
1 Introduction

1.1 Problem Statements

In this book, we consider two kinds of dynamic optimization problems: op-
timal control problems and differential game problems.

In an optimal control problem for a dynamic system, the task is finding an
admissible control trajectory u : [ta, tb] → Ω ⊆ Rm generating the corre-
sponding state trajectory x : [ta, tb] → Rn such that the cost functional J(u)
is minimized.

In a zero-sum differential game problem, one player chooses the admissible
control trajectory u : [ta, tb] → Ωu ⊆ Rmu and another player chooses the
admissible control trajectory v : [ta, tb] → Ωv ⊆ Rmv . These choices generate
the corresponding state trajectory x : [ta, tb] → Rn. The player choosing u

wants to minimize the cost functional J(u, v), while the player choosing v

wants to maximize the same cost functional.

1.1.1 The Optimal Control Problem

We only consider optimal control problems where the initial time ta and the
initial state x(ta) = xa are specified. Hence, the most general optimal control
problem can be formulated as follows:

Optimal Control Problem:
Find an admissible optimal control u : [ta, tb] → Ω ⊆ Rm such that the
dynamic system described by the differential equation

ẋ(t) = f(x(t), u(t), t)

is transferred from the initial state

x(ta) = xa

into an admissible final state

x(tb) ∈ S ⊆ Rn ,
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and such that the corresponding state trajectory x(.) satisfies the state con-
straint

x(t) ∈ Ωx(t) ⊆ Rn

at all times t ∈ [ta, tb], and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized.

Remarks:

1) Depending upon the type of the optimal control problem, the final time
tb is fixed or free (i.e., to be optimized).

2) If there is a nontrivial control constraint (i.e., Ω �= Rm), the admissible
set Ω ⊂ Rm is time-invariant, closed, and convex.

3) If there is a nontrivial state constraint (i.e., Ωx(t) �= Rn), the admissible
set Ωx(t) ⊂ Rn is closed and convex at all times t ∈ [ta, tb].

4) Differentiability: The functions f , K, and L are assumed to be at least
once continuously differentiable with respect to all of their arguments.

1.1.2 The Differential Game Problem

We only consider zero-sum differential game problems, where the initial time
ta and the initial state x(ta) = xa are specified and where there is no state
constraint. Hence, the most general zero-sum differential game problem can
be formulated as follows:

Differential Game Problem:
Find admissible optimal controls u : [ta, tb] → Ωu ⊆ Rmu and v : [ta, tb] →
Ωv ⊆ Rmv such that the dynamic system described by the differential equa-
tion

ẋ(t) = f(x(t), u(t), v(t), t)

is transferred from the initial state

x(ta) = xa

to an admissible final state

x(tb) ∈ S ⊆ Rn

and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), v(t), t) dt

is minimized with respect to u and maximized with respect to v.
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Remarks:

1) Depending upon the type of the differential game problem, the final time
tb is fixed or free (i.e., to be optimized).

2) Depending upon the type of the differential game problem, it is specified
whether the players are restricted to open-loop controls u(t) and v(t) or
are allowed to use state-feedback controls u(x(t), t) and v(x(t), t).

3) If there are nontrivial control constraints, the admissible sets Ωu ⊂ Rmu

and Ωv ⊂ Rmv are time-invariant, closed, and convex.

4) Differentiability: The functions f , K, and L are assumed to be at least
once continuously differentiable with respect to all of their arguments.

1.2 Examples

In this section, several optimal control problems and differential game prob-
lems are sketched. The reader is encouraged to wonder about the following
questions for each of the problems:

• Existence: Does the problem have an optimal solution?

• Uniqueness: Is the optimal solution unique?

• What are the main features of the optimal solution?

• Is it possible to obtain the optimal solution in the form of a state feedback
control rather than as an open-loop control?

Problem 1: Time-optimal, friction-less, horizontal motion of a mass point

State variables:
x1 = position
x2 = velocity

control variable:
u = acceleration

subject to the constraint
u ∈ Ω = [−amax,+amax] .

Find a piecewise continuous acceleration u : [0, tb] → Ω, such that the dy-
namic system [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t)

is transferred from the initial state[
x1(0)
x2(0)

]
=

[
sa

va

]
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to the final state [
x1(tb)
x2(tb)

]
=

[
sb

vb

]

in minimal time, i.e., such that the cost criterion

J(u) = tb =
∫ tb

0

dt

is minimized.

Remark: sa, va, sb, vb, and amax are fixed.

For obvious reasons, this problem is often named “time-optimal control of
the double integrator”. It is analyzed in detail in Chapter 2.1.4.

Problem 2: Time-optimal, horizontal motion of a mass with viscous friction

This problem is almost identical to Problem 1, except that the motion is no
longer frictionless. Rather, there is a friction force which is proportional to
the velocity of the mass.

Thus, the equation of motion (with c > 0) now is:[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −c

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t) .

Again, find a piecewise continuous acceleration u : [0, tb] → [−amax, amax]
such that the dynamic system is transferred from the given initial state to
the required final state in minimal time.

In contrast to Problem 1, this problem may fail to have an optimal solution.
Example: Starting from stand-still with va = 0, a final velocity |vb| > amax/c

cannot be reached.

Problem 3: Fuel-optimal, friction-less, horizontal motion of a mass point

State variables:
x1 = position
x2 = velocity

control variable:
u = acceleration

subject to the constraint
u ∈ Ω = [−amax,+amax] .
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Find a piecewise continuous acceleration u : [0, tb] → Ω, such that the dy-
namic system [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t)

is transferred from the initial state[
x1(0)
x2(0)

]
=

[
sa

va

]

to the final state [
x1(tb)
x2(tb)

]
=

[
sb

vb

]

and such that the cost criterion

J(u) =
∫ tb

0

|u(t)| dt

is minimized.

Remark: sa, va, sb, vb, amax, and tb are fixed.

This problem is often named “fuel-optimal control of the double integrator”.
The notion of fuel-optimality associated with this type of cost functional
relates to the physical fact that in a rocket engine, the thrust produced by
the engine is proportional to the rate of mass flow out of the exhaust nozzle.
However, in this simple problem statement, the change of the total mass over
time is neglected. — This problem is analyzed in detail in Chapter 2.1.5.

Problem 4: Fuel-optimal horizontal motion of a rocket

In this problem, the horizontal motion of a rocket is modeled in a more real-
istic way: Both the aerodynamic drag and the loss of mass due to thrusting
are taken into consideration. State variables:

x1 = position
x2 = velocity
x3 = mass

control variable:
u = thrust force delivered by the engine

subject to the constraint

u ∈ Ω = [0, Fmax] .

The goal is minimizing the fuel consumption for a required mission, or equiv-
alently, maximizing the mass of the rocket at the final time.
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Thus, the optimal control problem can be formulated as follows:

Find a piecewise continuous thrust u : [0, tb] → [0, Fmax] of the engine such
that the dynamic system

⎡
⎣ ẋ1(t)

ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣

x2(t)
1

x3(t)

{
u(t) − 1

2Aρcwx2
2(t)

}
−αu(t)

⎤
⎦

is transferred from the initial state⎡
⎣x1(0)

x2(0)
x3(0)

⎤
⎦ =

⎡
⎣ sa

va

ma

⎤
⎦

to the (incompletely specified) final state
⎡
⎣x1(tb)

x2(tb)
x3(tb)

⎤
⎦ =

⎡
⎣ sb

vb

free

⎤
⎦

and such that the equivalent cost functionals J1(u) and J2(u) are minimized:

J1(u) =
∫ tb

0

u(t) dt

J2(u) = −x3(tb) .

Remark: sa, va, ma, sb, vb, Fmax, and tb are fixed.

This problem is analyzed in detail in Chapter 2.6.3.

Problem 5: The LQ regulator problem

Find an unconstrained control u : [ta, tb] → Rm such that the linear time-
varying dynamic system

ẋ(t) = A(t)x(t) + B(t)u(t)

is transferred from the initial state

x(ta) = xa

to an arbitrary final state

x(tb) ∈ Rn
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and such that the quadratic cost functional

J(u) =
1
2
xT(tb)Fx(tb) +

1
2

∫ tb

ta

(
xT(t)Q(t)x(t) + uT(t)R(t)u(t)

)
dt

is minimized.

Remarks:

1) The final time tb is fixed. The matrices F and Q(t) are symmetric
and positive-semidefinite and the matrix R(t) is symmetric and positive-
definite.

2) Since the cost functional is quadratic and the constraints are linear, au-
tomatically a linear solution results, i.e., the result will be a linear state
feedback controller of the form u(t) = −G(t)x(t) with the optimal time-
varying controller gain matrix G(t).

3) Usually, the LQ regulator is used in order to robustly stabilize a nonlinear
dynamic system around a nominal trajectory:

Consider a nonlinear dynamic system for which a nominal trajectory has
been designed for the time interval [ta, tb]:

Ẋnom(t) = f(Xnom(t), Unom(t), t)

Xnom(ta) = Xa .

In reality, the true state vector X(t) will deviate from the nominal state
vector Xnom(t) due to unknown disturbances influencing the dynamic
system. This can be described by

X(t) = Xnom(t) + x(t) ,

where x(t) denotes the state error which should be kept small by hopefully
small control corrections u(t), resulting in the control vector

U(t) = Unom(t) + u(t) .

If indeed the errors x(t) and the control corrections can be kept small, the
stabilizing controller can be designed by linearizing the nonlinear system
around the nominal trajectory.

This leads to the LQ regulator problem which has been stated above. —
The penalty matrices Q(t) and R(t) are used for shaping the compromise
between keeping the state errors x(t) and the control corrections u(t),
respectively, small during the whole mission. The penalty matrix F is an
additional tool for influencing the state error at the final time tb.

The LQ regulator problem is analyzed in Chapters 2.3.4 and 3.2.3. — For
further details, the reader is referred to [1], [2], [16], and [25].
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Problem 6: Goh’s fishing problem

In the following simple economic problem, consider the number of fish x(t)
in an ocean and the catching rate of the fishing fleet u(t) of catching fish per
unit of time, which is limited by a maximal capacity, i.e., 0 ≤ u(t) ≤ U . The
goal is maximizing the total catch over a fixed time interval [0, tb].

The following reasonably realistic optimal control problem can be formulated:

Find a piecewise continuous catching rate u : [0, tb] → [0, U ], such that the
fish population in the ocean satisfying the population dynamics

ẋ(t) = a
(
x(t) − x2(t)

b

)
− u(t)

with the initial state

x(0) = xa

and with the obvious state constraint

x(t) ≥ 0 for all t ∈ [0, tb]

is brought up or down to an arbitrary final state

x(tb) ≥ 0

and such that the total catch is maximized, i.e., such that the cost functional

J(u) = −
∫ tb

0

u(t) dt

is minimized.

Remarks:

1) a > 0, b > 0; xa, tb, and U are fixed.

2) This problem nicely reveals that the solution of an optimal control prob-
lem always is “as bad” as the considered formulation of the optimal control
problem. This optimal control problem lacks any sustainability aspect:
Obviously, the fish will be extinct at the final time tb, if this is feasible.
(Think of whaling or raiding in business economics.)

3) This problem has been proposed (and solved) in [18]. An even more
interesting extended problem has been treated in [19], where there is a
predator-prey constellation involving fish and sea otters. The competing
sea otters must not be hunted because they are protected by law.

Goh’s fishing problem is analyzed in Chapter 2.6.2.
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Problem 7: Slender beam with minimal weight

A slender horizontal beam of length L is rigidly clamped at the left end and
free at the right end. There, it is loaded by a vertical force F . Its cross-section
is rectangular with constant width b and variable height h(�); h(�) ≥ 0 for
0 ≤ � ≤ L. Design the variable height of the beam, such that the vertical
deflection s(�) of the flexible beam at the right end is limited by s(L) ≤ ε

and the weight of the beam is minimal.

Problem 8: Circular rope with minimal weight

An elastic rope with a variable but circular cross-section is suspended at the
ceiling. Due to its own weight and a mass M which is appended at its lower
end, the rope will suffer an elastic deformation. Its length in the undeformed
state is L. For 0 ≤ � ≤ L, design the variable radius r(�) within the limits
0 ≤ r(�) ≤ R such that the appended mass M sinks by δ at most and such
that the weight of the rope is minimal.

Problem 9: Optimal flying maneuver

An aircraft flies in a horizontal plane at a constant speed v. Its lateral
acceleration can be controlled within certain limits. The goal is to fly over a
reference point (target) in any direction and as soon as possible.

The problem is stated most easily in an earth-fixed coordinate system (see
Fig. 1.1). For convenience, the reference point is chosen at x = y = 0. The
limitation of the lateral acceleration is expressed in terms of a limited angular
turning rate u(t) = ϕ̇(t) with |u(t)| ≤ 1.

�

�

�

target

�

aircraft

x(t)

y(t) �
�

�
��v

........

........

........
.........
.........
..........
...........

.........�
ϕ(t)

Fig. 1.1. Optimal flying maneuver described in earth-fixed coordinates.
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Find a piecewise continuous turning rate u : [0, tb] → [−1, 1] such that the
dynamic system ⎡

⎣ ẋ(t)
ẏ(t)
ϕ̇(t)

⎤
⎦ =

⎡
⎣ v cos ϕ(t)

v sin ϕ(t)
u(t)

⎤
⎦

is transferred from the initial state⎡
⎣ x(0)

y(0)
ϕ(0)

⎤
⎦ =

⎡
⎣ xa

ya

ϕa

⎤
⎦

to the partially specified final state
⎡
⎣ x(tb)

y(tb)
ϕ(tb)

⎤
⎦ =

⎡
⎣ 0

0
free

⎤
⎦

and such that the cost functional

J(u) =
∫ tb

0

dt

is minimized.

Alternatively, the problem can be stated in a coordinate system which is fixed
to the body of the aircraft (see Fig. 1.2).

�

�

right�

aircraft

�

target

x1(t)

x2(t)
�

forward

v

Fig. 1.2. Optimal flying maneuver described in body-fixed coordinates.

This leads to the following alternative formulation of the optimal control
problem:

Find a piecewise continuous turning rate u : [0, tb] → [−1, 1] such that the
dynamic system[

ẋ1(t)
ẋ2(t)

]
=

[
x2(t)u(t)

− v − x1(t)u(t)

]
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is transferred from the initial state[
x1(0)
x2(0)

]
=

[
x1a

x2a

]
=

[
− xa sin ϕa + ya cos ϕa

− xa cos ϕa − ya sinϕa

]

to the final state[
x1(tb)
x2(tb)

]
=

[
0
0

]

and such that the cost functional

J(u) =
∫ tb

0

dt

is minimized.

Problem 10: Time-optimal motion of a cylindrical robot

In this problem, the coordinated angular and radial motion of a cylindrical
robot in an assembly task is considered (Fig. 1.3). A component should be
grasped by the robot at the supply position and transported to the assembly
position in minimal time.

����������

����������

�

.....................
......

.....................
........

.....................
.........

.....................
..........

.............................................................................................
......
.....................

........
.....................

.........
.....................

..........
.................. .................. .................. ..................

θt

�������������
�

ma

θ0

�

mn

�M

���
F

..................................................................... 	
ϕ, ϕ̇

����
�����

r, ṙ
r0

Fig. 1.3. Cylindrical robot with the angular motion ϕ and the radial motion r.

State variables:
x1 = r = radial position

x2 = ṙ = radial velocity

x3 = ϕ = angular position

x4 = ϕ̇ = angular velocity
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control variables:
u1 = F = radial actuator force

u2 = M = angular actuator torque

subject to the constraints

|u1| ≤ Fmax and |u2| ≤ Mmax, hence

Ω = [−Fmax, Fmax] × [−Mmax, Mmax] .

The optimal control problem can be stated as follows:

Find a piecewise continuous u : [0, tb] → Ω such that the dynamic system

⎡
⎢⎢⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2(t)
[u1(t)+(max1(t)+mn{r0+x1(t)})x2

4(t)]/(ma+mn)
x4(t)

[u2(t)−2(max1(t)+mn{r0+x1(t)})x2(t)x4(t)]/θtot(x1(t))

⎤
⎥⎥⎦

where

θtot(x1(t)) = θt + θ0 + max2
1(t) + mn{r0+x1(t)}2

is transferred from the initial state
⎡
⎢⎣

x1(0)
x2(0)
x3(0)
x4(0)

⎤
⎥⎦ =

⎡
⎢⎣

ra

0
ϕa

0

⎤
⎥⎦

to the final state
⎡
⎢⎣

x1(tb)
x2(tb)
x3(tb)
x4(tb)

⎤
⎥⎦ =

⎡
⎢⎣

rb

0
ϕb

0

⎤
⎥⎦

and such that the cost functional

J(u) =
∫ tb

0

dt

is minimized.

This problem has been solved in [15].
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Problem 11: The LQ differential game problem

Find unconstrained controls u : [ta, tb] → Rmu and v : [ta, tb] → Rmv such
that the dynamic system

ẋ(t) = A(t)x(t) + B1(t)u(t) + B2v(t)

is transferred from the initial state

x(ta) = xa

to an arbitrary final state

x(tb) ∈ Rn

at the fixed final time tb and such that the quadratic cost functional

J(u, v) =
1
2
xT(tb)Fx(tb)

+
1
2

∫ tb

ta

(
xT(t)Q(t)x(t) + uT(t)u(t) − γ2vT(t)v(t)

)
dt

is simultaneously minimized with respect to u and maximized with respect
to v, when both of the players are allowed to use state-feedback control.

Remark: As in the LQ regulator problem, the penalty matrices F and Q(t)
are symmetric and positive-semidefinite.

This problem is analyzed in Chapter 4.2.

Problem 12: The homicidal chauffeur game

A car driver (denoted by “pursuer” P) and a pedestrian (denoted by “evader”
E) move on an unconstrained horizontal plane. The pursuer tries to kill the
evader by running him over. The game is over when the distance between
the pursuer and the evader (both of them considered as points) diminishes to
a critical value d. — The pursuer wants to minimize the final time tb while
the evader wants to maximize it.

The dynamics of the game are described most easily in an earth-fixed coor-
dinate system (see Fig. 1.4).

State variables: xp, yp, ϕp, and xe, ye.

Control variables: u ∼ ϕ̇p (“constrained motion”) and ve (“simple motion”).
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�

�

�

P

xp

yp �
�

�
���

wp

........

........

........
.........
.........
..........
...........

..........�
ϕp

�

E

xe

ye �����
we

........

........
........
........
 ve

Fig. 1.4. The homicidal chauffeur game described in earth-fixed coordinates.

Equations of motion:

ẋp(t) = wp cos ϕp(t)

ẏp(t) = wp sin ϕp(t)

ϕ̇p(t) =
wp

R
u(t) |u(t)| ≤ 1

ẋe(t) = we cos ve(t) we < wp

ẏe(t) = we sin ve(t)

Alternatively, the problem can be stated in a coordinate system which is fixed
to the body of the car (see Fig. 1.5).

�

�

right�

P

�

E

x1

x2

�

front

wp

	
	
		
we........................�

v

Fig. 1.5. The homicidal chauffeur game described in body-fixed coordinates.

This leads to the following alternative formulation of the differential game
problem:

State variables: x1 and x2.

Control variables: u ∈ [−1,+1] and v ∈ [−π, π].
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Using the coordinate transformation

x1 = (xe−xp) sinϕp − (ye−yp) cos ϕp

x2 = (xe−xp) cos ϕp + (ye−yp) sinϕp

v = ϕp − ve ,

the following model of the dynamics in the body-fixed coordinate system is
obtained:

ẋ1(t) =
wp

R
x2(t)u(t) + we sin v(t)

ẋ2(t) = − wp

R
x1(t)u(t) − wp + we cos v(t) .

Thus, the differential game problem can finally be stated in the following
efficient form:

Find two state-feedback controllers u(x1, x2) �→ [−1, +1] and v(x1, x2) �→
[−π,+π] such that the dynamic system

ẋ1(t) =
wp

R
x2(t)u(t) + we sin v(t)

ẋ2(t) = − wp

R
x1(t)u(t) − wp + we cos v(t)

is transferred from the initial state

x1(0) = x10

x2(0) = x20

to a final state with

x2
1(tb) + x2

2(tb) ≤ d2

and such that the cost functional

J(u, v) = tb

is minimized with respect to u(.) and maximized with respect to v(.).

This problem has been stipulated and partially solved in [21]. The complete
solution of the homicidal chauffeur problem has been derived in [28].
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1.3 Static Optimization

In this section, some very basic facts of elementary calculus are recapitulated
which are relevant for minimizing a continuously differentiable function of
several variables, without or with side-constraints.

The goal of this text is to generalize these very simple necessary conditions
for a constrained minimum of a function to the corresponding necessary con-
ditions for the optimality of a solution of an optimal control problem. The
generalization from constrained static optimization to optimal control is very
straightforward, indeed. No “higher” mathematics is needed in order to de-
rive the theorems stated in Chapter 2.

1.3.1 Unconstrained Static Optimization

Consider a scalar function of a single variable, f : R → R. Assume that f is
at least once continuously differentiable when discussing the first-order neces-
sary condition for a minimum and at least k times continuously differentiable
when discussing higher-order necessary or sufficient conditions.

The following conditions are necessary for a local minimum of the function
f(x) at xo:

• f ′(xo) =
df(xo)

dx
= 0

• f �(xo) =
d�f(xo)

dx�
= 0 for � = 1, . . . , 2k−1

and f2k(xo) ≥ 0 where k = 1, or 2, or, . . . .

The following conditions are sufficient for a local minimum of the function
f(x) at xo:

• f ′(xo) =
df(xo)

dx
= 0 and f ′′(xo) > 0 or

• f �(xo) =
d�f(xo)

dx�
= 0 for � = 1, . . . , 2k−1

and f2k(xo) > 0 for a finite integer number k ≥ 1.

Nothing can be inferred from these conditions about the existence of a local
or a global minimum of the function f !

If the range of admissible values x is restricted to a finite, closed, and bounded
interval Ω = [a, b] ⊂ R, the following conditions apply:

• If f is continuous, there exists at least one global minimum.
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• Either the minimum lies at the left boundary a, and the lowest non-
vanishing derivative is positive,
or
the minimum lies at the right boundary b, and the lowest non-vanishing
derivative is negative,
or
the minimum lies in the interior of the interval, i.e., a < xo < b, and the
above-mentioned necessary and sufficient conditions of the unconstrained
case apply.

Remark: For a function f of several variables, the first derivative f ′ general-
izes to the Jacobian matrix ∂f

∂x as a row vector or to the gradient ∇xf as a
column vector,

∂f

∂x
=

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
, ∇xf =

(
∂f

∂x

)T

,

the second derivative to the Hessian matrix

∂2f

∂x2
=

⎡
⎢⎢⎢⎢⎢⎣

∂2f

∂x2
1

. . .
∂2f

∂x1∂xn

...
...

∂2f

∂xn∂x1
. . .

∂2f

∂x2
n

⎤
⎥⎥⎥⎥⎥⎦

and its positive-semidefiniteness, etc.

1.3.2 Static Optimization under Constraints

For finding the minimum of a function f of several variables x1, . . . , xn under
the constraints of the form gi(x1, . . . , xn) = 0 and/or gi(x1, . . . , xn) ≤ 0, for
i = 1, . . . , �, the method of Lagrange multipliers is extremely helpful.

Instead of minimizing the function f with respect to the independent vari-
ables x1, . . . , xn over a constrained set (defined by the functions gi), minimize
the augmented function F with respect to its mutually completely indepen-
dent variables x1, . . . , xn, λ1, . . . , λ�, where

F (x1, . . . , xn, λ1, . . . , λ�) = λ0f(x1, . . . , xn) +
�∑

i=1

λigi(x1, . . . , xn) .

Remarks:

• In shorthand, F can be written as F (x, λ) = λ0f(x) + λTg(x) with the
vector arguments x ∈ Rn and λ ∈ R�.
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• Concerning the constant λ0, there are only two cases: it attains either
the value 0 or 1.

In the singular case, λ0 = 0. In this case, the � constraints uniquely de-
termine the admissible vector xo. Thus, the function f to be minimized
is not relevant at all. Minimizing f is not the issue in this case! Nev-
ertheless, minimizing the augmented function F still yields the correct
solution.

In the regular case, λ0 = 1. The � constraints define a nontrivial set of
admissible vectors x, over which the function f is to be minimized.

• In the case of equality side constraints: since the variables x1, . . . , xn,
λ1, . . . , λ� are independent, the necessary conditions of a minimum of the
augmented function F are

∂F

∂xi
= 0 for i = 1, . . . , n and

∂F

∂λj
= 0 for j = 1, . . . , � .

Obviously, since F is linear in λj , the necessary condition ∂F
∂λj

= 0 simply
returns the side constraint gi = 0.

• For an inequality constraint gi(x) ≤ 0, two cases have to be distinguished:
Either the minimum xo lies in the interior of the set defined by this
constraint, i.e., gi(xo) < 0. In this case, this constraint is irrelevant for the
minimization of f because for all x in an infinitesimal neighborhood of xo,
the strict inequality holds; hence the corresponding Lagrange multiplier
vanishes: λo

i = 0. This constraint is said to be inactive. — Or the
minimum xo lies at the boundary of the set defined by this constraint, i.e.,
gi(xo) = 0. This is almost the same as in the case of an equality constraint.
Almost, but not quite: For the corresponding Lagrange multiplier, we get
the necessary condition λo

i ≥ 0. This is the so-called “Fritz-John” or
“Kuhn-Tucker” condition [7]. This inequality constraint is said to be
active.

Example 1: Minimize the function f = x2
1−4x1+x2

2+4 under the constraint
x1 + x2 = 0 .

Analysis for λ0 = 1:

F (x1, x2, λ) = x2
1 − 4x1 + x2

2 + 4 + λx1 + λx2

∂F

∂x1
= 2x1 − 4 + λ = 0

∂F

∂x2
= 2x2 + λ = 0

∂F

∂λ
= x1 + x2 = 0 .
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The optimal solution is:

xo
1 = 1

xo
2 = −1

λo = 2 .

Example 2: Minimize the function f = x2
1+x2

2 under the constraints 1−x1 ≤
0, 2 − 0.5x1 − x2 ≤ 0, and x1 + x2 − 4 ≤ 0 .

Analysis for λ0 = 1:

F (x1, x2, λ1, λ2, λ3) = x2
1 + x2

2

+ λ1(1−x1) + λ2(2−0.5x1−x2) + λ3(x1+x2−4)

∂F

∂x1
= 2x1 − λ1 − 0.5λ2 + λ3 = 0

∂F

∂x2
= 2x2 − λ2 + λ3 = 0

∂F

∂λ1
= 1 − x1

{
= 0 and λ1 ≥ 0
< 0 and λ1 = 0

∂F

∂λ2
= 2 − 0.5x1 − x2

{
= 0 and λ2 ≥ 0
< 0 and λ2 = 0

∂F

∂λ3
= x1 + x2 − 4

{
= 0 and λ3 ≥ 0
< 0 and λ3 = 0

The optimal solution is:

xo
1 = 1

xo
2 = 1.5

λo
1 = 0.5

λo
2 = 3

λo
3 = 0 .

The third constraint is inactive.
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1.4 Exercises

1. In all of the optimal control problems stated in this chapter, the control
constraint Ω is required to be a time-invariant set in the control space
Rm.

For the control of the forward motion of a car, the torque T (t) delivered
by the automotive engine is often considered as a control variable. It can
be chosen freely between a minimal torque and a maximal torque, both
of which are dependent upon the instantaneous engine speed n(t). Thus,
the torque limitation is described by

Tmin(n(t)) ≤ T (t) ≤ Tmax(n(t)) .

Since typically the engine speed is not constant, this constraint set for
the torque T (t) is not time-invariant.

Define a new transformed control variable u(t) for the engine torque such
that the constraint set Ω for u becomes time-invariant.

2. In Chapter 1.2, ten optimal control problems are presented (Problems
1–10). In Chapter 2, for didactic reasons, the general formulation of an
optimal control problem given in Chapter 1.1 is divided into the categories
A.1 and A.2, B.1 and B.2, C.1 and C.2, and D.1 and D.2. Furthermore, in
Chapter 2.1.6, a special form of the cost functional is characterized which
requests a special treatment.

Classify all of the ten optimal control problems with respect to these
characteristics.

3. Discuss the geometric aspects of the optimal solution of the constrained
static optimization problem which is investigated in Example 1 in Chapter
1.3.2.

4. Discuss the geometric aspects of the optimal solution of the constrained
static optimization problem which is investigated in Example 2 in Chapter
1.3.2.

5. Minimize the function f(x, y) = 2x2 + 17xy + 3y2 under the equality
constraints x − y = 2 and x2 + y2 = 4.


