
OLAP and Data Cubes

This chapter reviews On-line Analytical Processing (OLAP) in Section 2.1
and data cubes in Section 2.2.

2.1 OLAP

Coined by Codd et. a1 [18] in 1993, OLAP stands for On-Line Analytical
Processing. The concept has its root in earlier products such as the IRI Ex-
press, the Comshare system, and the Essbase system [67]. Unlike statistical
databases which usually store census data and economic data, OLAP is mainly
used for analyzing business data collected from daily transactions, such as
sales data and health care data [65]. The main purpose of an OLAP system is
to enable analysts to construct a mental image about the underlying data by
exploring it from different perspectives, at different level of generalizations,
and in an interactive manner.

As a component of decision support systems, OLAP interacts with other
components, such as data warehouse and data mining, to assist analysts in
making business decisions. A data warehouse usually stores data collected
from multiple data sources, such as transactional databases throughout an
organization. The data are cleaned and transformed to a common consistent
format before they are stored in the data warehouse. Subsets of the data in a
data warehouse can be extracted as data marts to meet the specific require-
ments of an organizational division. Unlike in transactional databases where
data are constantly updated, typically the data stored in a data warehouse
are refreshed from data sources only periodically.

OLAP and data mining both allow analysts to discover novel knowledge
about the data stored in a data warehouse. Data mining algorithms automat-
ically produce knowledge in a pre-defined form, such as association rule or
classification. OLAP does not directly generate such knowledge, but instead
relies on human analysts to observe it by interpreting the query results. On
the other hand, OLAP is more flexible than data mining in the sense that

14 2 OLAP and Data Cubes

analysts may obtain all kinds of patterns and trends rather than only knowl-
edge of fixed forms. OLAP and data mining can also be combined to enable
analysts in obtaining data mining results from different portion of the data
and at different level of generalization [39].

In a typical OLAP session, the analyst poses aggregation queries about
underlying data. The OLAP system can usually return the result in a matter
of seconds, even though the query may involve a large number of records.
Based on the results, the analysts may decide to roll up to coarser-grained data
so they can observe global patterns and trends. Upon observing an exception
to any established pattern, the analysts may drill down to finer-grained data
with more details to catch the outliers. Such a process is repeated in different
portions of the data by slicing or dicing the data, until a satisfactory mental
image of the data has been constructed.

The requirements on OLAP systems have been defined differently, such as
the FASMI (Fast Analysis of Shared Multidimensional Information) test [58]
and the Codd rules [18]. Some of the requirements are unique to OLAP. First,
to make OLAP analysis an interactive process, the OLAP system must be
highly efficient in answering queries. OLAP systems usually rely on extensive
pre-computations, indexing, and specialized storage to improve the perfor-
mance. Second, to allow analysts to explore the data from different perspec-
tives and at different level of generalization, OLAP organizes and generalizes
data along multiple dimensions and dimension hierarchies. The data cube
model we shall address shortly is one of the most popular abstract models for
this purpose.

The data to be analyzed by OLAP are usually stored based on the rela-
tional model in the backend data warehouse. The data are organized based
on a star schema. Figure 2.1 shows an example of star schema. It has a fact
table (timeID, orgID, commission), where the first two attributes timeID
and orgID are called dimenions, and commission is called a measure. Each
dimenion has a dimension table associated with it, indicating a dimension
hierarchy. The dimension tables may contain redundancy, which can be re-
moved by splitting each dimension table into multiple tables, one per attribute
in the dimension table. The result is called a snowflake schema, as illustrated
in Figure 2.2.

Fig. 2.1. An Example of Star Schema

2.2 Data Cube 15

Fig. 2.2. An Example of Snowflake Schema

branch ?

\ /
[timen> I orgID (commission I

Popular architectures of OLAP systems include ROLAP (relational OLAP)
and MOLAP (multidimensional OLAP). ROLAP provides a front-end tool
that translates multidimensional queries into corresponding SQL queries to
be processed by the relational backend. ROLAP is thus light weight and scal-
able to large data sets, whereas its performance is constrained because opti-
mization techniques in the relational backend are typically not designed for
multidimensional queries. MOLAP does not rely on the relational model but
instead materializes the multidimensional views. MOLAP can thus provide
better performance with the materialized and optimized multidimensional
views. However, MOLAP demands substantial storage for materializing the
views and is usually not scalable to large datasets due to the multidimen-
sional explosion problem [57]. Using MOLAP for dense parts of the data and
ROLAP for the others leads to a hybrid architecture, namely, the HOLAP or
hybrid OLAP.

2.2 Data Cube

Data cube was proposed as a SQL operator to support common OLAP tasks
like histograms (that is, aggregation over computed categories) and sub-
totals [37]. Even though such tasks are usually possible with standard SQL
queries, the queries may become very complex. For example, Table 2.1 shows
a simple relation comm, where employee, quarter, and location are the three
dimensions, and the commission is a measure. We call comm a base relation
since it contains the ground facts to be analyzed.

Suppose analysts are interested in the sub-total commissions in the two-
dimensional cross tabular in Table 2.2 (other possible ways of visually repre-
senting such subtotals are discussed in [37]). The inner tabular includes the
quarterly commission for each employee; below the inner tabular are the total
commissions for each employee; to the right are the total commissions in each

16 2 OLAP and Data Cubes

Table 2.1. The Base Relation comm

employee quarter location
Alice Q1 Domestic
Alice Q1 International
Bob Q1 Domestic
Mary Q1 Domestic
Mary Q1 International
Bob Q2 International
Mary Q2 Domestic
Jim &2 Domestic

year; a t the right bottom corner is the total commission of all employees in
the two years.

commission
800
200
500
1200
800
1500
500
1000

Table 2.2. A Two-dimensional Cross Table

& 1
Q2

The sub-totals in Table 2.2 can be computed using SQL queries. However,
we need to union four GROUP BY queries as follows:

SELECT employee, quarter, SUM(commission)
FROM comm
GROUP BY employee,quarter
UNION
SELECT 'ALL), quarter, SUM(commission)
FROM comm
GROUP BY quarter
UNION
SELECT employee, 'ALL), SUM(commission)
FROM comm
GROUP BY employee
UNION
SELECT 'ALL', 'ALL', SUM(commission)
FROM comm

Alice Bob Mary Jim
1000 500 2000

1500 500 1000

The number of needed unions is exponential in the number of dimensions.
A complex query may result in many scans of the base table, leading t o poor
performance. Because such sub-totals are very common in OLAP queries, it is

total(ALL)
3500
3000

2.2 Data Cube 17

desired to define a new operator for the collection of such sub-totals, namely,
data cube.

A data cube is essentially the generalization of the cross tabular illus-
trated in Table 2.2. The generalization happens in several perspectives. First,
a data cube can be n dimensional. Table 2.3 shows a three-dimensional data
cube built from this new base table. Based on the ALL values, the data
cube is divided into eight parts, namely, cuboids. The first cuboid is a three-
dimensional cube, usually called the core cuboid. The next three cuboids have
one ALL value and are the two-dimensional planes. The next three are the one-
dimensional lines. The last cuboid has a single value and is a zero-dimensional
point.

The second perspective of the generalization is the aggregation function.
The aggregation discussed so far is SUM. In general any aggregation func-
tion, including customized ones, can be used to construct a data cube. Those
functions can be classified into three categories, the distributive, the algebraic,
and the holistic. Let I be a set of values, and P(I) = {pl,p2,. . . , p ,) be any
partition on I. Then an aggregation function F() is distributive, if there exists
a function G() such that F (I) = G({F(pi) : 1 5 i 5 n)). It is straightforward
to verify that SUM, COUNT, MIN, and MAX are distributive.

By generalizing the function G() into one that returns an m-vector,
the algebraic aggregations have a similar property like that of the distrib-
utive ones, that is F(I) = G({F(pi) : 1 < i < n)). For example, Let
G() =< SUM(), COUNT() >, then AVERAGE is clearly an algebraic func-
tion. However, a holistic function like MEDIAN cannot be evaluated on P(I)
with any G() that returns a vector of constant degree. The significance in
distinguishing those three types of aggregation function lies in the difficulty
of computing a data cube. Because the cuboids in a data cube form a hierar-
chy of aggregation, a cuboid can be more easily computed from other cuboids
for distributive and algebraic functions. However, for a holistic function, any
cuboid must be computed directly from the base table.

The third perspective of the generalization is the dimension hierarchy. For
the data cubes shown in Table 2.2 and Table 2.3, each dimension is a two-
level pure hierarchy. For example, the employee dimension has basically two
attributes, employee and ALL (ALL should be regarded as both an attribute
and its only value). In general, each dimension can have many attributes, such
as the example in Figure 2.1. The attributes of a dimension may form a lattice
instead of a pure hierarchy, such as day, week, month, and year (week and
month are incomparable). The attribute in the base table is the lower bound
of the lattice, and ALL (regarded as an attribute) is the upper bound. The
product of the dimension lattices is still a lattice, as illustrated in Figure 2.3.
This lattice is essentially the schema of a data cube.

The lattice structure has played an important role in many perspectives of
data cubes. For example, materializing the whole data cube usually incurs pro-
hibitive costs in computation and storage. Moreover, materializing a cuboid
does not always bring much benefits to answering queries. In Figure 2.3, the

18 2 OLAP and Data Cubes

employee quarter location
Alice Q1 Domestic
Alice Q 1 International
Bob Q1 Domestic
Mary Q1 Domestic
Mary Q1 International
Bob Q2 International
Mary Q2 Domestic
Jim Q2 Domestic
Alice Q1 ALL
Bob Q1 ALL
Mary Q1 ALL
Bob Q2 ALL
Mary Q2 ALL
Jim Q2 ALL
Alice ALL Domestic
Alice ALL International
Bob ALL Domestic
Mary ALL Domestic
Mary ALL International
Bob ALL International
Jim ALL Domestic
ALL Q1 Domestic
ALL Q1 International
ALL Q2 International
ALL Q2 Domestic
Alice ALL ALL
Bob ALL ALL
Mary ALL ALL
Jim ALL ALL
ALL Q1 ALL

ALL International
ALL ALL ALL

ommissio:
800
200
500
1200
800
1500
500
1000
1000
500
2000
1500
500
1000
800
200
500
1700
800
1500
1000
2500
1000
1500
1500
1000
2000
2500
1000
3300
3000
4000
2500
6500

Table 2.3. A Three-Dimensional Data Cube

core cuboid must be materialized because it cannot be computed from others.
However, if any of the cuboids with one ALL value has a comparable size to
the core cuboid, then it may not need to be materialized, because answering
a query using that cuboid incurs similar costs as using the core cuboid in-
stead (the cost of answering a query is roughly proportional to the size of the
cuboid being used). Greedy algorithms have been proposed to find optimal
materialization of a data cube under resource constraints [40].

2.2 Data Cube 19

Fig. 2.3. The Lattice Structure of Data Cube

ALL, quarter, ALL employee, ALL, ALL ALL, ALL, location

employee, quarter, ALL employee, ALL, location ALL, quarter, location

employee, quarter, location

Even if the whole data cube needs to be computed, the lattice structure
can help to improve the performance of such computations. For example, if
the computation is based on sorting the records, then the core cuboid can
be sorted in three different ways (by any two of the three attributes). Each
choice will simplify the computation of one of the three cuboids with one
ALL value because that cuboid can be computed without additional sorting.
However, computing the other two cuboids will require the core cuboid be re-
sorted. Based on estimated costs, algorithms exist to make the optimal choice
in sorting each cuboid, and those choices can be linked to form pipelines of
computation so the needs for re-sorting cuboids can be reduced [2].

