
TOOL CONDITION MONITORING IN 
MACHINING - NEURAL NETWORKS 

Mo A. Elbestawi 
McMaster University 

elbestaw@mcmaster. ca 

Mihaela Dumitrescu 
McMaster University 

dumitrm@mcmasler. ca 

Condition monitoring and diagnosis systems capable of identifying machining 
system defects and tiieir location are essential for unmanned machining 
Unattended (or minimally manned) machining would result in increased 
capital equipment utilization, thus substantially reducing the manufacturing 
costs. A review of tool monitoring systems and techniques and their 
components and the Multiple Principle Component fuzzy neural network for 
tool condition monitoring machining are presented. 

1. INTRODUCTION 

Increased demands for even higher product quality, reliability, and manufacturing 
efficiency levels have imposed stringent requirements on automated product 
measurement and evaluation. Manufactured products of the modem day command 
ever-higher precision and accuracy, therefore automated process monitoring 
becomes cmcial in successfully maintaining high quality production at low cost. 

The automated tool condition monitoring processes imply the identification of 
cutting tool condition without interrupting the manufacturing process operation, 
under minimum human supervision. Unattended or minimally manned machining 
leads to increased capital equipment utilization, thus substantially reducing the 
manufacturing costs. Both these situations require intelligent sensor systems. 

An "Intelligent Sensor System" was defined by (Dornfeld, 1986)' as an 
integrated system consisting of sensing elements, signal conditioning devices, signal 
processing algorithms, and signal interpretation and decision making procedures. In 
the absence of a human operator, the system should sense signals indicating the 
process status and its changes, interpret incoming sensed information, and decide on 
the appropriate control action. 

A system could be defined as Automated/Intelligent Monitoring System if 
sensing, analyzing, knowledge learning, and error correction abilities, essential to 
machining tool condition monitoring, are incorporated. 
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An automated/intelligent machining process and tool condition monitoring 
system should be able to emulate as closely as possible the abilities of human 
operators. Thus, the following four essential components have to be included in any 
automated tool condition monitoring system to emulate the human monitoring 
action: 

Sensing Technique Systems: Typically, indirect sensing techniques such as 
cutting forces, vibrations, and acoustic emission are used. Different types of sensors 
and sensory data from different locations are combined to yield maximum useful 
information. 

Feature Extraction Systems: Ideally, sensory signals contain the necessary 
information required to discriminate between different process and tool conditions. 
However, these signals are usually noisy and require further processing to yield 
useful features, highly sensitive to the tool conditions but insensitive to external 
noises. 

Decision Making Systems: Decision making strategies process incoming signal 
features and perform a pattern association task, mapping the signal feature to a 
proper class (tool condition). This processing task can be done sequentially or in 
parallel depending on the monitoring system architecture. 

Knowledge Learning Systems: In order to make a correct decision, learning 
algorithms have to be provided. Such algorithms tune system parameters by 
observing the sample features corresponding to different tool conditions. Like 
human operators, automated monitoring systems should have the ability to learn 
from their experiences (past work) as well as from the new information generated 
from the machining process. 

Key concerns with both signal processing and decision-making algorithms, 
jointly known as monitoring methods, include reliable and fast identification or 
response to an abnormal event occurring at normal process conditions (Du, 1995,'.) 

2. RESEARCH ISSUES 

The major research goals for tool condition monitoring are to develop self-adjusting 
and integrated monitoring systems able to function under various working 
conditions with minimum operator supervision. 

The purpose of automated tool condition monitoring in machining is to relate 
the process signals to the tool conditions, and detect or predict tool failure. 
Automated tool condition monitoring implies identifying the characteristic changes 
of the machining process based on the evaluation of process signatures without 
interrupting normal operations. Basically, a monitoring process has two parts: 

• Sensing- obtaining cutting process signals from sensors. Appropriate 
signals used for tool condition monitoring are force, torque, vibration, 
temperature, acoustic emission, electric current, etc..) 

• Monitoring- composed of signal processing and decision making, can be 
divided into model-based and feature-based methods. Both methods use 
sensor signals from the cutting process for the system input. 

Any automated machining process and tool condition monitoring systems should 
include: 
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• "Multi-Sensor Systems" - more than one sensor should be used for 
monitoring machining processes and tool conditions, yielding an extended 
survey of sensitive features. 

• "Automated Feature Extracting Systems" - automatically generate 
monitoring features through learning. The signals sensed from multiple 
sensors are analyzed, compacted, and selected by the system to yield the 
most sensitive features to the monitoring subjects. The extracted features 
are also further refined or reselected by the monitoring system. 

• "Learning and Decision Making Systems" - build up flexible and 
comprehensive monitoring strategies and automatically generate control 
parameters. The concentrated information from the learning procedure is 
stored in the system for classification purposes and can be modified by 
knowledge updating procedures. With increasing experience, the system 
will become more and more reliable and promote the monitoring/control 
functions. These strategies should be robust and valid for a reasonable 
range of cutting conditions. 

Significant research work performed in this research field focused on analytical 
forecast, dynamic structure identification, monitoring techniques, and adaptive 
control approaches; Thonshoff et.al.,1998,^; Tlusty and Andrews, 1983,*; Isserman, 
1984,'; and Domfeld, 1990,' published research papers on the development of 
modern monitoring techniques for machining. 

Critical reviews on sensors for machining monitoring were published by Tlusty 
and Andrews, 1983 and Domfeld, 1992,'. Applications include geometric 
corrections, machine diagnosis, surface finish controls, tool condition monitoring, 
and machining process monitoring. 

Thonshoff et.al, 1998, identified five monitoring tasks: machine, tool, process, 
tool condition, and workpiece; the author described the monitored conditions in 
machining processes and classifies the monitored functions into two groups: time 
critical and non-time critical. The former requires a system response within a range 
of milliseconds while the later may take seconds or even minutes. 

2.1 Sensing Techniques 

Metal cutting is a dynamic process; the sensor signals can be considered as the 
output of the dynamic system in a form of time series. Consequently, process and 
tool condition monitoring can be conducted based on system modeling and model 
evaluation. One of the most used models is linear time-invariant system, such as 
state space models, input-output transfer function models, Auto-Regressive (AR) 
models, Auto-Regressive and Moving Average (ARMA) models, and Dynamic Data 
Systems (DDS) methodology. When a suitable model is identified, monitoring can 
be performed by detecting the changes of the model parameters and/or the changes 
of expected system responses. 

Current sensing techniques can be divided into two basic types: 
• Direct Techniques - the most accurate measures for determining tooling 

failure; however the trade-off is production stoppage. With these methods, 
a direct analysis of the tool or workpiece surface is performed at the end of 
the machining cycle. Basic analysis methods include optical measurements, 
surface finish using contact probes (profilometers), chip size 
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measurements, etc. The main disadvantages of this methods is that any 
significant deterioration occurring in between measurements goes 
unnoticed, allowing for potential damage to the "machine tool- tooling-
workpiece" (MTW) system. 

• Indirect Techniques - use correlated variables with process signals to 
monitor for a specific signature of tool failure. These techniques can be 
applied continuously while machining, and therefore can be used in an 
online monitoring algorithm. The most common methods able to correlate a 
variable with tool condition are: 

• Spindle Current Monitoring 
• Acoustic Emissions 
• Vibration Signature Analysis 

Sensor Fusion 

In most cases, signals coming from only one sensor are typically insufficient to give 
enough information for machining and tool condition monitoring. 

Using several sensors at different locations simultaneously was proposed for data 
acquisition by Ruokangas et.al., 1986"; McClelland, 1988'; Chryssolouris et.al., 
1998"', 1989" and 1992'-; and Dornfeld, 1990. Signals from different sources are 
integrated to provide the maximum information needed for monitoring and control 
tasks. A schematic diagram of using multiple sensors in monitoring systems is 
shown in Figure 1. 

Measured Signals 

Signal Processing 

n I "T r 
Prcx:»ssed Measurements 

t y t i 
Decision Making 

Figure 1 - Multiple Sensors in Monitoring 

Sensor fusion generally covers all the issues of linking sensors of different types 
together in one underlying system architecture (McClelland, 1988, '.) The strategy 
of integrating the information from a variety of sensors will increase the accuracy 
and resolve ambiguities in the knowledge about the environment. The most 
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significant advantageous aspect of sensor fusion is its enriched information for 
feature extraction and decision making strategy, and its ability to accommodate 
changes in the operating characteristics of the individual sensors due to calibration, 
drift, failure, etc... The type and number of sensors used in tool conditioning 
monitoring are chosen according to the type of monitoring tasks. The most common 
types of sensors used in monitoring systems were identified by Tlusty, 1983. 

The use of multiple sensors for machining process and tool condition monitoring 
gives extended information about the process. As most process variables have an 
influence on one another, more than one model is typically needed to analyze the 
sensor signals. 

Some models considered are: dynamic structure models for cutting force, such as 
empirical cutting force model (Endres et.al, 1990,"), dynamic models for tool wear 
such as diffusion wear models, adhesive wear models, empirical models (Koren 
et.al., 1991,'''), linear steady-state models for tool wear and cutting forces (Koren, 
1978,''; Koren et.al, 1987," and Matsumoto et.al, 1988,"), and parametric models 
including Auto-Regressive methods (AR) for chatter (Yang et.al, 1982,"* and Tsai 
et.al, 1983,"), AR for tool wear ( Liang et.al, 1989,'°)], and AR for tool breakage 
(Takata and Sata, 1986,''.) 

Emphasis on high reliability and fast response is placed on tool condition 
monitoring systems to ensure the manufacturing of high quality parts in an efficient 
manner. Early detection of tool deterioration improves process productivity and 
reliability. Therefore, monitoring systems must be developed with the above criteria 
in mind. Computing time and adaptive learning are also both important factors to 
consider in developing monitoring systems (Du et.al, 1995,".) 

2.2 Feature Extraction Methods 

According to Du,1995, monitoring methods can be sub-divided into two basic types: 
model-based and feature-based methods: 

Model-based methods involve finding a model that fits the process and 
monitoring specific parameters in that model to detect changes. Changes in the 
expected system response can be interpreted as changes in the process, signifying an 
abnormal cycle. Model based monitoring methods are also referred to as failure 
detection methods by Isserman et.al, 1993,^' and Lee et.al;, 1998,^''. 

Feature-based monitoring methods use mapping processes to identify the process 
and tool conditions and relate the tool conditions to the sensor features. Such 
techniques include pattern recognitions, expert systems, neural networks, and fuzzy 
classifications. The feature-based methods consist of two phases: learning and 
classification. 

Learning, also called training, is the procedure of establishing the system 
structure and classification rules. The knowledge for decision making is obtained 
from the learning samples as well as from instructions. Knowledge updating or 
continuous learning implies that the system is retrained with new available 
information. 

Monitoring tasks are done in classification phase. The structure and knowledge 
base built in the leaming phase are used for the decision making in monitoring. 
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2.3 Decision-Making Methods 

Decision making strategies are one of the major issues in tlie development of 
automated machining process and tool condition monitoring. They range from 
simple threshold limit values being exceeded and triggering abnormal conditions, to 
systems requiring substantial training and learning to determine process 
characteristics of each cutting condition and using these to detect out of specification 
conditions. A decision making process in monitoring is based on the relationship 
between the process/tool conditions and the feature-bearing signals (monitoring 
indices). 

Currently used feature-based monitoring methods include: pattern recognition, 
fuzzy systems; decision trees, expert systems and neural networks - which will be 
discussed further. 

Among the large number of decision making methods that have been developed, 
statistical pattern recognition, neural networks and fuzzy classification are very 
interesting aspects in the development of automated/intelligent tool condition 
monitoring in machining. They have been appUed successfully in many cases of 
monitoring tasks in turning, milling, drilling, and other metal cutting processes. 

The pattern recognition technique has been applied to recognize the cutting states 
and to monitor the tool conditions in machining for decades. The most simple and 
popular algorithms use linear classifiers. 

A Hnear model was used in applications of linear classifiers by Zhang et.al, 
1982,^^; Marks and Elbestawi, 1988, '̂'; and Liu et.al, 1988,", 

The features for classifying the cutting states included cutting speed, feed and the 
power spectrum in different frequency bands. 

Features usually used for tool condition monitoring are: feed rate, depth of cut, 
cutting force, cutting torque, and the sum of the magnitudes of spectral components 
at certain frequencies. Experiments showed that the number of features and the 
different combinations of features had great effects on the correct classification 
rates. The success rate of classification with these cases is 77% or higher. 

Other pattern recognition algorithms for tool condition monitoring in machining 
included the class-mean scatter criterion, the class variance criterion, and Fisher's 
weighted criterion (Emmel et.al. 1987,̂ *̂ , and 1988,^'.) The class-mean scatter 
criterion maximizes class separation and minimizes within-class variance. The class 
variance criterion maximizes the difference between the within-class variance of 
each class. Fisher's weight criterion maximizes class separation and minimizes the 
within-class variance between each pair of classes. This methodology was applied in 
order to detect tool wear and breakage in turning operations using acoustic emission 
spectral information under fixed cutting conditions. The tool wear sensing results 
had performances ranging from 84 to 94%. 

3. NEURAL NETWORKS FOR TOOL CONDITION 
MONITORING 

Neural networks are computing systems made up of a number of simple, highly 
interconnected processing elements that provide the system with the capability of 
self-learning. Using neural networks, simple classification algorithms can be used 
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and the system parameters are easily modified. One major characteristic of building 
neural networks is the training time. Training times are typically longer when 
complex decision regions are required and when networks have more hidden layers. 
As with other classifiers, the training time is reduced and the performance improved 
if the size of a network is optimally tailored. The tasks of an automated tool 
condition monitoring system involve the ability to recognize the tool condition by 
analyzing measured cutting process parameters such as forces and vibrations. This 
ability is based on the accumulation of useful information from related laws of 
physics and operators' experiences. In building automated/intelligent tool condition 
monitoring systems, some basic functions have to be considered: 

1. Fusion of multiple sensors; 
2. Learning or training strategies for the monitoring system; 
3. Knowledge updating techniques; and 
4. Description of the imprecision in tool conditions for various cutting 

conditions. 
With the increasing needs for effective and robust automated machining process 

and tool condition monitoring, a significant amount of research work has been 
performed to find decision making strategies. The principal constituents of soft 
computation include fuzzy logic for imprecision in the acquired data, neural 
networks for learning, and probability reasoning for uncertainty. These three 
components are usually overlapped. The "soft computation" is easily implemented 
by fuzzy neural networks. 

3.1. Multiple Principal Component (MPC) Fuzzy Neural Networks Structure 

Learning refers to the processes which build the monitoring system in a given 
structure with information from the learning data. In addition, some logic rules are 
also created, which determine the data processing and govern the relationship 
between the processing elements. During the learning phase, a limited amount of 
data is used to adjust the parameters of the monitoring system. The trained 
monitoring system uses the stored knowledge to classify the data regarding the 
successive tool conditions. 

If the sampled data for training the system are labeled with the class to which a 
sample belongs, the decision making is performed with a priori knowledge. This is 
called pattern classification, or supervised classification, common in automated tool 
condition monitoring in machining. When the training samples are collected, the 
tool conditions related to each training sample are provided to give the necessary 
information. 

Knowledge updating, or self-learning, essential for an automated tool condition 
monitoring system, refers to processes in which the structure and the parameters of a 
monitoring system are modified according to the new information about the 
classification. Classification results should be checked on-line to ensure the system 
gives correct results. If the results are not correct, the system should be retrained or 
modified. 
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3.2 Construction of the MPC Fuzzy Neural Networks 

The Multiple Principal Component (MPC) Fuzzy Neural Networks are constructed 
based on the idea of "soft computation." Neural networks, fuzzy logic and statistical 
reasoning are employed. Simple classification procedures can be implemented at 
individual processing elements (neurons). The interconnections between neurons in 
the network communicate the information and make it possible to solve complex 
classification problems. Statistical reasoning is used in the learning procedure for the 
feature extraction and the partition strategies. 

For conventional neural networks, each of the processing elements (for input, 
output, and hidden layers) is always connected to every single processing element in 
the neighboring layers. Decision tree classifiers are hyperplane classifiers that can be 
regarded as a type of partially connected neural networks since each node in the tree 
is connected to only its "father" and "sons", requiring comparatively less 
classification computations and can be implemented using parallelism from decision 
region by performing simple, easily understood operations on the neural network. In 
more sophisticated implementations, multi-layered neural networks, consisting of 
nonlinear connections between the inputs and the outputs are employed. 

As an alternative to conventional neural networks, a partially connected, fuzzy 
neural network approach can be used for automated tool condition monitoring in 
machining. Different from matrix-type decision making, a tree structure is used for 
reducing unnecessary connections between elements in the input and the output 
layer. The fuzzy classifications are used in the neural networks to provide a 
comprehensive solution for certain complex problems. The neural network that 
utilizes fuzzy classification is shown in Figure 2. 

Output }..aycr t-c \ ^ ^ • • 
(tool conditions) , I . 1 1 . . 
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I / of tlie learning sarapfcs '• ' 
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( partialcwtnecsions \ , ' ^ , . . .^ ^ . , - . - , - ' 
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Figure 2 - The Multiple Principal Component (MPC) fuzzy Neural Network 

The input layer, FA = (ai, a2, ..., a,,,), has m processing elements, one for each of the 
m dimensions of the input pattern x^. The hidden layer of the network, FB, consists 
of the neurons that use the fuzzy classification to separately address the subsets of 
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the original data set while invoking necessary information from other neurons. The 
probability distribution and the membership function are used for interconnections 
within the hidden layer and the connections to the output layer. The neurons of the 
output layer, FC, represent the degrees to which the input pattern xk fits within the 
each class. There are two possible ways that the outputs of FC class nodes can be 
utilized. For a soft decision, outputs are defined with the fuzzy grades. For a hard 
decision, the FC nodes with the highest membership degree are located (a "winner-
take-all" response). The connections within the hidden layer are not from one 
element to every one in the neighboring layers. The structure depends on the training 
data and is created through the training process. These partial connections result in 
the simpler and faster training and classification. 

3.3 Evaluation of MPC Fuzzy Neural Networks 

A pattern classifier should possess several properties: on-line adaptation, nonlinear 
separability, dealing with overlapping classes, short training time, soft and hard 
decisions, verification and validation, tuning parameters, and nonparametric 
classification (Simpson, 1992,^".) The MPC fuzzy neural networks for automated 
tool condition monitoring has been developed in consideration of these 
requirements. The training and classification algorithms are based on the theories of 
neural networks, fuzzy logic, and probability reasoning. 
With the application of fuzzy classification, the neural networks are effective in 
dealing with nonlinear separable and/or class-overlapping classification problems, 
which are common in the case of tool condition monitoring in machining, especially 
for the monitoring with varying cutting conditions. The partial interconnections 
within the fuzzy neural networks make the training time very short compared to that 
of fully connected networks such as the back-propagation neural networks. The 
calculations necessary for the classification are also significantly reduced since not 
all the neurons in the hidden layer are used while a sample is being processed. Soft 
and hard decisions are optional for different applications. The maximum partition 
algorithm is based on the distributions of the learning samples and no parameter 
estimations are needed. 

This method functions similarly, in the partition of training samples, to the linear 
fuzzy equation algorithm proposed by Du and Elbestawi, 1992,". The linear fuzzy 
equation method uses a matrix to describe the relationship between the monitoring 
indices and the tool conditions. The proposed MPC fuzzy neural networks use a tree 
structure similar to that in the fuzzy decision tree described by Li et.al.,1992, ^̂ . 
Because the decision tree is more flexible than a matrix approach, it has better 
performance in the case of tool condition monitoring in machining. In constructing 
the fuzzy decision tree, the maximum partition generates nodes holding the samples 
from only one tool condition. The other samples are put into other nodes. This 
means each partition leads to a final decision at a leaf node of the tree. The 
maximum partition in the MPC fuzzy neural networks chooses a better partition so 
that a new-bom neuron can hold samples from different tool conditions. A neuron 
can lead to other neurons in the hidden layer as well as neurons in the output layer. 

The consequence of this structure is simplicity in the interconnection and the 
short routines in the classification. Experimental tests by using the same set of data 



14 Information Technology for Balanced Manufacturing Systems 

showed that the MPC fuzzy neural networks gave a better success rate than the 
fuzzy decision tree algorithm ( Li and Elbestawi, 1994,'^.) 

In the consideration of on-line adaptation (on-line learning) and the tuning 
parameters, a classifier should have as few parameters to tune in the system as 
possible. Both the back-propagation neural networks and the proposed MPC fuzzy 
neural networks have very few tuning parameters. The structure of the MPC fuzzy 
neural network is, however, easily modified with new learning samples. Unlike the 
back-propagation neural networks that require a complete retraining of the system 
with both the old and the new learning data, the MPC fuzzy neural networks need 
only to change partially their neurons and the connections when the new learning 
information is added. Both supervised and unsupervised classification algorithms are 
easily implemented with the available learning samples. 

To insure a good distribution of the learning data, the training samples have to be 
representative of the whole span of the feature space. In tool condition monitoring, 
all applicable tool and cutting conditions have to be considered during the training 
phase. On the other hand, if a poor distribution is encountered, then a modified 
feature extraction procedure has to be implemented. Information about new 
phenomena can be added to the monitoring system by knowledge updating. 

3.4 Fuzzy Classification and Uncertainties in Tool Condition Monitoring 

During machining, cutting conditions (e.g., cutting speed, feed, depth of cut) as well 
as tool conditions (e.g., tool wear) significantly affect the process parameters such as 
cutting forces and vibrations, which are usually used as the input signals to a 
monitoring system. Deterministic models which attempt to describe the relationship 
between the tool conditions and the various measured parameters are typically valid 
for a limited range of cutting conditions. The fuzzy classification can be used to 
describe the uncertainties and the overlapped relationship of the tool conditions and 
the monitoring indices. Briefly, the fuzzy expression of a tool condition. A, can be 
defined by: 

A = {x\^,{x)] (1) 
where x is the value of A, and \x^(x) is a fuzzy measure, also known as the 
membership function. |1AW is a monotonous function, and 0 < (IAW < 1 • The 
function increases with respect to the decrease of the uncertainty of 4̂. If 5 is also a 
fuzzy set and is more uncertain than yi, then: 

\X.A{X)> HBW (2) 

This might be interpreted as "the membership grade of small tool wear is greater 
than that of large tool wear." The fuzzy representation of the tool conditions in 
machining has its advantages. The concept of fuzzy decision making in machining 
tool condition monitoring is illustrated in Figure 3, where. AH and BH are categories 
classified by the hard decision, while Ap and BF are classified by the fuzzy decision. 
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Figure 3 - Soft Boundaries in Fuzzy Classification 

4. CONCLUSIONS 

Three major components of the "soft computation" are involved in the construction 
of theMPC Fuzzy Neural Networks. The combination of fuzzy logic with neural 
networks has a sound technical basis because these two techniques approach the 
design of intelligent machines from different angles. Fuzzy neural networks employ 
the advantages of both neural networks and fuzzy logic. Neural networks offer good 
performance in dealing with sensor information in parallel at a low computational 
level. The high interconnection within the networks gives the capabilities of 
exchanging the information sufficiently and managing nonlinearity. Fuzzy logic 
gives a means for representing, manipulating, and utilizing the data and the 
information that possess non-statistical uncertainties. 
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