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1 Introduction 

Group rings, and more generally semigroup rings, have played an important 
role in modern algebra and topology. In this article, we are interested in 
Robert Gilmer's pioneering work on semigroup rings. This includes his two 
papers with T. Parker [30, 31] on divisibility properties in semigroup rings, 
submitted in March and May of 1973, respectively; his semigroup ring example 
of a two-dimensional non-Noetherian UFD [24], submitted in May of 1973; 
his work with J. T. Arnold on the (KruU) dimension of semigroup rings [12], 
submitted in September of 1975; and his book Commutative Semigroup Rings 
[25], finished in the summer of 1983 and published in 1984. Arnold and Parker 
(see [45]) were both PhD students of Gilmer. 

In the introduction, we give a leisurely motivation for semigroup rings 
and establish notation. In the second section, we cover Gilmer's work with T. 
Parker on divisibility properties in semigroup rings. In the third section, we 
discuss Gilmer's construction of a two-dimensional non-Noetherian UFD, his 
work with J. T. Arnold on the dimension of a semigroup ring, and his book 
on semigroup rings. In the final section, we consider generalizations to KruU 
semigroup rings, graded rings, and divisibility properties in semigroups. We 
also discuss the (t-)class group and Picard group of monoid domains. 

The polynomial ring Q[X] over the field Q of rational numbers is a PID. 
Varying the coefficients produces different ring-theoretic properties. For ex
ample, the polynomial ring D[X] over an integral domain D is a UFD (resp., 
GCD-domain, KruU domain, PVMD) if and only if £> is a UFD (resp., GCD-
domain, KruU domain, PVMD). One often tries to prove that -D[X] satisfies a 
certain property V if and only if D satisfies property V. Sometimes this holds; 
other times it does not. For example, because of dimension constraints, D[X] 
is a PID or a Dedekind domain only in the trivial case when D is a field. 

In Q[X], the exponents are nonnegative integers. Instead of just varying 
the coefficients, why not also vary the set S of exponents? For example, if 
we let S = Z, then we get the Laurent polynomial ring Q[X,X^'^]. So how 



22 David F. Anderson 

should we vary the exponents? We will follow the notation of Northcott [44] 
which emphasizes that semigroup rings are generalized polynomial rings. Let 
i? be a commutative ring with 1 ^ 0 . Then R[X; S] will be the ring of all 
formal polynomials ^ r ^ X " with each a E S and r„ G R, almost all TQ, = 0, 
addition defined by ^ r ^ X " + ^ S a X " = XK''" + Sa)X", and with multi
plication defined using the distributive law and (rQ,X")(r^X'^) = r^rpX"^^. 
Let a,/3,7 G S. Since X"X'^ = X"^^, the set S must be closed under addi
tion. The commutative and associative laws in R[X; S], X^X^ = X^X" and 
X»{X^X'^) = {X"X^)X'^, yield a + P = P + a and a + {P + -/) = {a + P)+-/ 
in S, respectively. Also, we want 1 to be X"; so S should be an additive 
commutative monoid. We call R[X; S] a semigroup (or monoid) ring. 

We usually want R[X; S] to be an integral domain; so R would have to be 
an integral domain, li a + [3 = a +-f in S, then X^Xf^ = X"X^ in R[X; S] 
would yield X^ = X^, and hence /3 = 7. Thus S must be a cancellative 
monoid. Also, S must be torsionfree, in the sense that na = n(3 for n a 
positive integer and a, /3 G 5 implies that a = (3 (since X " — X^ divides 
j^na _ ^ni3 -^^ R[X; S]). Convcrscly, let R be an integral domain and S an 
additive commutative torsionfree cancellative monoid. Then S may be totally 
ordered, and hence it is easily seen that the product of two nonzero elements 
in R[X; S] is nonzero. Thus we have shown the following theorem (also see 
[23] or [25, Theorem 8.1]). 

Theorem 1.1. The semigroup ring R[X; S] is an integral domain if and only 
if R is an integral domain and S is a commutative torsionfree cancellative 
monoid. 

Given an additive commutative cancellative monoid S, let {S) = {s — 
i I s, t G S*} be its quotient group. The fact that S is torsionfree is equivalent 
to {S) being torsionfree, i.e., 5 is a submonoid of a torsionfree abelian group. 
Let U{S) be the set of invertible elements of S\ then U{S) is the maximal 
subgroup of S and U{S) = S r\ —S. 

In the integral domain case, it is easy to determine the units of R[X\ S]. 
They are precisely the monomials rX" , where r G U{R) and a G U{S). If 
R[X; S] is not an integral domain, then it is of interest to investigate special 
types of elements of R[X; S] such as units, zero-divisors, nilpotent elements, 
and idempotent elements. Gilmer has investigated these in joint papers with 
R. Heitmann [28], T. Parker [46], and M. Teply [33, 34] (also see [25, Chapter 

2]). 
Note that the polynomial ring _R[{X„}] is the semigroup ring R[X; ®Q,Z_|_] 

and the Laurent polynomial ring _R[{Xa,X~^}] is the group ring R[X; ®aZ]. 
More generally, let A be a subring of i?[{XQ,}] generated by monomials over R. 
Then A = R[X; S], where 5" = {(n„) G ®„Z+ | Y.^a" ^ ^}- In particular, a 
subring A of R[X] generated by monomials over R is R[X; S] for S = {n <E 
Z_|_ I X" G A}. We view semigroup rings as a generalization of polynomial 
rings. The reason that things work so nicely in the polynomial ring case is 
that S = Z+ is the nicest possible semigroup. Although polynomial rings are 
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semigroup rings, we are primarily interested in the general case when S is not 

Let D be an integral domain with quotient field K and S a commutative 
torsionfree cancellative monoid. Then K[X;S] = D[X;S]T and D[X; (S)] = 
D[X;S]T', where T = D \ {0} and T' = {X" | a e S} are multiplicative 
subsets of D[X; S]. Also, note that D[X; S] = K[X; S] n D[X; (S)]. We can 
thus sometimes reduce questions about monoid domains to group rings or to 
monoid domains over a field, often using a "Nagata-type" theorem (i.e., ii RT 
satisfies a certain property V for a "nice" multiplicative set T, then R also 
satisfies property V). Since S is totally ordered, D[X;S] becomes a graded 
integral domain with deg{dX") = a for 0 j^ d £ D and a £ S. Thus graded 
ring techniques often play an important role in studying semigroup rings (cf. 
Section 4). 

In R[X;S], we can vary both the coefficients and the exponents. Thus 
semigroup rings provide a very handy way to construct examples since ring-
theoretic properties of -R[X; S] are determined by properties of both R and S, 
and hence we have much more freedom than in polynomial rings. This is very 
pretty mathematics which illustrates the interplay between ring-theoretic and 
semigroup-theoretic techniques. It has certainly played a major role in my 
research activity. 

For notation, R will be a commutative ring with nonzero identity and U{R) 
its group of units, D will be an integral domain with quotient field qf{D), 
and K will be a field. The dimension of R, dim(i?), will always mean Krull 
dimension, and char(i?) will be the characteristic of R. We let S denote a 
commutative cancellative monoid, written additively, with group of invertible 
elements U{S) and quotient group {S). Let G denote an abelian group (usually 
torsionfree) and rank(G) = dimQ(Q (g)z G). For a set A, let A* = A\ {0}; and 
for a partially ordered monoid S, let S+ be its set of nonnegative elements. 
As usual, Z and Q will denote the integers and rational numbers, respectively. 
For more on semigroups, see [25, 37]; and for abelian groups, see [20, 21]. For 
any undefined notions or notation, see Gilmer's "other" book [27]; see [19] for 
Krull domains. In most cases, we will cite both the original reference and the 
corresponding result in [25]. 

2 Divisibility in Semigroup Rings 

In this section, we discuss Gilmer's two papers with T. Parker [30, 31] on 
divisibility properties in semigroup rings. The main goal of [30] is to determine 
necessary and sufficient conditions for D[X;S] to be a UFD. But first we 
consider GCD-domains. For most of our results, we will first consider the 
group ring case, and then the general monoid ring result. 

Theorem 2.1. Let D be an integral domain and G a torsionfree abelian group. 
Then D[X\ G] is a GCD-domain if and only if D is a GCD-domain. 
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Proof. We may reduce to the case where G is finitely generated, and hence 
free. In this case, the resuh foUows easily from the well-known polynomial 
ring case. For more details, see either [30, Proposition 5.1 and Theorem 6.1] 
or [25, Theorems 14.1 and 14.2]. 

In particular, K[X; G] is a GCD-domain for any field K and any torsionfree 
abelian group G. We next consider the case for monoid domains. Let R = 
K[X^, X^] = K[X; S], where i^ is a field and S = {0, 2, 3,4, . . .} C Z+. Then 
R is not a GCD-domain since X^ and X^ have no GCD in R. In analogy for 
integral domains, define a torsionfree cancellative monoid 5 to be a GCD-
rnonoid if each pair of elements of S has a GCD(equivalently, an LCM). 
Then any free abelian monoid or torsionfree abelian group is a GCD-monoid. 
However, S = {0, 2, 3,4, . . .} is not a GCD-monoid since 5 and 6 have no GCD 
in S. Our next result is somewhat typical in that D[X; S] satisfies a certain 
ring-theoretic property V if and only if D satisfies property V and S satisfies 
the additive monoid analog of property V (also see Section 4). 

Theorem 2.2. Let D be an integral domain and S a torsionfree cancellative 
monoid. Then D[X;S] is a GCD-domain if and only if D is a GCD-domain 
and S is a GCD-monoid. 

Proof. If D[X; S] is a GCD-domain, then D must be a GCD-domain and S a 
GCD-monoid. The converse follows from Theorem 2.1 using a "Nagata-type" 
theorem that D[X-S]T = D[X; (S)], where T = {X" | a G S}, is a GCD-
domain implies that D[X; S] is a GCD-domain. See either [30, Theorems 6.1 
and 6.4] or [25, Theorems 14.1 and 14.5] for more details. 

An integral domain D is a UFD if and only if D is a GCD-domain and 
D satisfies the ascending chain condition on principal ideals (ACCP). Note 
that R = K[X;Q] is a GCD-domain for any field K by Theorem 2.1, but i? 
is not a UFD since ACCP fails. For example, we have the strictly ascending 
chain of principal ideals (1 - X) C (1 - X^/'^) C (1 - X^/"') C • • • in E, which 
corresponds to the strictly ascending chain of cyclic subgroups (1) C (1/2) C 
(1/4) C • • • in Q. Similarly, K[X; Q+] is a GCD-domain, but not a UFD. 

Let G be a torsionfree abelian group. Recall that every nonzero element 
of G has type (0,0,0,. . .) means that for each 0 j^ g e G, there is a largest 
positive integer Ug such that the equation rigX = g is solvable in G (see [21, 
Section 85]). This is equivalent to each rank-one subgroup of G is cyclic (free), 
or more suggestively, G satisfies ACC on cyclic subgroups, or ACC on cyclic 
submonoids [25, Theorem 14.10]. This property plays an important role in 
properties related to chain conditions since (as above) a strictly ascending 
chain of cyclic subgroups {gi) C (32) C • • • in G gives rise to a strictly 
ascending chain of principal ideals (1 — X^'-) C (1 — X^^) C • • • in D[A'; G]. 

Note that any subgroup of a torsionfree abelian group which satisfies ACC 
on cyclic subgroups also satisfies ACC on cyclic subgroups. In particular, if 
5 is a torsionfree cancellative monoid such that (S) satisfies ACC on cyclic 
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subgroups, then so does U{S). However, the converse is false since S = Q_|_ 
has U{S) = 0 which certainly satisfies ACC on cyclic subgroups, but (S) = Q 
does not. Although the results in [30, 3f ] are stated using the type (0, 0, 0,...) 
terminology, we use the more suggestive ACC on cyclic subgroups or cyclic 
submonoids terminology as in [25]. 

Theorem 2.3. Let D be an integral domain and G a torsionfree ahelian group. 
Then D[X;G] is a UFD if and only if D is a UFD and G satisfies ACC on 
cyclic subgroups. 

Proof. liD[X; G] is a UFD, then D must be a UFD, and G satisfies ACC on 
cyclic subgroups by the above remarks. The converse is much more difficult 
and finally reduces to the case where D is an algebraically closed field. For 
more details, see either [30, Theorem 7.f3] or [25, Theorem f4.f6]. 

As in the GCD-domain case, we may define the analog of unique factoriza
tion for a torsionfree cancellative monoid. We call such a monoid a factorial 
monoid. Note that a factorial monoid has the form G © F_|_, where G is any 
torsionfree abelian group and F = ©^Z is a free abelian group with the usual 
product order. We are now ready for the main result of both [30] and this 
section. The KruU domain analog of Theorem 2.4 will be discussed in Section 
4. 

Theorem 2.4. Let D be an integral domain and S a torsionfree cancellative 
monoid. Then D[X;S] is a UFD if and only if D is a UFD, S is a factorial 
monoid, and U{S) satisfies ACC on cyclic subgroups. 

Proof. Again, the " ^ " implication is fairly clear. The converse follows from 
Theorem 2.3 via a "Nagata-type" theorem as in the proof of Theorem 2.2. 
See either [30, Theorem 7.17] or [25, Theorem 14.16] for more details. 

Theorem 2.4 just says that a factorial monoid domain looks like the ring 
D[X; G][{Ya}], where D is a UFD, G is a torsionfree abelian group which sat
isfies ACC on cyclic subgroups, and {Ya} is a family of indeterminates. Note 
that if S* is a factorial monoid, then U{S) satisfies ACC on cyclic subgroups 
if and only if (S) satisfies ACC on cyclic subgroups, if and only if S satisfies 
ACC on cyclic submonoids. 

As a corollary of Theorem 2.3, the group ring Z)[X;G] satisfies ACCP 
if and only if D satisfies ACCP and G satisfies ACC on cyclic subgroups 
([30, Corollary 7.14] or [25, Theorem 14.17]). What about D[X;S]? Several 
partial results are given in [30, pages 77 and 82]. For example, D[X; S] satisfies 
ACCP if D satisfies ACCP, S satisfies ACC on cyclic submonoids, and (S) 
satisfies ACC on cyclic subgroups. However, the converse fails. Let S = {q e 
Q I g > 1} U {0}, and let i^ be a field. Then one easily checks that K[X; S] 
satisfies ACCP, S satisfies ACC on cyclic submonoids, but {S) = Q does 
not satisfy ACC on cyclic subgroups. This gives an easy example to show 
that ACCP is not preserved by localization since K[X; Q] = K[X; S]T, where 
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T = { X" \a G S}. Other chain conditions in semigroup rings are investigated 
in [25, 26]. 

Article [30] concludes with a characterization of when D[X;S] is a PID 
(or Dedekind domain or Euclidean domain). This happens only in the trivial 
case when D is a field and S is isomorphic to either Z+ or Z , i.e., D[X; S] is 
either K[X] or K[X,X-'^] for some field K. 

Theorem 2.5. Let D be an integral domain and S a nonzero torsionfree can-
cellative monoid. Then the following statements are equivalent. 

(1) D[X;S] is a Euclidean domain. 
(2) D[X;S] is a PID. 
(3) D[X;S] is a Dedekind domain. 
(4) D is a field and S is isomorphic to either Z+ or Z. 

Proof. This follows since D[X; S] must be integrally closed and one-dimensional. 
For more details, see either [30, Theorem 8.4] or [25, Theorem 13.8]. 

There were two immediate sequels to [30]. First, in [31], Gilmer and Parker 
considered several additional divisibility properties and also allowed the coef
ficient rings to have zero-divisors. Secondly, in [24], Gilmer used results from 
[30] to construct a two-dimensional non-Noetherian UFD; this example will 
be discussed in the next section. 

We first state the main results from [31] in the integral domain setting. 
These results are similar to that for PIDs in Theorem 2.5, but there is a little 
more freedom on the monoid S since these rings need not be Noetherian. Re
call that we have observed that K[X; Q] and K[X; Q+] are both GCD-domains 
for any field K, but are not UFDs. They are also Bezout domains since they 
are ascending unions of PIDs (for example, K[X; Q] = I J ^ i K[X; (l/n!)Z]). 
It will be convenient to call a monoid S a Prilfer suhmonoid ofQiiS = GnQ_|_, 
where G is a subgroup of Q containing Z. This just means that S is the union 
of an ascending sequence of cyclic submonoids [25, Theorem 13.5]. 

Theorem 2.6. Let D be an integral domain and S a nonzero torsionfree can-
cellative monoid. Then the following statements are equivalent. 

(1) D[X;S] is a Bezout domain. 
(2) D[X;S] is a Priifer domain. 
(3) D is a field and S is isomorphic to either a subgroup of Q containing Z 

or a Priifer submonoid of Q. 

Proof. See either [31, Theorem] or [25, Theorem 13.6] for details. 

We next allow R to have zero-divisors, but S will still be a torsionfree 
cancellative monoid. In this case, the only change is that "field" gets replaced 
by "von Neumann regular ring". We say that a commutative ring _R is a Priifer 
ring if each finitely generated regular ideal of R is invertible and that i? is a 
Bezout ring if each finitely generated ideal of R is principal. 
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Theorem 2.7. Let R he a commutative ring and S a nonzero torsionfree 
cancellative monoid. Then the following statements are equivalent. 

(1) R[X;S] is a Bezout ring. 
(2) R[X; S] is a Priifer ring. 
(3) R is von Neumann regular and S is isomorphic to either a subroup of Q 

containing Z, or a Priifer suhmonoid ofQ. 

Proof. For details, see either [31, Corollary 3.1] or [25, Theorem 18.9]. 

In [31], Gilmer and Parker also determined when a monoid ring is either an 
almost Dedekind domain or a general ZPI-ring. Recall that an integral domain 
D is an almost Dedekind domain if DM is a Noetherian valuation domain for 
each maximal ideal M of D, and that a commutative ring _R is a general ZPI-
ring if each ideal of i? is a finite product of prime ideals, equivalently, if R is 
a finite direct sum of Dedekind domains and special principal ideal rings. 

Theorem 2.8. Let D be an integral domain and S a nonzero torsionfree can
cellative monoid. Then D[X; S] is an almost Dedekind domain if and only if 
D is a field and S is isomorphic to either Z+ or a subgroup of Q containing Z 
such that if char{D) = q is nonzero, then 1/q'^ ^ S for some positive integer 
k. 

Proof. See either [31, Theorem], or [25, Corollary 20.15] for the group ring 

For example, for any field K, the monoid domain K[X;Q+] is an almost 
Dedekind domain which is not a Dedekind domain. They also gave more tech
nical conditions for almost Dedekind semigroup rings; the interested reader 
may consult [31, Theorem 4.2]. 

Theorem 2.9. Let R be a commutative ring and S a nonzero torsionfree 
cancellative monoid. Then R[X; S] is a general ZPI-ring if and only if R is a 
finite direct sum of fields and S is isomorphic to either Z or Z_|_. In particular, 
R[X; S] is a general ZPI-ring if and only if R[X; S] is a principal ideal ring. 

Proof. If R[X; S] is a general ZPI-ring, then it is a Noetherian Priifer ring. 
The result then follows from Theorems 2.5 and 2.7 since R is a finite direct 
sum of fields. The converse is clear. See either [31, Theorem 5.1 and Corollary 
5.1] or [25, Theorem 18.10] for more details. 

Several related conditions are also investigated in [25, Sections 18 and 
19]. For example, in Theorem 2.7, we may add the equivalence that R[X; S] 
is arithmetical (recall that a ring T is arithmetical ii A D {B + C) = {ACi 
B) + {An C) for ah ideals A, B, C of T) [25, Theorem 18.9]. In [25, Section 
19], arithmetical monoid rings are studied in the case where the cancellative 
monoid S is not torsionfree. The treatment of these topics is considerably 
reorganized in [25] from that in [31] (see the comments in [25, page 251]). 
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3 Non-Noetherian UFDs, Dimension Theory, and the 
Book 

In this section, we first discuss Gilmer's example of a two-dimensional non-
Noetherian UFD. It is a direct application of results in [30] and is one of my 
favorite examples in ring theory. Later, we will discuss Gilmer's work with 
J. T. Arnold on the dimension theory of semigroup rings and his book on 
semigroup rings. 

The s tandard example of a non-Noetherian UFD is R = K[{Xn}^=i}], 
the polynomial ring over a field K in infinitely many indeterminates. Un
fortunately, R has infinite KruU dimension. So what ' s an example of a 
finite-dimensional non-Noetherian UFD? Examples of 3-dimensional non-
Noetherian quasilocal UFDs in characteristic 0 and 2 were given by J. David 
[17, 18] in 1972-1973. Note tha t a one-dimensional UFD is a PID, and hence 
Noetherian. So what about the two-dimensional case? 

The idea is to construct a group ring D[X; G] which is a two-dimensional 
UFD, but not Noetherian. Recall t ha t D[X;G] is Noetherian if and only if 
D is Noetherian and G is finitely generated (i.e., fi"ee of finite rank) [25, 
Theorem 7.7]. So first we need to know a little about the Krull dimension 
of a group ring. Let G be a torsionfree abelian group with rank(G) = 7. 
Then there is free abelian subgroup F of G with rank(F) = 7 and G/F is 
a torsion group. Hence R[X; F] C R[X; G] is an integral extension, and thus 
dim(_R[X;G]) = diTn{R[X; F]). Let {Xa}aeA be a family of indeterminates 
with \A\ = 7. Then dim{R[{Xa,X^'^jaeA]) = dim{R[{Xa}aeA]), and hence 
dun{R[X; G]) = dmi{R[X; F]) = dun{R[{Xa}a€A])- As a special case, if D is 
either a Priifer domain or a Noetherian integral domain and G is a torsionfree 
abelian group of finite rank n, then dim(_D[X; G]) = dim(_D)-|-n. In particular, 
if is: is a field, then dim{K[X; G]) = rank(G). 

By the above paragraph, we need to find a torsionfree abelian group G 
of rank two which is not finitely generated, but satisfies ACC on cyclic sub
groups. Which, if any, abelian groups G satisfy these conditions? Fortunately, 
there is such a rank-two abelian group G. So in this case, R = K[X;G] is a 
two-dimensional non-Noetherian UFD for any field K. Let L be a rank-two 
torsionfree abelian group which is not free (and hence not finitely generated), 
but every rank-one subgroup of L is free (cyclic), and hence L satisfies ACC 
on cycle subgroups. Such an abelian group exists (see [47] or [21, Section 88]). 
Let Ln = L (B 2^" for each integer n > 0. Then _L„ is not finitely generated, 
r a n k ( i „ ) = n + 2, and i „ satisfies ACC on cyclic subgroups. 

T h e o r e m 3 . 1 . Let K he a field. Then K[X;Ln] is a non-Noetherian UFD of 
KruU dimension n + 2. 

Proof. By Theorem 2.3, R = K[X; i „ ] is a UFD. By our earlier remarks, R is 
not Noetherian since i „ is not finitely generated and dim(_R) = rank(_L„) = 
n + 2. See [31, Theorem 4] for more details. 
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If ch.ar{K) = p > 0, then the group ring R = K[X;Ln] in Theorem 3.1 
may be localized at a suitable maximal ideal M so that the quasilocal domain 
RM is an n-dimensional UFD, but not Noetherian. 

Theorem 3.2. Let p be prime and n > 2 an integer. Then there is a non-
Noetherian quasilocal UFD of Krull dimension n and characteristic p. 

Proof. See [31, Theorem 4] for more details. 

Theorem 3.2 leaves open the characteristic 0 case for quasilocal domains. 
In [14, Theorem D and Example], J. W. Brewer, D. L. Costa, and E. L. Lady 
showed that for each integer n > 2, there is a non-Noetherian quasilocal 
UFD with characteristic 0 and Krull dimension n. (Brewer was also a PhD 
student of Gilmer.) Their example is based on a localization of the group ring 
Z[G], where G = L when n = 2 and G = Z[l/p] © Z[l/p] ® Z[l/p] for p a 
prime when n > 3. In fact, they showed that the technique used in Theorem 
3.2 of localizing a group ring over a field will not work in characteristic 0 
[14, Theorem A]. Several other examples of 3-dimensional non-Noetherian 
quasilocal UFDs have been given in the literature (see [11]). 

We next briefly discuss Gilmer's work with J. T. Arnold [12] on comput
ing the Krull dimension of R[X;S]. This generalizes earlier work on Krull 
dimension mentioned in this section and does not assume that the cancella-
tive monoid S is torsionfree. Theorem 3.3 reduces the calculation of the Krull 
dimension of a semigroup ring to that of a group ring, which in turn re
duces it to the calculation of the Krull dimension of a polynomial ring since 
d[m{R[X;G]) = dim(i?[{X„}«eA]), where \A\ = rank(G). In [12], they also 
extended several results about chains of prime ideals in polynomial rings to 
semigroup rings R[X; S], where 5 is a finitely generated torsionfree cancella-
tive monoid. 

Theorem 3.3. Let R be a commutative ring and S a cancellative monoid with 
quotient group G. Then dim(_R[A'; S]) = dim(_R[X; G]). 

Proof This is proved in several reductions; first to the case where i? is a finite-
dimensional integral domain and S is finitely generated and torsionfree, and 
then to showing that dim{R[Xi,X^ , • • •, Xn,X~^]) = dim(_R[Xi,..., Xn, 
hi,... ,hj]), where hi,... ,hj are pure monomials in Xi,..., A"„. For more 
details, see either [12] or [25, Theorem 21.4]. 

We conclude this section with a short discussion of Gilmer's book Com
mutative Semigroup Rings [25]. It was written when most of the topics were 
available only in their original research articles, and it is still the only other 
reference for many of these topics. Like Multiplicative Ideal Theory [27], it 
is still the reference in the field. It gives a unified, self-contained treatment 
of semigroups and semigroup rings. Many proofs are modified or simplified, 
sometimes to correct gaps of previous proofs in the literature. 
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The book consists of 25 sections grouped in 5 chapters. The chapters are 
(I) Commutative semigroups, (II) Semigroup rings and their distinguished ele
ments, (III) Ring-theoretic properties of monoid domains, (IV) Ring-theoretic 
properties of monoid rings, and (V) Dimension theory and the isomorphism 
problems. Except for the second part of Chapter (V), the chapter titles 
are fairly self-explanatory and much of their content is discussed in this 
article. The "isomorphism problems" concerns the question of when does 
Ri[X;S] ^ R2[X;S] (resp., R[X;S] ^ R[X;T]) imply that Ri ^ i?2 (resp., 
S ^T) (also see [32]). 

4 Generalizations 

In this final section, we discuss three types of extensions or generalizations 
of Gilmer's work on semigroup rings. The first is to other divisibility prop
erties for monoid domains, with emphasis on when a monoid domain is a 
KruU domain. The second is to graded integral domains and their divisibility 
properties, and the third is to divisibility in monoids. 

After determining when a monoid domain is a UFD or a Dedekind domain, 
the next natural question is: when is D[X;S] a Krull domain, and if so, how 
do we calculate its divisor class group Cl{D[X; S])? Again, we first state the 
group ring case, which is due to R. Matsuda [40]. 

Theorem 4.1 . Let D be an integral domain and G a torsionfree abelian group. 
Then D[X;G] is a Krull domain if and only if D is a Krull domain and G 
satisfies ACC on cyclic subgroups. Moreover, if D[X;G] is a Krull domain, 
thenCl{D[X;G]) =Cl{D). 

Proof. Suppose that R = D[X; G] is a Krull domain with qf{D) = K. Then 
D is a Krull domain since D = RCiK, and G satisfies ACC on cyclic subgroups 
since R satisfies ACCP. Conversely, if G satisfies ACC on cyclic subgroups, 
then K[X; G] is a UFD by Theorem 2.3. The /-adic discrete valuations on 
qf(R) induced by the irreducible elements / of the UFD K[X;G] together 
with the discrete valuations on qf{R) induced by the height-one prime ideals 
of the Krull domain D show that i? is a Krull domain. The divisor class group 
result follows from Nagata's Theorem [19, Corollary 7.2]. For more details, see 
either [40, Propositions 3.3 and 5.3] or [25, Theorems 15.1, 15.4, and 16.2]. 

Theorem 4.1, together with ideas from the previous section, can be used 
to construct a 3-dimensional non-Noetherian Krull domain with any given 
divisor class group. Let G be an abelian group and D a Dedekind domain 
with class group G (such a D exists by Claborn's Theorem [19, Theorem 
14.10]). Let L = Lo he as in Theorem 3.1. Then R = D[X;L] is a Krull 
domain with Cl{R) = Cl{D) = G by Theorem 4.1, and R is non-Noetherian 
with dim(i?) = 3 for reasons discussed in the previous section. 
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An integral domain is a Krull domain if and only if it is completely inte
grally closed and satisfies ACC on integral w-ideals. We thus define a torsion-
free cancellative monoid to be a Krull monoid if it is completely integrally 
closed and satisfies ACC on integral u-ideals (for other equivalent conditions, 
see [15, 25, 37]). Our next theorem is due to L. G. Chouinard [15]. 

Theorem 4.2. Let D be an integral domain with quotient field K and S a 
torsionfree cancellative monoid. Then D[X; S] is a Krull domain if and only 
if D is a Krull domain, S is a Krull monoid, and U{S) satisfies ACC on cyclic 
subgroups. Moreover, Cl{D[X;S]) = Cl{D) Q) Cl{K[X; S]) and Cl{K[X;S]) 
is independent of the field K. 

Proof. See either [15, Theorem 1] or [25, Theorem 15.6] for details. The "more
over" statement is from [3, Proposition 7.3]. 

Krull monoids have the form G © T, where G is any torsionfree abelian 
group and T is a submonoid of a free abelian group F = ®„Z with the usual 
product order such that T = (T) n F^. Thus a Krull monoid domain is just a 
subring of a polynomial ring over a Krull group ring generated by monomials. 
For a Krull monoid S, it is easy to see that U{S) satisfies ACC on cyclic 
subgroups if and only if (S) satisfies ACC on cyclic subgroups. 

Let if be a field and 5* C F+ a Kruh monoid with S = {S) n F+ (here 
F = ©Q,Z is a free abelian group with the usual product order and each pr„ is 
the natural projection map) such that the pra\{s)'s are distinct essential valu
ations of S. Then Cl{K[X; S]) ^ F/{S) (see [15, Theorem 2], [25, Section 16], 
and [4]). This fact may be used to show that any abelian group G is the divisor 
class group of a quasilocal Krull domain. Let K he a field and G an abelian 
group. Then one can construct a Krull domain R = K[X; S] with Cl(R) = G 
[15, Corollary 2]. In fact, one may then localize R to obtain a quasilocal Krull 
domain A with Cl{A) = G. See [4] for some specific calculations. 

An integral domain D is a Prilfer v-multiplication domain (PVMD) if 
the monoid of finite-type w-ideals of D forms a group under u-multiplication. 
Thus a Krull domain or a Priifer domain is a PVMD. Analogously, we define 
a torsionfree cancellative monoid 5 to be a PVMD monoid if the monoid of 
finite type u-ideals of S forms a group under -u-multiplication. Theorem 4.2 
then generalizes to PVMDs. 

Theorem 4.3. Let D be an integral domain, S a torsionfree cancellative 
monoid, and G a torsionfree abelian group. Then D\X\ S] is a PVMD if and 
only if D is a PVMD and S is a PVMD monoid. In particular, D[X;G] is a 
PVMD if and only if D is a PVMD. 

Proof. The first " ^ " implication, the "in particular" statement, and several 
other results about PVMD semigroup rings were proved by S. Malik (see 
[38, Chapter 14] and [39]). The converse of the first implication was also 
conjectured by Malik, and it was proved in [2, Proposition 6.5]. 
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By Theorems 2.6, 4.1, and 4.3, the group rings Z[X;Q], Q[X;Z ® Q] = 
Q[X; Q] [Y], and Q[X; Q © Q] are aU two-dimensional PVMDs which are nei
ther Krull domains nor Priifer domains. 

For any integral domain D, let T(D) be the group of t-invertible frac
tional i-ideals of D under t-multiplication, and let Prin{D) be its subgroup 
of nonzero principal fractional ideals. Then the (t-)class group of D is the 
abelian group Cl{D) = T{D)/Prin{D). Let Inv{D) C T{D) be the subgroup 
of invertible ideals of D. Then Pic{D) = Inv{D)/Prin{D), the Picard group 
or ideal class group of D, is a subgroup of Cl(D). If D is either a Priifer domain 
or a one-dimensional integral domain, then Cl{D) = Pic{D), and Cl{D) is the 
usual divisor class group if D is a Krull domain. The class group is important 
because ring-theoretic properties of D are often reflected in group-theoretic 
properties of Cl{D). For example, if D is a PVMD, then Cl{D) = 0 (resp., 
is torsion) if and only if D is a GCD-domain (resp., AGCD-domain). Recall 
that D is an almost GCD-domain (AGCD-domain) if for any 0 7̂  a, 6 G D, 
there is a positive integer n = n{a, b) such that a"D n 6"D is principal. For 
more on the class group, see the survey article [7]. 

We next discuss the class group of a monoid domain. As a first step, S. 
Gabelh [22] showed that Cl{D) = Cl{D[X]) if and only if D is integrally 
closed. In analogy with Theorem 4.2 for Krull domains, our next result, due 
to S. El Baghdadi, L. Izelgue, and S. Kabbaj [13], gives a very satisfactory 
answer for the class group of an integrally closed monoid domain. 

Theorem 4.4. Let D be an integral domain with quotient field K and S a tor-
sionfree cancellative monoid. If D[X; S] is integrally closed, then Cl{D[X; S]) = 
Cl{D) ® Cl{K[X; S]) and Cl{K[X- S]) is independent of the field K. 

Proof. For details, see [13, Corollaries 2.8 and 2.10]. 

For the non-integrally closed monoid domain case, we include a result from 
[9]. Recall that an additive submonoid S of Z+ is called a numerical semigroup 
if Z+ \ 5 is finite. 

Theorem 4.5. Let D be an integral domain with quotient field K and S a 
numerical semigroup. Then Cl(D[X; S]) = Cl{D[X]) (B Pic{K[X; S]). In par
ticular, if D is integrally closed, then Cl{D[X; S]) = Cl{D) ® Pic{K[X; S]). 

Proof. Let N = {X" \a £ S} and T = D*. Then the natural homomor-
phism Cl{D[X;S]) —> CI{D[X;S]N) ® Cl{D[X; S]T) = Cl{D[X,X-'^]) © 
Cl{K[X; S]), given by [/] ^ {[IN], [IT]), is an isomorphism. Also, Cl{D[X]) = 
Cl{D[X,X-^]) for any integral domain D, and Cl{K[X;S]) = Pic{K[X;S]) 
since K[X;S] is one-dimensional. For more details, see [9, Theorem 5]. The 
"in particular" statement follows from the result of Gabelli [22] mentioned 
above. 

Note that Pic{K[X; S]) in Theorem 4.5 may be computed (for example, 
by using the Mayer-Vietoris exact sequence for {U,Pic)). As a special case, 
we have that Cl{D[X^,X^]) = Cl{D[X])®K. 
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We next consider the Picard group of a monoid domain. In [29, Theorem 
1.6], Gilmer and R. Heitmann showed that Pic{D) = Pic{D[X]) if and only if 
D is seminormal (recall that an integral domain D is seminormal [ix'^,x^ G D 
for X G qf{D) implies x £ D). Analogously, define a torsionfree cancellative 
monoid S to be seminormal if 2x, 3x G S for x E (S) implies x £ S. Then 
D[X;S] is seminormal if and only if D and S are seminormal [2, Corollary 
6.2]. 

Theorem 4.6. Let D be an integral domain and S a nonzero torsionfree can
cellative monoid. Then Pic{D) = Pic{D[X;S]) if and only if D[X;S] is 
seminormal and Pic{D) = Pic{D[X;U{S)]). Moreover, if U{S) ^ 0, then 
Pic{D) = Pic{D[X; S]) if and only if Pic{D) = Pic{D[X; Z]). 

Proof. This result is from [6, Corollary]. Also see [5]. 

Chouinard also determined the projective modules over certain Krull 
monoid domains [16]. This was later generalized by J. Gubeladze [36] to 
monoid domains of the form D[X; S], where D is a PID and S is seminormal. 
R. G. Swan [48] has given a detailed exposition of Gubeladze's work; our next 
result is [48, Theorem 1.1]. 

Theorem 4.7. Let D be a Dedekind domain and S a torsionfree cancellative 
monoid. Then all finitely generated projective D[X; S]-modules are extended 
from D if and only if S is seminormal. 

Closedness properties usually behave fairly well in that D[X; S] often sat
isfies a property V if and only D satisfies V and S satisfies the additive semi
group analog of V. For example, this holds for integrally closed, completely 
integrally closed, root closed, and seminormal. This is because these proper
ties are "homogeneous" in the sense that a graded integral domain R satisfies 
them if and only if R satisfies them for homogeneous elements (see below). 
However, as we have seen, things do not behave as well for chain conditions. 
Many other ring-theoretic properties have been studied for semigroup rings 
(see [8, 25]). Much of this work has been done by R. Matsuda; we cite only 
[40, 41]. The interested reader should check Math Reviews (or MathSciNet) 
for more of his work. 

We have already given several instances in this article where semigroup 
rings have been used to construct examples (also see the examples in [8, 
Section 6]). Another of my favorite examples is (the localization of) a monoid 
domain used by A. Grams [35] to construct an atomic integral domain which 
does not satisfy ACCP (recall that an integral domain is atomic if each nonzero 
nonunit is a product of irreducible elements). (Grams was also a PhD student 
of Gilmer.) 

Much of the work on monoid domains generalizes to the context of graded 
integral domains. By a (S-)graded integral domain, we mean an integral do
main R graded by a torsionfree cancellative monoid S. That is, R = (BaesRa, 
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where each R^ is an additive abehan subgroup of R and RaRp "̂  Ra+p for 
aU a, (3 G S. Each nonzero x G /?„ is homogeneous of deg(a;) = a. Let H 
be the set of nonzero homogeneous elements of R. Then iJ is a submonoid 
of R* under multiphcation. We call RH the homogeneous quotient field of 
R. It is (S')-graded in the natural way by deg(r/s) = deg(r) — deg(s) for 
r,s e H, and every nonzero homogeneous element of RH is a unit. Also, RH 
is a completely integrally closed GCD-domain [3, Propositions 3.2 and 3.3] 
and RH = {RH)'O[-^'J {'^)]J 8- twisted group ring over the field {RH)O- More
over, RH is a Laurent polynomial ring over the field {RH)O (and hence is a 
PID) when R is Z_|_- or Z-graded. 

The monoid domain R = D[X;S] is S'-graded with deg{dX") = a for 
each d G D* and a e S. In this case, H = { dX" \ d G D* and a G S}, and 
thus R has homogeneous quotient field RH = K[X;G], where K = qf{D) 
and G = (S). However, R = D[X; S] is a very special graded ring in that it 
is an inert extension oi RQ = D (an extension A (- B oi integral domains is 
inert if whenever xy £ A for x,y E B, then x = ru and y = su~^ for some 
r,s e A and u G U{B)) and i?« = DX" = D for each a e S. Other graded 
domain constructions that have received considerable attention include the 
A + XB[X] construction (see [8]). 

Given a divisibility property, we can define the corresponding homogeneous 
divisibility property in the obvious manner. For example, we say that i? is a 
graded GCD-domain if any two nonzero homogeneous elements of R have a 
(necessarily homogeneous) GCD, i? is a graded UFD if every nonzero nonunit 
homogeneous element of J? is a product of (necessarily homogeneous) prime 
elements, i? is a graded Krull domain if R is completely integrally closed with 
respect to homogeneous elements of RH and R satisfies AGO on homogeneous 
integral w-ideals, and i? is a graded PVMD if the monoid of homogeneous 
finite-type u-ideals of R forms a group under u-multiplication. We can ask if 
R satisfies a given divisibilty property if and only if either R* or H satisfies 
the corresponding homogeneous divisibility property. Our next result gives 
some examples, for others, see [1, 2, 8]. 

Theorem 4.8. Let R be a graded integral domain and H its monoid of 
nonzero homogeneous elements. Then 

(a) R is a GCD-domain if and only if R is a graded GCD-domain (i.e., H is 
a GCD-monoid). 

(b) R is a UFD if and only if R is a graded UFD (i.e., H is a factorial 
monoid) and RH is a UFD. 

(c) R is a Krull domain if and only if R is a graded Krull domain and RH is 
a Krull domain. 

(d) R is a PVMD if and only if R is a graded PVMD. 

Proof. See [1, Theorems 3.4, 4.4, and 5.8] for parts (a), (b), and (c), respec
tively. Part (d) is proved in [2, Theorem 6.4]. 
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Since RH is always a GCD-domain, parts (a) and (d) have the same form 
as (b) and (c) in Theorem 4.8. Also, if R is Z+- or Z-graded, then J? is a UFD 
(resp., Krull domain) if and only if R is graded UFD (resp., Krull domain) 
since RH is a PID. However, K[X; Q] is a graded UFD for any field K, but 
not a UFD. Theorems 2.2, 2.4, 4.2, and 4.3 follow easily from Theorem 4.8, 
see [1, Propositions 3.5, 4.7, and 5.11] and [2, Proposition 6.5] for details. 

One can also consider conditions on the nonzero homogeneous ideals of a 
graded integral domain R. This leads to the study of the homogeneous class 
group HCl(R) and the homogeneous Picard group HPic{R) (see [2, 3, 7, 8, 
10, 13]). 

Recently, there has been considerable activity on generalizing ring-theoretic 
properties to the context of semigroups or monoids. This comes about for (at 
least) two reasons. First, we have seen tha t R[X; S] satisfies a certain ring-
theoretic property often implies tha t S satisfies the corresponding additive 
monoid property. For example, we have seen tha t ii D[X; S] is a GCD-domain 
(resp., UFD, Krull domain, PVMD, seminormal domain), then 5 is a GCD 
(resp., factorial, Krull, PVMD, seminormal) monoid. This holds for many 
more properties. In fact, R. Matsuda [42, 43] has recast much of Multiplica
tive Ideal Theory [27] in the context of torsionfree cancellative monoids. Again, 
the interested reader should consult Math Reviews (or MathSciNet) for other 
work of Matsuda. 

Secondly, divisibility properties of an integral domain D are often equiva
lent to the corresponding divisibility properties in the multiplicative monoid 
D*. For example, D is a UFD (resp., GCD-domain, Krull domain) if and only 
if D* is a factorial (resp., GCD, Krull) monoid. Thus, nowadays much of the 
research on non-unique factorization in integral domains is done in the more 
general setting of commutative cancellative monoids. For recent such work 
and additional references, see [8] and F . Halter-Koch's book Ideal Systems 
[37]. 
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