulas and proofs in CMALL into formulas and proofs in IMALL. In
the translation a CMALL sequent S: - I', A becomes polarized: a selected
formula-occurrence A is mapped to a positive formula-occurrence Ao in the
succedent of an intuitionistic sequent S’ (the output part of a logical computa-
tion); all other formula-occurrences C in I' are mapped to negative Cf in the
antecedent of S’ (the input part). The polarized occurrences of an atom A be-
come Ag, Ay, just two copies of A. Negation changes the polarity. For other
complex polarized formulas, the polarization of the immediate subformulas is
uniquely determined — for instance, (ApB); becomes A; ® By — except in
the cases of (ApB)o and (A ® B);. In these cases we take the product (log-
ically, the with) of two possible choices (the “switches” in a proof-net): for
instance, (ApB)o is encoded as (A; —o Bo)&(Br — Aop). The intuitive
motivation is clear: ApB has a reading simultaneously as the internalization
of the function space Hom 4( A+, B) and of the function space Hom 4 (B, A).
The fact that the translation is functorial here means, roughly, that it is defined
independently on the formulas (objects) and on the proofs (morphisms) and
that it admits the rule of Cut (composition of morphisms); it is also compatible
with cut-elimination. In this form the result can be easily proved within the
formalisms of the sequent calculi for CMALL and IMALL. However, when
we ask questions about the faithfulness and fullness of such a functor, thus
also asking questions about the identity of proofs in linear logic, we find it
convenient to consider the more refined syntax of proof-nets.

On the other hand, proof-nets are also useful to highlight the geometric as-
pect of certain logical properties; indeed ideas related to the present result
have already proved quite useful in the study of what is sometimes called
the géometrie du calcul (geometry of computations). Our own investigation
has been motivated by the desire to understand and clarify the notion of a
proof-net and the present result appears to reward many collective efforts in
this direction. Given a proof-structure, i.e., a directed graph where edges
are labeled with formulas, a correctness criterion characterizes those proof-
structures which correspond to proofs in the sequent calculus. Girard’s original
condition ( “there are no short trips”) [16] is exponential in time on the size of
the proof-structure, but other quadratic criteria were found soon after (among
others, one was given in [7]). Thus it is natural to ask what additional informa-
tion is contained in the construction of Girard’s trips other than the correctness
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We propose a notion of symmetric reduction for a system of proof-nets for Mul-
tiplicative Affine Logic with Mix (MAL + Mix) (namely, multiplicative linear
logic with the mix-rule the unrestricted weakening-rule). We prove that such a
reduction has the strong normalization and Church-Rosser properties. A notion
of irrelevance in a proof-net is defined and the possibility of cancelling the ir-
relevant parts of a proof-net without erasing the entire net is taken as one of the
correctness conditions; therefore purely local cut-reductions are given, minimiz-
ing cancellation and suggesting a paradigm of “computation without garbage
collection”. Reconsidering Ketonen and Weyhrauch’s decision procedure for
affine logic [15, 4], the use of the mix-rule is related to the non-determinism of
classical proof-theory. The question arises, whether these features of classical
cut-elimination are really irreducible to the familiar paradigm of cut-elimination
for intuitionistic and linear logic.

affine logic, proof-nets
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1. Introduction

1. Classical Multiplicative Affine Logic is classical multiplicative linear logic
with the unrestricted rule of weakening, but without the rule of contraction.
Classical affine logic is a much simpler system than classical logic, but it pro-
vides similar challenges for logical computation, both in the sense of proof-
search and of proof normalization (or cut-elimination). For instance, the prob-
lem of confluence of cut-elimination (the Church—-Rosser property) is already
present in affine logic, but here we do not have the problem of non-termination.
Affine logic is also simpler than linear logic from the point of view of proof-
search: e.g., propositional linear logic is undecidable, yet becomes decidable
when the unrestricted rule of weakening is added. Provability in constant-only
multiplicative linear logic is NP-complete, yet it is decidable in linear time for
constant-only multiplicative affine logic, as it is shown below.

The tool we will use here, proof-nets for affine logic, is older than the notion of
a proof-net for linear logic. In a 1984 paper [15], J. Ketonen and R. Weyhrauch
presented a decision procedure for first-order affine logic (called then direct
logic) which essentially consists in building cut-free proof-nets, using the uni-
fication algorithm to determine the axioms. The 1984 paper is sketchy and it
has been corrected (see [3, 4], where the relation between the decision proce-
dure and proof-nets for MLL ™ are discussed), but it contains the main ideas
exploited in the present paper, namely, the construction of proof-nets free from
irrelevance through basic chains. Yet neither the 1984 paper nor its 1992 re-
visitation contained a treatment of cut-elimination.

2. The problem of non-confluence for classical affine logic is non-trivial: the
following well-known example (given in Lafont’s Appendix to [14]) reminds
us that the Church—-Rosser property is non-deterministic under the familiar
asymmetric cut-reductions.

Example 1
di dz d dz
FT o, _EA Y FA
FT,A A -A weakenings weakenings
FT,A reduces to FTUA or to FT,A

Asymmetric reductions.

Indeed classical logic gives no justification for choosing between the two in-
dicated reductions, the first commuting the cut-rule with the left application of
the weakening-rule (“pushing ds up into d;”, thus erasing ds), the second com-
muting the cut-rule with the right application of the weakening-rule (“push-



Two Paradigms of Logical Computation in Affine Logic? 113

ing d; up into dy”, thus erasing d;). Therefore the cut-elimination process in
MAL, a fortiori in LK, is non-deterministic and non-confluent.

Compare this with normalization in intuitionistic logic. In the typed A calculus
a cut / left weakening pair corresponds to substitution of ¢ : A for a variable
z : A which does not occur in u : B; such a substitution is unambiguously
defined as u[t/z] = u. Moreover in Prawitz’s natural deduction NJ [19] the
rule corresponding to weakening-right is the rule “ex falso quodlibet” and the
normalization step for such a rule involves a form of n-expansion:

d d
d Do
: L L
L A B

AAB reduces to ANB

Such a reduction does not yield cancellation. Thus the cut-elimination proce-
dure for the intuitionistic sequent calculus LJ inherits one sensible reduction-
strategy from natural deduction: “push the left derivation up into the right
one”. In the case of a weakening | cut pair it is always the left dedution to be
erased.

3. Here we are interested in exploring an obvious remark: for classical logic
in addition to the asymmetric reductions of Example 1, there is a symmetric
possibility, the “Mix” of d; and da.

Example 1 cont.

& @
z z i ds
T A : :
F,LA ™ FA,-4 " KT FA
FT,A reduces to FT,A L

Symmetric reduction.

Instead of choosing a direction where to “push up” the cut-rule, we do both
asymmetric reductions, using the mix-rule.

The idea is loosely related to a procedure well-known in the literature for the
case when both cut-formulas result from a contraction-rule, with the name
cross-cut reduction. Let dy and dg be derivations of the left and right premises
of the cut-rule:



