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Introduction

Establishing stops (or stations) within a transportation network is fundamen-
tal for offering public transportation service, since stops are an important part
of the PTN. But it is not clear in advance, how many stops are reasonable,
and where they should be built. Let us consider the effects of stops on the
customers:

• On the one hand, many stops are advantageous from the customers’ point
of view, since they increase the accessibility of the trains or buses. Es-
tablishing a new stop may hence attract new customers and increase the
demand. In bus transportation, the covering radius is often assumed to be
400 m, meaning that a customer will think about using a bus, only if the
next bus stop is within a distance of at most 400 m. In rail transportation,
the covering radius is larger, and is usually assumed to be 2 km.

• On the other hand, each additional stop increases the transportation time
(e.g., by two minutes in rail transportation) for all trains or buses stopping
there. This makes the transportation service unattractive to customers.

Moreover, this additional running time of trains (or buses) is costly for the
transportation company, and also fixed costs arise for establishing a new stop.

In the continuous stop location problem we deal with the location of new
stops along a given track system. This means, we assume that the tracks for
the trains are already built, or the routes for the buses are already fixed. For
the sake of simplicity we will use the wordings “stops” and “tracks” in the
following, but keep in mind that the models and algorithms presented can
also be applied for bus transportation.

We further assume a (possibly empty) set of already existing stops or stations.
As input data we also need the locations of the potential customers, given as
points or as regions in the plane, and the traffic load along the edges of the
given tracks. An example for a set of demand points is depicted in Figure 2.1.
Our goal is to locate additional stops along the tracks such that
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• as many (potential) customers as possible live closer than a given radius
r to their nearest stop, and such that

• the increase of travel time caused by the new stops is as small as possible.

demand point
given tracks

Fig. 2.1. The set of tracks T and a set of demand points D in the plane.

The result we obtain by solving the continuous stop location problem defines
the PTN which is the basis for many subsequent optimization models in public
transportation planning. Establishing no stop at all means that the additional
travel time is minimal, but for none of the customers does the accessibility
increase. The other extreme is to open stops until the complete demand is
covered. The following optimization problems will be treated in this chapter.

• In the complete cover stop location problem (CSL) we want to cover all
potential customers with as few stops as possible, or with as few costs
as possible. The problem will be treated in Chapter 3 for the case that
the demand is given at points and in Section 5.1 for the case of demand
regions.

• The bicriteria stop location problem (BSL) focuses on minimizing the addi-
tional travel time and on maximizing the covered demand simultaneously.
This provides solutions between the two extremes of covering the complete
demand and of establishing no (additional) stop at all. (BSL) is discussed
in Chapter 4.

• In the door-to-door travel time stop location problem (DSL) we investigate
the door-to-door travel time over all customers. The door-to-door travel
time for a customer is given by the time he needs to get to the first station
of his trip plus the time of the trip itself plus the time he needs to reach
his final destination after leaving the public transportation system. (DSL)
will be considered in Section 5.2.



Chapter 2 is structured as follows: We start by presenting the applica-
tion which motivated us to deal with continuous stop location problems. A
literature review on stop location is given next. Then we present a model for
the continuous stop location problem, enabling us to evaluate the interesting
objective functions.

2.1 Application

When comparing railway systems all over Europe, it turns out that Switzer-
land has a higher amount of rail transportation than other countries. Among
others, one reason could be that in Switzerland the number of stops compared
to the overall length of the track system is significantly higher than in other
countries. The interesting question arising by this observation is, if it is an
advantage or a disadvantage to have many stops. To come to an answer, we
consider a customer-oriented point of view. A quality criterion for the cus-
tomers which is influenced by the number of stops is the door-to-door travel
time of their journeys, including the time they need to get from home to their
departure stations and the time they need to reach their final destinations. A
priori it is not clear if this time will increase or decrease by opening new stops
along the track system.

Note that by a stop we do not mean a fully equipped station, but just a
stopping point for the trains, which is relatively cheap for the railway company.
Our results and some of our algorithmic approaches have been implemented
and tested using data of the largest German railway company, Deutsche Bahn.
Here we located new stops along the track system, relevant for regional trains,
i.e., all regional trains are supposed to stop while the fast long-distance trains
pass through. Our real-world data is described next.

• We use 30 637 demand regions, given as polygons with an average of 45
nodes per polygon. These polygons are not identical with the borders of the
communities and also do not form a partition of Germany. They represent
the population distribution better than community borders since green
land is excluded. This means that most of the data is very accurate; even
relatively small towns are given as a set of more than 10 different demand
regions.

• The PTN we used represents the network of Deutsche Bahn. It has a size
of 6 828 stations and 8 724 edges.

• For each demand region we furthermore know the number of inhabitants,
and for each edge we got an approximation of the traffic load, i.e., the
number of customers using the edge.

Moreover, Deutsche Bahn specified some of the necessary parameters for our
models. The time needed for an additional stopping activity of a regional train
was estimated as two minutes. For the covering radius, a distance of 2 km is
often used in rail transportation.
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2.2 Literature Review

The importance of planning stops carefully and different customer-oriented
criteria for bus stop location were already discussed in the case study of
Demetsky et al, see [DAL82]. Among the many possible objective functions
one goal is to establish as few stops as possible in such a way that all customers
are covered. This was done in [Gle75] and in [MDSF98, Mur01a, Mur01b]. In
the latter papers, the public transportation network in Brisbane, Australia
was analyzed in detail and it turned out that 84.5 % of the stops are not nec-
essary in terms of covering a set of given demand points within a Euclidean
distance of 400 m, i.e., closing them would not decrease the actual number of
covered customers. The stop location problem was treated in a discrete setting
in these papers, i.e., the authors either considered only the actual stops, or
they assumed that a finite candidate set of new stops is given. This leads to
an unweighted set covering problem, also called location set covering problem
which was introduced in [TSRB71, TR73]. In the context of stop location this
problem has been solved by [Mur01a] using the Lagrangian-based set covering
heuristic of [CFT99]. A new discrete stop location model was developed by La-
porte et al. [LMO02]. They investigate which candidate stops along one given
line in Seville should be opened, taking into account demand regions and con-
straints on the inter-station space. The coverage of a new stop is determined
using a gravitation model. Finally, they solved the problem by a longest path
algorithm in an acyclic graph. Their model resembles the maximum coverage
location problem originally presented in [CR74, WC74].

The difference between the continuous stop location problem considered here
and most papers published so far is that in the continuous stop location prob-
lem we do not choose the stops from a known set of possible candidates, but
allow establishing a new stop anywhere along the given railway tracks (or
along the given bus routes). The covering information can hence not be given
explicitly but must be calculated by some (geometric) formula. The first ap-
proaches dealing with a continuous candidate set were given in [HLS+01] and
[SHLW02]. They are described in more detail in Section 5.2 and in Chapter 3.
The results of [RS04, Sch05c, SS03] are based on these two papers and can be
found in Section 3.6, Chapter 9, and Section 5.1. The research of [KPS+03]
was also motivated by this research. They deal with a variant of the continu-
ous stop location problem, aiming to cover as much demand as possible with
a given number of new stops, see Section 4.1. In [MMW04] the stop loca-
tion problem has been investigated and solved for the case of two intersecting
lines. Solving the stop location problem by data reduction of the underlying
covering problem has been studied in [Mec03] and in [MW04].
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2.3 A Model for Continuous Stop Location

Let G = (V, E) be a finite, planar graph with straight-line embedding in the
plane. In real-world data sets, the nodes of G represent either existing stations
or important breakpoints. We identify each edge e ∈ E by a line segment in
the plane. Moreover,

• ce is the traffic load along edge e ∈ E, i.e., the number of customers using
edge e, and

• cv is the traffic load through station v ∈ V , i.e., the number of customers
passing through station v (and not getting on or off there).

Both parameters can be given, for example, in customers per day.

Definition 2.1. Given G = (V, E) define the track system

T =
⋃
e∈E

e = {x ∈ IR2 : x ∈ e for some e ∈ E} ⊆ IR2

as the set of points on edges of the planar embedding of G.

Our goal is to establish stops (or stations), which are represented by points
in T . The evaluation of a set S ⊆ T is described next.

Additional Travel Time

To calculate the additional travel time induced by some set of stations S ⊆ T
we take the number of customers affected by the additional stopping activities
and multiply them by the time tstop which is needed for an additional stop.
According to Deutsche Bahn, tstop can be assumed to be two minutes, inde-
pendent of the location of the stop. This is specified in the following notation:

Definition 2.2. Given s ∈ T let

g(s) =

{
s if s ∈ V
e if s ∈ e, s �∈ V.

Furthermore, given a finite set S ⊆ T we define

ftime(S) =
∑
s∈S

tstopcg(s).

For an infinite set S we define ftime(S) = ∞.

Since tstop is a constant, e.g., two minutes in rail transportation, it can be
neglected for the optimization process. Furthermore, note that ftime(S) = |S|
if all traffic loads cg(s) = 1, i.e., if we assume that each edge is used by exactly
one customer. Hence, we will refer to the unweighted problem if we deal with
the special case of minimizing the number of stations.
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The Cover of a Set of Stops

To deal with the accessibility of potential customers, we next assume that
D ⊆ IR2 is a finite set of either

• demand points, or of
• pairwise disjoint demand regions

representing important points or regions such as settlements, industrial areas,
shopping centers, or leisure parks.

Notation 2.3. For D let
Dtotal =

⋃
D∈D

D

be the demand set. Note that Dtotal = D if D consists of demand points.

We now introduce the notion of covering with respect to a distance measure γ.
We may specify different distance measures for each of the elements of D, i.e.,
for each of the demand points or regions. As distance measure γD we allow any
norm or gauge (see Appendix C); readers who are not familiar with gauges
may simply imagine γD as the Euclidean distance. For d ∈ IR2, S ⊆ IR2, let
(as usual)

γd(d, S) = min
s∈S

γd(d, s).

Notation 2.4. Let d ∈ Dtotal. Then γd denotes the distance measure associ-
ated with d.

If D consists of demand regions, and D ∈ D, then we require for all points
d1, d2 ∈ D:

γd1 = γd2 = γD.

A demand point is covered, if the distance to its closest station is smaller than
or equal to a given radius r, where the used distance need not be the same
for all demand points. Formally, this is specified below.

Definition 2.5. Given r > 0, and S ⊆ T .

1. A point d ∈ Dtotal is covered by S if γd(d, S) ≤ r.
2. Furthermore, the cover is S is coverD(S) = {d ∈ Dtotal : d is covered by S}.

If it is clear to which set D we refer, we just write cover(S). Furthermore, for
s ∈ S we use cover(s) for cover({s}). Note that if γd = γ for all d ∈ Dtotal we
obtain

coverD(S) = {d ∈ IR2 : γ(d, S) ≤ r} ∩ Dtotal.

The cover of a point is illustrated in Figure 2.2. The small rectangles in parts
(a) and (b) represent the demand points d1, . . . , d6, while we consider two
demand regions D1 and D2 in parts (c) and (d). All elements of D in parts (a)
and (c) are assumed to have the Euclidean distance associated with them. In
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part (b), γd1 , γd2 , and γd3 equal the rectangular distance, while the remaining
elements d ∈ Dtotal again have γd as Euclidean distance. In part (d), we
assume γD1 as rectangular distance and γD2 as Euclidean. In parts (a) and
(b) the cover consists of the filled small rectangles, in parts (c) and (d) the
cover is given by the dashed area.

d1

d2 d3

d4
d5

d6

d1

d2

d4
d5

d6

D1 D1

D2 D2

(a) (b)

(d)(c)

d3

Fig. 2.2. The cover for demand points (see (a) and (b)) and for demand regions
(in (c) and (d)), both for the Euclidean distance (see (a) and (c)) and for mixed
rectangular and Euclidean distances (in (b) and (d)).

We further need the following notation. Consider d ∈ Dtotal with associated
distance function γd. Let Bd = {x ∈ IR2 : γd(x) ≤ 1} be the unit ball
associated with γd, see Appendix C. Using the denotation

Br
d = d + rBd,

we get
γd(d, x) ≤ r if and only if x ∈ Br

d.

Hence, we obtain:

Lemma 2.6. Let d ∈ Dtotal and S ⊆ T . Then d is covered by S if and only
if S ∩ Br

d �= ∅.

We refer to Figure 2.3 for an illustration.
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Fig. 2.3. Br
d ∩ S �= ∅, hence d is covered by S. On the other hand, Br

d̄
∩ S = ∅,

hence d̄ is not covered by S.

We will often use this dual view of the stop location problem, not considering
the cover of some points S ⊆ T but starting from one point d ∈ Dtotal. For
d ∈ Dtotal we determine the set of points on T which can be used to cover d,
i.e., those points where the location of a new stop would attract the demand
in d.

Notation 2.7. Let d ∈ Dtotal. Then T (d) = {s ∈ T : γd(d, s) ≤ r}.

T (d) can be calculated by intersecting the unit ball Br
d of the gauge γd (with

radius r) centered at the demand point d with the set of tracks T , as the
following lemma shows. For an illustration, see Figure 2.4.

Br
d

d

Fig. 2.4. The set T (d) = Br
d ∩ T (the thick part of the tracks).
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Lemma 2.8. Let d ∈ Dtotal. Then T (d) = T ∩ Br
d.

Proof.

=⇒: Let s ∈ T (d). Per definition s ∈ T and γd(d, s) ≤ r, i.e., γd(s − d) ≤ r.
The latter means that

s − d ∈ rBd, i.e., s = d + (s − d) ∈ d + rBd = Br
d.

⇐=: Now let s ∈ Br
d = d + rBd. This yields s − d ∈ rBd, hence γd(d, s) =

γd(s − d) ≤ r. Since s also is in T the result follows. ��

With the notation of T (d) we can reformulate Lemma 2.6 as follows.

Lemma 2.9. Let d ∈ Dtotal and S ⊆ T . Then d is covered by S if and only
if S ∩ T (d) �= ∅. In particular, d can be covered, if T (d) �= ∅.

The Number of Covered Customers

The second objective function we are interested in gives the number of cus-
tomers living closer than the distance of r to their nearest station. Denot-
ing wD as the number of (potential) customers located at demand point or
demand region D ∈ D, we are now in the position of defining the second
objective.

For the case of demand points we investigate

fcover(S) =
∑

d∈cover(S)

wd.

In the case of demand regions, let λ(D) denote the area of a (measurable) set
D ⊆ IR2. Assuming that the demand is equally distributed within each set
D ⊆ D, we get the number of covered customers by calculating the percentage
of D which is covered and multiplying it with the demand wD of the respective
set. By summing up these values over all D ∈ D we obtain

fcover(S) =
∑
D∈D

wD

λ(cover(S) ∩ D)

λ(D)

for demand regions.

We distinguish the following two types of problems.

(SL) Planning stations from scratch: Given D, T , and Qcover, Qtime ∈ IR find
a set S∗ ⊆ T such that fcover(S

∗) ≥ Qcover and ftime(S
∗) ≤ Qtime.

(SL’) Opening additional stations: Given D′, T ′, a set of already existing sta-
tions Sex ⊆ T ′ and Q′

cover, Q
′
time ∈ IR, find a set S∗ ⊆ T ′ such that

fcover(S
∗ ∪ Sex) ≥ Qcover and ftime(S

∗) ≤ Qtime.
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In (SL) the goal is to plan the set of stations from scratch, i.e., we assume that
no station has been opened so far, whereas in (SL’) a set of already existing
stations has to be taken into account and we just add some new stations within
the already existing network. For our analysis, both problems are equivalent,
such that we can – for the sake of simpler notation – restrict ourselves to
the problem of planning the stations from scratch. This means, we assume
in the following that the set of already existing stations Sex is empty. The
justification for this assumption is given in the next lemma.

Lemma 2.10. (SL) and (SL’) are equivalent.

Proof. To transfer a problem instance of (SL) to a problem instance of (SL’)
define Sex = ∅ and leave everything else as it is, i.e., T ′ = T , D′ = D,
Q′

cover = Qcover, and Q′
time = Qtime.

For the reduction from (SL’) to (SL) let Wcover be the number of customers in
D′ who are already covered by existing stops, i.e., Wcover = fcover(S

ex) where
cover is meant with respect to D′. To obtain an instance of (SL) we set

D = D′ \ coverD′(Sex)

Qcover = Q′
cover − Wcover,

and leave the set of tracks T = T ′ and Qtime = Q′
time as they are. ��




