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Biostatistical applications in molecular biology have increased tremendously
in recent years. For example, a search of the Current Index to Statistics
indicates that there were 62 articles published during 1995–1999 that had
“marker” in the title of the article or as a keyword. In contrast, there were 29
such articles in 1990–1994, 17 in 1980–1989, and only 5 in 1970–1979.  As the
number of publications has increased, so has the sophistication of the statisti-
cal methods that have been applied in this area of research.

In Biostatistical Methods, we have attempted to provide a representative
sample of applications of biostatistics to commonly occurring problems in
molecular biology, broadly defined. It has been our intent to provide sufficient
background information and detail that readers might carry out similar analy-
ses themselves, given sufficient experience in both biostatistics and the basic
sciences. Not every chapter could be written at an introductory level, since, by
their nature, many statistical methods presented in this book are at a more
advanced level and require knowledge and experience beyond an introductory
course in statistics. Similarly, the proper application of many of these statisti-
cal methods to problems in molecular biology also requires that the statistical
analyst have extensive knowledge about the particular area of scientific
inquiry. Nevertheless, we feel that these chapters at least provide a good start-
ing point, both for statisticians who want to begin work on problems in
molecular biology, and for molecular biologists who want to increase their
working knowledge of biostatistics as it relates to their field.

The chapters in this volume cover a wide variety of topics, both in terms of
biostatistics and in terms of molecular biology.  The first two chapters are very
general in nature:  In Chapter 1, Emmanuel Lazaridis and Gregory Bloom pro-
vide an historical overview of developments in molecular biology, computa-
tional biology, and statistical genetics, and describe how biostatistics has
contributed to developments in these areas. In Chapter 2, Gregory Bloom and
his colleagues describe a new paradigm linking image quantitation and data
analysis that should provide valuable insight to anyone working in image-based
biological experimentation.

The remaining chapters in Biostatistical Methods are arranged in approxi-
mately the order in which the corresponding topic or methods of analysis would
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be utilized in developing a new marker for exposure to a risk factor or for a
disease outcome. The development of such a marker would most likely begin
with an examination of the genetic basis for one or more phenotypes. Chapters
3 and 4 deal with two of the most fundamental aspects of research in this area:
microarray analysis, which deals with gene expression, and proteomics, which
deals with the identification and quantitation of gene products, namely, pro-
teins.  Research in either or both of these areas could produce a biomarker
candidate that would then be scrutinized for its clinical utility.

Chapters 5 and 6 deal with issues that arise very early in studies attempting
to link the results of experimentation in molecular biology with exposure or
disease in human populations. In Chapter 5, I discuss many of the issues asso-
ciated with determining whether a new biomarker will be suitable for studying
a particular E-D association. Jane Goldsmith, in Chapter 6, discusses the
importance of designing studies with sufficient numbers of subjects in order to
attain adequate levels of statistical power.

Chapters 7 and 8 are concerned with genetic effects as they relate to
human populations. In Chapter 7, Peter Jones and his colleagues describe sta-
tistical models that have proven useful in studying the associations between
disease and the inheritance of particular genetic variants.  In Chapter 8, Stan
Young and his colleagues describe sophisticated statistical methods that can be
used to control the overall false-positive rate of the perhaps thousands of statis-
tical tests that might be performed when attempting to link the presence or
absence of particular alleles to the occurrence of disease.

Jim Dignam and his colleagues, in Chapter 9, describe the statistical issues
that one should consider when evaluating the clinical utility of molecular char-
acteristics of tumors, as they relate to cancer prognosis and treatment efficacy.
Finally, in Chapter 10, Greg Rempala and I describe methods that might be
used to validate statistical methods that have been developed for analyzing the
E-D association in specific situations, such as when the exposure has been
characterized poorly.

I would like to express my sincere appreciation to the reviewers of the vari-
ous chapters in this volume: Rich Evans of Iowa State University, Mario Cleves
of the University of Arkansas for Medical Sciences, Stephen George of the
Duke University Medical Center, Ralph O’Brien of the Cleveland Clinic Foun-
dation, and Martin Weinrich of the University of Louisville School of Medi-
cine. I am also indebted to John Walker, Series Editor for Methods in Molecular
Biology, and to Thomas Lanigan, President, Craig Adams, Developmental
Editor, Diana Mezzina, Production Editor, and Mary Jo Casey, Manager, Com-
position Services, Humana Press.

  Stephen W. Looney
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Linking Image Quantitation and Data Analysis

Gregory C. Bloom, Peter Gieser, and Emmanuel N. Lazaridis

1. A Shifting Paradigm
Until recently, image-based experimentation in molecular biology has been

primarily concerned with qualitative results produced as a result of such
experiments as Northern blots, immunoblotting, and gel electrophoresis. These
experiments result in a relatively small number of bands on an autorad or other
imaging medium. These bands or spots would be visually inspected to deter-
mine their “presence” or “absence,” or visually compared with other spots on
the medium to determine their relative intensities. Sometimes, comparisons
would be enhanced using quantities derived from densitometry analysis. Such
comparisons were often performed to provide a numerical summary of a clearly
visible difference. This summary may have been required for publication of
the experimental results. This approach seemed to serve the investigator well
because there existed no real need for accurate image quantitation or data
analysis and a simple qualitative result would suffice.

However, many recent advances in molecular biology, coupled with the
increasing knowledge of the human genome, have made possible the ability
to simultaneously test the expression level of several thousand individual
genes, as in the case of microarray analysis (see Chapter 3 by Gieser, et al.),
or hundreds of expressed proteins, as with two-dimensional (2-D) gel elec-
trophoresis (see Chapter 4 by Seillier-Moiseiwitsch, et al.). While this ability
is essential to further molecular biology research and is a giant leap forward
from more traditional approaches, it has raised several questions about the use
of the “old” paradigm of image quantitation and data analysis and whether
that paradigm can be successfully applied to these new image types. Several
characteristics of modern molecular biology experiments—including the need
to investigate and understand subtle changes in molecular quantities and the
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increasing sensitivity of quantitation to the imaging process—suggest that the
old paradigm must be modified. In this chapter, we suggest a new approach
that allows investigators to better handle the needs of image-based
experimentation.

To demonstrate why a new paradigm linking image quantitation and data
analysis is needed, and to better understand the scope of the problems faced
when analyzing a laboratory image, we briefly describe some of the new tech-
nologies and the image types they produce.

Microarray analysis (see Chapter 3 Gieser, et al.) is a procedure that allows
an investigator to simultaneously visualize the expression levels of thousands
of genes whose complementary sequence or a portion thereof has been arrayed
on a class slide or chip. The measurement of mRNA levels in, for instance, a
normal tissue or cell line to its paired experimental sample can elucidate which
genes and, indirectly, which proteins are present or absent, and their relative
expression levels in one condition as compared to another. This gives the
investigator a starting point to determine which genes or groups of genes are
important in a particular experimental context. Regardless of the type of
question(s) being asked, this experiment invariably results in a large image or
set of images with thousands of features, each of which needs to be geometri-
cally defined into a region of interest (ROI) and subsequently quantitated. The
microscopic scale on which this kind of experiment is performed plays an
important role in determining the sensitivity of analytic results to the imaging
process. Ratios of quantities across images are frequently needed to compare
the relative expression across conditions.

The second type of modern biological image-based experimentation is
termed proteomics. This is the science that deals with gene products, namely,
proteins, and concerns itself with the collection of proteins (the “proteome”)
produced by a particular cell or organism. Important information can be derived
from experiments seeking to establish whether specific proteins are made in
higher or lower concentrations in response to disease, drug treatment, or expo-
sure to toxicants. The most commonly used approach to protein identification
and quantitation is 2-D gel electrophoresis, which combines a first dimension
separation by isoelectric focusing (IEF) with a second dimension separation by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
Whereas microarray experiments result in images with features whose
geometry is determined by the physical assembly of samples on a substrate,
proteomics 2-D gel images consist of many spots whose location and shape
cannot be prespecified easily. As with the microarray, the 2-D gel image
consists of several hundred to several thousand features of varying intensity
that need to be characterized. Each feature may or may not be important in the
context of a given experiment.
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In both microarray and proteomics 2-D gel contexts, effects due to image
background, signal-to-noise ratio, feature imaging response and saturation, and
experimental design and execution must be accounted for and factored into the
overall image quantitation procedure. Any and all of these factors can have far-
reaching effects on the subsequent data analysis. Under the old paradigm,
determination of the effects of variation in these factors on subsequent data
analysis is impossible, if for no other reason than that image quantitation would
typically proceed under a single set of conditions, in a step that would never be
revisited. If subtle differences in the performance of image quantitation may
substantially affect the subsequent data analysis, then the old paradigm simply
no longer serves, as it allows only a single best “guess” at what imaging
parameters are optimal and allows for no testing to see if the guess was correct.

A key point of the discussion of our new paradigm for treating images from
biological experimentation is that image quantitation can have a potentially
large effect on the data that are being obtained and these effects would feed
through the subsequent data analysis. In any imaging experiment there exists
an infinitely large number of ways in which an image can be quantitated, all of
which may be “correct” in that they all lie in some reasonable envelope of
imaging procedures. Among these methods, and even across subtle variations
of a single method, substantial variability in quantitation may result. This is
particularly important when one considers searching for subtle trends or effects
in a data set. For the newer types of image-based biological experimentation,
such subtle differences in how image quantitation is performed can completely
alter the data analysis outcome. A method is needed for linking the imaging
and data analysis processes so that the one can feed into the other, enabling the
investigator to understand the effect of choices made in image quantitation on
the resulting data analysis. The reverse situation is also important, as the results
of data analysis can drive the choice of procedures for image quantitation. For
example, an analysis of data derived from a particular procedure for image
quantitation using a specific background cutoff value in a given image may
demonstrate that the imaging procedure eliminated too many features of the
image from consideration, necessitating that the image quantitation process be
revisited. The idea of using the results of one of the two steps in this process to
drive the other process is central to the new paradigm.

Such an approach is important for the analysis of the newer types of biological
images produced today because of their sheer complexity and the large number
of features contained within each image. In hindsight it seems that the traditional
segregation of image analysis from the data analytic process may have been sub-
optimal for analysis of more traditional types of biological experiments as well.

In this chapter, we introduce a new paradigm with an accompanying schema
for the treatment of experimentation involving images and their subsequent
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data analysis, and point out the benefits of this new approach. The new
approach encourages cooperation between image quantitation and data analy-
sis. Ideally, this implies that the two processes should be performed by a single
software application. While not necessary, integration of imaging and statisti-
cal software tools can make application of the new paradigm easier, as we will
describe and illustrate in detail later in the chapter.

2. Conceptualization of the New Paradigm
The first action with any imaging experiment is to produce the medium with

the features or items to be imaged. The medium can be a microarray chip or
slide, a proteomics 2-D gel, or any number of other experimental media. The
second step is image acquisition. This can be as simple as scanning a piece of
exposed film or as complex as scanning a 2-D SDS-PAGE gel in a proteomics
experiment. To illustrate the use of our novel paradigm for the image
quantitation and data analysis step of an imaging experiment, a workflow
diagram is shown in Fig. 1.

The first step in this process is image quantitation. Image quantitation
consists of translating the underlying pixel information in the image into useful
data through the use of imaging methods. The set of imaging methods and their
associated parameters constitute an imaging envelope. Methods in the imaging
envelope may differ in how they treat background signal information, identify
signal in the presence of noise, characterize feature geometry, and identify
features with labels. The parameters that are required by a particular method to
perform quantitation can include numerical summaries of background signal,
expected signal-to-noise ratios, or signal thresholds for the image. The methods
and parameter values defining the imaging envelope are what determine the
values of the resulting data sets (shown below the imaging envelope in Fig. 1).
It is important to note here that even subtle changes in the imaging envelope
can lead to large changes in the acquired data set(s). These changes will, in
turn, alter the inferences obtained by application of the statistical algorithm. It
is therefore very important to incorporate a reality check after data analysis
and a subsequent feedback mechanism for improving specification of the
imaging envelope. Modifying the envelope in turn will necessarily alter the
inferences. Note that in some situations, particularly when formal analytic
protocols must be consistent over multiple analyses, feedback may be undesir-
able beyond an exploratory stage.

After the data sets are obtained, a single statistical algorithm is applied to
each individually. The type of statistical algorithm used is not critical to the
paradigm and may be anything from a t-test to linear regression. In one possible
path of workflow, the inferences are grouped into a inference set, representing
the individual values obtained from application of the statistical algorithm. At
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this point a meta-analysis of the inference set, using analysis of variance
(ANOVA), for example, is performed to arrive at a summary description or
meta-inference. This summary result incorporates not only the final outcome
of the data analysis, but also a measure of the variability or potential error
introduced by the imaging process.

The other possible path through the work flow diagram summarizes the data
sets obtained as a result of image quantitation into a single meta-data set before
application of a statistical algorithm. This treatment leads to a single inference
at this point in the flow and no further analysis is necessary. This approach has
an advantage in that it is more amenable to specification of distributions for
parameters characterizing the imaging envelope. For example, when one is
interested in integrating out the effect of a particular parameter from a specific
imaging algorithm, one can place a prior distribution on that parameter and
calculate an inferential posterior distribution using a Bayesian approach. In

Fig. 1. Work flow for an imaging experiment using the new paradigm.
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addition, the loss of information resulting from the application of the statistical
algorithm occurs at only one point in the flow, making it easier to evaluate
goodness-of-fit. Disadvantages of this approach include the fact that the image
quantitation procedures must be “compatible” across the imaging envelope so
they can be combined in the context of conducting a single statistical opera-
tion. In the alternative approach, only the intermediate inferences, and not their
underlying data sets, need be combined for the subsequent statistical analysis
leading to the meta-inference. Therefore, different statistical algorithms may
be applied to each individual data set as long as the inferences can be meta-
analyzed, making this approach more flexible.

When the process illustrated in Fig. 1 is integrated in a single software
platform, models of the experiment that account for use of different imaging
parameters and quantitation procedures can be more readily explored, reducing
the potential for imaging-related biases in the analytic results. The sensitivity
of any given analysis to changes in quantitation procedure can also be rapidly
investigated, thereby increasing the quality of information derived even from
simple statistical models. The next section describes a novel application that
allows this conceptual solution to be practiced in a real-world environment.

3. Application of the Paradigm: The Midas Key Project
While it is easy to conceptually cycle through several rounds of quantitation

and data analysis using the approach described in Subheading 2., it is much
more difficult to perform this task in a real-world environment. This is especially
true if the processes of image quantitation and data analysis are physically sepa-
rated. In fact, this is the situation that currently exists. Many systems are avail-
able for image analysis, including home-grown and commercial, general and
special-purpose packages such as Optimas (Media Cybernetics, Inc.; general
purpose imaging), SpotFinder (TIGR; microarray slide imaging), and CAROL
(Free University of Berlin; proteomics 2-D gel imaging). Indeed, many vendors
of biological equipment produce and distribute their own software, which they
bundle with their equipment. While some of the available packages may provide
sophisticated image-analysis tools, little sophistication is available in the included
mathematical and statistical methods for analysis of the resulting data. Con-
versely, popular analysis packages such as SAS, SPSS, and S-Plus, while pro-
viding sophisticated models for data analysis, lack any facility for image
quantitation. Thus, the typical scientific segregation of the analytic role from
the process by which image-related data are obtained is also reflected in avail-
able software. While such software may suffice to conduct the kinds of  tradi-
tional biological experimentation that relied primarily on qualitative examination
of images, it was recognized that use of such software in the context of the new
biological experimentation would be suboptimal.
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The paradigm of marrying imaging and mathematical modeling and statisti-
cal tools to analyze the results of modern biological experimentation could be
implemented using the disparate software applications described previously.
This approach has several limitations, however, foremost of which is the abil-
ity to quickly incorporate the results derived from either of the two analytic
domains into the other. One would need to go back and forth between the
imaging and data analysis exercises hundreds or thousands of times. A plat-
form that would allow imaging and data analyses to proceed in tandem would
substantially enhance the analytic exercise. Thus, we have been developing an
application that incorporates all aspects of image and data analysis along with
data storage into a single unit. We describe the design and merits of this appli-
cation in the paragraphs that follow.

The goal of the MIDAS Key Project is to build an integrated imaging
and modeling analytic environment over a sophisticated database backbone.
By borrowing and uniting technologies from multiple fields, we seek to
empower researchers in basic and clinical imaging studies with a sophisti-
cated analytic toolbox.

Figure 2 illustrates the three major components that constitute the MIDAS
Key Project. A description of each of the elements contained in each of the
components is also given. The top-level box is the Java application. This is the
central component of the key project and ties the other components together.
The Problem Domain of the application contains the objects that define the
underlying data structures used for the project. The Java application also
controls interactions with the database; this is done in the Database area. The
third area is the User Interface. This package is responsible for all aspects of
interaction with the application, including the menu-driven frame-based inter-
face and image display. The use of Java allows us to maintain cross-platform
independence; to integrate tools existing in multiple, otherwise unrelated,
applications; and to easily deploy a client-server multithreaded model system.

Fig. 2. Diagram of the three components constituting the MIDAS Key Project and
their elements.
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We are currently using Java 2 as the basis for our code, supplemented by the
Java Advanced Imaging (JAI) Application Programming Interface (API). The
JAI API is the extensible, network-aware programming interface for creating
advanced image-processing applications and applets in the Java programming
language. It offers a rich set of image processing features such as tiling,
deferred execution, and multiprocessor scalability. Fully compatible with the
Java 2D API, developers can easily extend the image-processing capabilities
and performance of standard Java 2D applications.

The current Java Development Kit (JDK) fully incorporates Swing compo-
nents (which are used for windowing functions) and the 2D API, both of which
are employed throughout our code. The Java Database Connectivity (JDBC) API
allows developers to take advantage of the Java platform’s capabilities for indus-
trial-strength, cross-platform applications that require access to enterprise data.

The database component of the MIDAS Key Project contains the table
spaces that hold all long-term storage needed in the application. The tables
contained here include those for storing project, experiment, and image meta-
data; tables to store the images and their associated geometries; and mapping
tables to tie the data together. For our work we chose to employ Oracle for all
data storage and management. Oracle provides many unique technical features
that we leverage in the Key Project including Java integration, extensibility
and scalability, and support for multimedia data types that allow for efficient
integration of imaging and meta-data information.

The most important characteristic of an analytical engine in the Key Project
is its amenability to integration with other software, including novel statistical
methods. A second characteristic is the ease with which it interacts with Java
applications. We chose to employ the S-Plus statistical processing system for
our work in spite of the fact that it is not fully Java aware. A fully Java-aware
analytic engine would allow dynamic statistical methods to be incorporated
into our Java interfaces, allowing application of real-time graphical data
exploration methods and interactive statistical diagnostics. In addition, we can
conveniently employ the S-Plus system on desktop computers separately from
our Java interfaces, assisting in rapid methods development and evaluation.

Figure 3 shows a typical application of the Key Project system, focusing on
the Oracle backbone, which is used for object persistence. First, a series of
image-dependent or imageless layers, upon which analysis will be performed,
are loaded into the system (step 1). Memory is carefully managed at this step
and throughout the process, as it is impossible to expect either client or server
to simultaneously manage, say, 40 microarray images, each of which is
upwards of 40 Mb long. A rendered composite image, if available, is displayed
on the client according to user-adjustable preferences. We allow for imageless
layers so that we might work in our analytic environment with data obtained
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through sources whereby the associated images are not available. When images
are available, we proceed to establish one or more geometries for each layer
(step 2). By a geometry we mean a set of closed, possibly overlapping regions-
of-interest (or shapes), each of which is not exclusively contained in any other.
Geometry may be established by hand through a sketchpad interface or by
application of a geometrization algorithm. The use of geometrization algo-
rithms allows us to model in a single system images with formats that are
largely fixed by the investigator, such as, for example, results from microarray
studies, images with semifixed geometries such as from proteomics studies,
and images with free-form geometries such as from cell or tissue microscopy.
Labels are then attached by reference to one or more labeling algorithms (end
of step 2). These may be relatively simple—typically, microarray labels are
established by considering the spot centers—or fairly complex—protein la-
bels on 2-D gels are established by considering the overall geometry and rela-
tive positions of shapes in that geometry. Geometries are calculated and labels
established. Next, quantitation is carried out (step 3) by referencing one or
more quantitation algorithms, which execute looping over shapes in the geom-
etry. Quantitation may result in all kinds of information, including: (1) primary
signal information, such as average or median intensity of the pixels in regions
of interest; (2) signal variability information, such as pixel variance, kurtosis,

Fig. 3. Schematic of the MIDAS Key Project system showing Oracle backbone.
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or direction of one or more principal components; (3) signal location informa-
tion, such as coordinates of the intensity mode within a region of interest; and
(4) cross-image signal comparison information, such as pixel correlation
between two images (used for quality control). The design of our system allows
for substantial extensibility in the application of geometrization, labeling, and
quantitation algorithms. Depending on the algorithm, quantitation may be
performed by server-side Java or C++ code or by the S-Plus Server system.
Note that geometrization algorithms may also be employed within the
quantitation step, without requiring persistent storage of the resulting geom-
etry, as might be needed when one wishes to compare quantitative performance
of two spotfinding algorithms within regions of interest in a specified geom-
etry. External data, for which no images are available, are also retrieved at this
time. Analysis of the quantitation results occurs in step 4. We employ standard
methods such as simple regressions, ANOVA, and principal components analy-
ses by referring to the methods built into the S-Plus analytic engine. Novel
mathematical models are included by incorporating C++ or Fortran compiled
code into the S-Plus engine or by direct reference to external code on the
server. Graphical, tabular, or data-formatted results can be exported for reports
or stored on the Oracle backbone for later use (step 5).

Initial exploration of multiple image-based experiments suggests that the
variability associated with application of reasonable but differing imaging proce-
dures to the same images is nontrivial. The total effect this variability will have on
various statistical models is unknown at present. Without reference to our new
paradigm for imaging and data analysis, it would remain largely unknowable.

4. Midas Center at USF—An Interdisciplinary
Implementation of the New Paradigm

The new paradigm has changed the way researchers at our institution inter-
act to analyze imaging-based experiments. The University of South Florida
(USF) Center for Mathematical-Modeling of Image Data Across the Sciences
(MIDAS) brings together faculty and student investigators from disparate fields
to develop sophisticated mathematical and statistical models of data derived
from images. Under the umbrella of MIDAS, we seek to address pressing
analytic needs related to molecular biology experiments in many areas,
including microarray, microscopy, proteomics, and flow cytometry. In each
kind of experiment, an image or a set of images is typically derived by a primary
investigator—say, a biologist or pathologist—in an experimental context. To
get from the images to informative research conclusions, the steps of
quantitation, analysis, and interpretation must be traversed. In today’s research
environment, the primary investigator usually directs quantitation of the
images, sometimes in conjunction with an imaging scientist. The resulting data
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may then be given to a statistician or other numerical analyst. The basic tenet
of the MIDAS Center is that segregation of the analytic role in this context is
suboptimal. At the present time, the MIDAS Center is integrating researchers
from multiple schools and programs around USF. Investigators from programs
in Biology, Bioengineering, Computer Science, Mathematics, Statistics, Medi-
cine, Medical Imaging, Oncology, Biochemistry, Pathology, and Public Health
are collaborating to address important analytic problems.

5. Example
Synchronous implementation of the new paradigm in both software and the

collaborative environment allows for easy conduct of joint imaging and analy-
sis experiments. In this section we first present a hypothetical experiment
employing the new paradigm, and then illustrate application of the paradigm to
an image using the MIDAS Key Project.

A hypothetical experiment using the new paradigm might be the following.
Suppose we have conducted an experiment using 40 microarray slides that were
assembled on two different days. We are concerned that our data analysis might
be sensitive to problems we suspect with the microarrayer pins, and we have
developed three combined sets of geometrization, labeling, and quantitation
algorithms that we can apply to these data, each of which has some benefits
and some drawbacks in terms of ability to adjust the resulting data for experi-
mental difficulties. Each algorithm additionally has some imaging parameters
that can be specified by the user, such as background pixel intensity cutoffs,
complexity-cost, scale, or tolerance parameters. Suppose there are five such
parameters in each algorithmic set, each having a low, medium, or high value
in a reasonable range. Using the Key Project system, one could analyze the
microarray slide images using each of the algorithm sets and a range of param-
eters to obtain, say, an analysis based on each of 3 × 3 × 5 = 45 combinations of
imaging methods. These analyses could then be averaged and deviant analytic
results investigated using statistical meta-analysis techniques that would also
be built into the system. In addition, we could consider employing Bayesian
statistical methods to average-out the effect of imaging-related variability from
the analysis, thereby obtaining a composite estimate that does not rely on a
specific imaging protocol.

In the following example, we used the MIDAS Key Project to specify an
imaging envelope around a spotted array image, having the usual red and
green channels. For simplicity, rectangular areas were drawn on the image to
identify 100 spots, and only two imaging choices were compared. For each
of the rectangles, quantitation proceeded by setting a background threshold
and computing the average pixel intensity. Two different threshold values
were used, 5 and 25. These background levels are virtually indistinguishable
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when visualized; visual comparison with the TIGR image suggested that either
may be a reasonable choice. Thus the imaging envelope consisted of two
members. The statistical analysis consisted of estimating fold change between
the red and green channel and computing the corresponding rank of each gene.

Figure 4 presents a comparison of the relative ranks of the genes, across this
simple imaging envelope. The height of the curve is the number of genes in the
intersection of the top x ranked using a background value of 25 vs a background
of 5. For example, at the value 10 on the horizontal axis, the height of the curve
is 7, indicating that only 7 of the genes using a background of 25 overlap with
the top 10 using a background of 5. Even in this simple example, inferences
derived using two parameter values in a reasonable neighborhood demonstrate
only 80% consistency. In more complicated situations, 30–60% or more
additional and previously unrecognized variability may be captured in a
reasonable imaging envelope. In this example, the inferences drawn across the
imaging envelope could be meta-analyzed to form a consensus inference
concerning the order of differentially expressed genes.

Fig. 4. Comparison of gene ranking of fold change between background levels of
5 and 25.
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6. Conclusion
In every experimental context in which images are captured in the process

of obtaining information, it is important to realize that the images are the data.
Historically, inadequate attention has been paid to this viewpoint. As a
researcher, one seeks conclusions that are resistant to the peculiarities of any
particular imaging methods used in the process by which inference is obtained.
The main benefit to an investigator is the ability to account for various factors
within the imaging phase of the experiment. As detailed earlier, factors such as
background signal, geometry characterization, and signal thresholding can and
do have an effect on the resulting data, which in turn affects downstream
analysis. Control and awareness of these influences allows an investigator to
conduct inference that better reflects the underlying biology. We suggest that
the MIDAS Key Project described in this chapter and the paradigm on which it
is based provide such an approach, enhancing the completeness of data analy-
sis and leading to better models for inference in image-based experiments.


