
OLAP and Data Cubes 

This chapter reviews On-line Analytical Processing (OLAP) in Section 2.1 
and data cubes in Section 2.2. 

2.1 OLAP 

Coined by Codd et. a1 [18] in 1993, OLAP stands for On-Line Analytical 
Processing. The concept has its root in earlier products such as the IRI Ex- 
press, the Comshare system, and the Essbase system [67]. Unlike statistical 
databases which usually store census data and economic data, OLAP is mainly 
used for analyzing business data collected from daily transactions, such as 
sales data and health care data [65]. The main purpose of an OLAP system is 
to enable analysts to construct a mental image about the underlying data by 
exploring it from different perspectives, at different level of generalizations, 
and in an interactive manner. 

As a component of decision support systems, OLAP interacts with other 
components, such as data warehouse and data mining, to assist analysts in 
making business decisions. A data warehouse usually stores data collected 
from multiple data sources, such as transactional databases throughout an 
organization. The data are cleaned and transformed to a common consistent 
format before they are stored in the data warehouse. Subsets of the data in a 
data warehouse can be extracted as data marts to meet the specific require- 
ments of an organizational division. Unlike in transactional databases where 
data are constantly updated, typically the data stored in a data warehouse 
are refreshed from data sources only periodically. 

OLAP and data mining both allow analysts to discover novel knowledge 
about the data stored in a data warehouse. Data mining algorithms automat- 
ically produce knowledge in a pre-defined form, such as association rule or 
classification. OLAP does not directly generate such knowledge, but instead 
relies on human analysts to observe it by interpreting the query results. On 
the other hand, OLAP is more flexible than data mining in the sense that 
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analysts may obtain all kinds of patterns and trends rather than only knowl- 
edge of fixed forms. OLAP and data mining can also be combined to enable 
analysts in obtaining data mining results from different portion of the data 
and at different level of generalization [39]. 

In a typical OLAP session, the analyst poses aggregation queries about 
underlying data. The OLAP system can usually return the result in a matter 
of seconds, even though the query may involve a large number of records. 
Based on the results, the analysts may decide to roll up to coarser-grained data 
so they can observe global patterns and trends. Upon observing an exception 
to any established pattern, the analysts may drill down to finer-grained data 
with more details to catch the outliers. Such a process is repeated in different 
portions of the data by slicing or dicing the data, until a satisfactory mental 
image of the data has been constructed. 

The requirements on OLAP systems have been defined differently, such as 
the FASMI (Fast Analysis of Shared Multidimensional Information) test [58] 
and the Codd rules [18]. Some of the requirements are unique to OLAP. First, 
to make OLAP analysis an interactive process, the OLAP system must be 
highly efficient in answering queries. OLAP systems usually rely on extensive 
pre-computations, indexing, and specialized storage to improve the perfor- 
mance. Second, to allow analysts to explore the data from different perspec- 
tives and at different level of generalization, OLAP organizes and generalizes 
data along multiple dimensions and dimension hierarchies. The data cube 
model we shall address shortly is one of the most popular abstract models for 
this purpose. 

The data to be analyzed by OLAP are usually stored based on the rela- 
tional model in the backend data warehouse. The data are organized based 
on a star schema. Figure 2.1 shows an example of star schema. It has a fact 
table (timeID, orgID, commission), where the first two attributes timeID 
and orgID are called dimenions, and commission is called a measure. Each 
dimenion has a dimension table associated with it, indicating a dimension 
hierarchy. The dimension tables may contain redundancy, which can be re- 
moved by splitting each dimension table into multiple tables, one per attribute 
in the dimension table. The result is called a snowflake schema, as illustrated 
in Figure 2.2. 

Fig. 2.1. An Example of Star Schema 
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Fig. 2.2. An Example of Snowflake Schema 
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Popular architectures of OLAP systems include ROLAP (relational OLAP) 
and MOLAP (multidimensional OLAP). ROLAP provides a front-end tool 
that translates multidimensional queries into corresponding SQL queries to 
be processed by the relational backend. ROLAP is thus light weight and scal- 
able to large data sets, whereas its performance is constrained because opti- 
mization techniques in the relational backend are typically not designed for 
multidimensional queries. MOLAP does not rely on the relational model but 
instead materializes the multidimensional views. MOLAP can thus provide 
better performance with the materialized and optimized multidimensional 
views. However, MOLAP demands substantial storage for materializing the 
views and is usually not scalable to large datasets due to the multidimen- 
sional explosion problem [57]. Using MOLAP for dense parts of the data and 
ROLAP for the others leads to a hybrid architecture, namely, the HOLAP or 
hybrid OLAP. 

2.2 Data Cube 

Data cube was proposed as a SQL operator to support common OLAP tasks 
like histograms (that is, aggregation over computed categories) and sub- 
totals [37]. Even though such tasks are usually possible with standard SQL 
queries, the queries may become very complex. For example, Table 2.1 shows 
a simple relation comm, where employee, quarter, and location are the three 
dimensions, and the commission is a measure. We call comm a base relation 
since it contains the ground facts to be analyzed. 

Suppose analysts are interested in the sub-total commissions in the two- 
dimensional cross tabular in Table 2.2 (other possible ways of visually repre- 
senting such subtotals are discussed in [37]). The inner tabular includes the 
quarterly commission for each employee; below the inner tabular are the total 
commissions for each employee; to the right are the total commissions in each 
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Table 2.1. The Base Relation comm 

employee quarter location 
Alice Q1 Domestic 
Alice Q1 International 
Bob Q1 Domestic 
Mary Q1 Domestic 
Mary Q1 International 
Bob Q2 International 
Mary Q2 Domestic 
Jim &2 Domestic 

year; a t  the right bottom corner is the total commission of all employees in 
the two years. 

commission 
800 
200 
500 
1200 
800 
1500 
500 
1000 

Table 2.2. A Two-dimensional Cross Table 

& 1 
Q2 

The sub-totals in Table 2.2 can be computed using SQL queries. However, 
we need to  union four GROUP BY queries as follows: 

SELECT employee, quarter, SUM(commission) 
FROM comm 
GROUP BY employee,quarter 
UNION 
SELECT 'ALL), quarter, SUM(commission) 
FROM comm 
GROUP BY quarter 
UNION 
SELECT employee, 'ALL), SUM(commission) 
FROM comm 
GROUP BY employee 
UNION 
SELECT 'ALL', 'ALL', SUM(commission) 
FROM comm 

Alice Bob Mary Jim 
1000 500 2000 

1500 500 1000 

The number of needed unions is exponential in the number of dimensions. 
A complex query may result in many scans of the base table, leading t o  poor 
performance. Because such sub-totals are very common in OLAP queries, it is 

total(ALL) 
3500 
3000 
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desired to define a new operator for the collection of such sub-totals, namely, 
data cube. 

A data cube is essentially the generalization of the cross tabular illus- 
trated in Table 2.2. The generalization happens in several perspectives. First, 
a data cube can be n dimensional. Table 2.3 shows a three-dimensional data 
cube built from this new base table. Based on the ALL values, the data 
cube is divided into eight parts, namely, cuboids. The first cuboid is a three- 
dimensional cube, usually called the core cuboid. The next three cuboids have 
one ALL value and are the two-dimensional planes. The next three are the one- 
dimensional lines. The last cuboid has a single value and is a zero-dimensional 
point. 

The second perspective of the generalization is the aggregation function. 
The aggregation discussed so far is SUM. In general any aggregation func- 
tion, including customized ones, can be used to construct a data cube. Those 
functions can be classified into three categories, the distributive, the algebraic, 
and the holistic. Let I be a set of values, and P(I) = {pl,p2,. . . , p , )  be any 
partition on I. Then an aggregation function F()  is distributive, if there exists 
a function G() such that F ( I )  = G({F(pi) : 1 5 i 5 n)). It is straightforward 
to verify that SUM, COUNT, MIN, and MAX are distributive. 

By generalizing the function G() into one that returns an m-vector, 
the algebraic aggregations have a similar property like that of the distrib- 
utive ones, that is F( I )  = G({F(pi) : 1 < i < n)). For example, Let 
G() =< SUM(), COUNT() >, then AVERAGE is clearly an algebraic func- 
tion. However, a holistic function like MEDIAN cannot be evaluated on P( I )  
with any G() that returns a vector of constant degree. The significance in 
distinguishing those three types of aggregation function lies in the difficulty 
of computing a data cube. Because the cuboids in a data cube form a hierar- 
chy of aggregation, a cuboid can be more easily computed from other cuboids 
for distributive and algebraic functions. However, for a holistic function, any 
cuboid must be computed directly from the base table. 

The third perspective of the generalization is the dimension hierarchy. For 
the data cubes shown in Table 2.2 and Table 2.3, each dimension is a two- 
level pure hierarchy. For example, the employee dimension has basically two 
attributes, employee and ALL (ALL should be regarded as both an attribute 
and its only value). In general, each dimension can have many attributes, such 
as the example in Figure 2.1. The attributes of a dimension may form a lattice 
instead of a pure hierarchy, such as day, week, month, and year (week and 
month are incomparable). The attribute in the base table is the lower bound 
of the lattice, and ALL (regarded as an attribute) is the upper bound. The 
product of the dimension lattices is still a lattice, as illustrated in Figure 2.3. 
This lattice is essentially the schema of a data cube. 

The lattice structure has played an important role in many perspectives of 
data cubes. For example, materializing the whole data cube usually incurs pro- 
hibitive costs in computation and storage. Moreover, materializing a cuboid 
does not always bring much benefits to answering queries. In Figure 2.3, the 
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employee quarter location 
Alice Q1 Domestic 
Alice Q 1 International 
Bob Q1 Domestic 
Mary Q1 Domestic 
Mary Q1 International 
Bob Q2 International 
Mary Q2 Domestic 
Jim Q2 Domestic 
Alice Q1 ALL 
Bob Q1 ALL 
Mary Q1 ALL 
Bob Q2 ALL 
Mary Q2 ALL 
Jim Q2 ALL 
Alice ALL Domestic 
Alice ALL International 
Bob ALL Domestic 
Mary ALL Domestic 
Mary ALL International 
Bob ALL International 
Jim ALL Domestic 
ALL Q1 Domestic 
ALL Q1 International 
ALL Q2 International 
ALL Q2 Domestic 
Alice ALL ALL 
Bob ALL ALL 
Mary ALL ALL 
Jim ALL ALL 
ALL Q1 ALL 

ALL International 
ALL ALL ALL 

ommissio: 
800 
200 
500 
1200 
800 
1500 
500 
1000 
1000 
500 
2000 
1500 
500 
1000 
800 
200 
500 
1700 
800 
1500 
1000 
2500 
1000 
1500 
1500 
1000 
2000 
2500 
1000 
3300 
3000 
4000 
2500 
6500 

Table 2.3. A Three-Dimensional Data Cube 

core cuboid must be materialized because it cannot be computed from others. 
However, if any of the cuboids with one ALL value has a comparable size to  
the core cuboid, then it may not need to  be materialized, because answering 
a query using that cuboid incurs similar costs as using the core cuboid in- 
stead (the cost of answering a query is roughly proportional to  the size of the 
cuboid being used). Greedy algorithms have been proposed to  find optimal 
materialization of a data cube under resource constraints [40]. 
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Fig. 2.3. The Lattice Structure of Data Cube 

ALL, quarter, ALL employee, ALL, ALL ALL, ALL, location 

employee, quarter, ALL employee, ALL, location ALL, quarter, location 

employee, quarter, location 

Even if the whole data cube needs to be computed, the lattice structure 
can help to improve the performance of such computations. For example, if 
the computation is based on sorting the records, then the core cuboid can 
be sorted in three different ways (by any two of the three attributes). Each 
choice will simplify the computation of one of the three cuboids with one 
ALL value because that cuboid can be computed without additional sorting. 
However, computing the other two cuboids will require the core cuboid be re- 
sorted. Based on estimated costs, algorithms exist to make the optimal choice 
in sorting each cuboid, and those choices can be linked to form pipelines of 
computation so the needs for re-sorting cuboids can be reduced [2]. 




