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1 Introduction 

1.1 Global Optimization - an Important Practical Problem 

In many practical situations, we have several possible actions, and we must 
choose the best action. For example, we must find the best design of an object, 
or the best control of a plant. The set of possible actions is usually charac- 
terized by parameters x = (XI, .  . . , x,), and the result of different actions 
(controls) is characterized by an objective function f (a). 

In some cases, the objective function describes losses or expenses; in such 
cases, the problem of finding the best action (design, or control) can be de- 
scribed as the problem of global minimization, i.e., the problem of finding the 
values x for which the function f (x) attains the smallest possible value. 

In other cases, the objective function describes gain; in such cases, the 
problem of finding the best action can be described as the problem of global 
maximization, i.e., the problem of finding the values x for which the function 
f (x) attains the largest possible value. 

Global minimization and global maximization are particular cases of global 
optimization. 

Similar problems arise in data processing, when we have a model char- 
acterized by several parameters xi, and we need to find the values of these 
parameters which provide the best fit for the data, i.e., for which the discrep- 
ancy f (x) between the data and the model is the smallest possible. 

Actual and potential real-world applications of global optimization are 
overviewed, e.g., in [Pin96]. 
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1.2 Global Optimization is a Difficult Computational Problem 

In general, the problem of finding the exact values x that minimize a given ob- 
jective function f (x) is computationally difficult (NP-hard); see, e.g., [Vavgl]. 

Crudely speaking, NP-hardness means that (provided that P fNP)  it is 
not possible to have an algorithm that solves all optimization problems in 
reasonable time. In other words, no matter how good is an algorithm for 
solving global optimization optimization problems, there will always be cases 
in which better results are possible. 

1.3 Variety of Global Optimization Techniques 

Since we cannot hope for a single algorithm for global optimization, new 
algorithms are constantly designed, and the existing algorithms are constantly 
modified. As a result, we have a wide variety of different global optimization 
techniques and methods; see, e.g., [HP95]. 

There exist classes of objective functions for which efficient algorithms for 
global optimization are possible. It  is therefore natural to try to reduce general 
hard-to-solve global optimization problems to problems from such classes. 

One class for which global optimization is easier-to-solve is the class of 
quadratic objective functions. Namely, it is known that a global optimum of 
an objective function f (x) is attained a t  a point x a t  which all the partial 
derivatives of this function are equal to 0. For a quadratic function f (x), 
we can thus find the desired optimum by solving a system of linear equations 
af - = 0. It is therefore natural to find a minimum off  (x) by approximating a 
axi 
function f (x) with a linear or quadratic expression - i.e., in effect, by consider 
gradient descent-type techniques and/or their second-order analogues. 

Another important class is the class of convex functions - for which there 
are efficient algorithms for finding the global minimum. Not surprisingly, there 
are numerous effective global optimization techniques that reduce the general 
global optimization problems to convex ones; see, eg. ,  [FloOO, TS021. 

In many real-life situations, the objective function is complex, and it is 
difficult to approximate it by a quadratic and/or by a convex objective func- 
tion on its entire domain. In such situations, it is reasonable to subdivide the 
original domain into smaller subdomains and approximate f (x) by different 
functions on different subdomains; see, e.g., [Kea96]. 

There also exist numerous heuristic and semi-heuristic techniques which 
emulate the way optimization is done in nature: e.g., genetic algorithms simu- 
late the biological evolution which, in general, leads to the birth and survival 
individuals and species which are best fit for a given environment; see, e.g., 
[Mih96]. 
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1.4 Problem: Which Techniques is the Best? 

We have already mentioned that there is a wide variety of different global 
optimization techniques. Because of this variety, every time we have a new 
optimization problem, we must select the best technique for solving this prob- 
lem. 

This selection problem is made even more complex by the fact that most 
techniques for solving global optimization problems have parameters that need 
to be adjusted to the problem or to the class of problems. For example, in 
gradient methods, we can select different step sizes. 

When we have a single parameter (or few parameters) to choose, it is 
possible to empirically try many values and come up with an (almost) optimal 
value. Thus, in such situations, we can come up with optimal version of the 
corresponding technique. 

In other approaches, e.g., in methods like convex underestimators (de- 
scribed in detail in the next section), instead of selecting the value of single 
number-valued parameter, we have select the auxiliary function. It is not prac- 
tically possible to test all possible functions, so it is not easy to come up with 
an optimal version of the corresponding technique. 

1.5 What We Do in This Chapter 

In this chapter, we consider the problem of selecting the best auxiliary func- 
tion within a given global optimization technique. Specifically, we show that 
in many such selection situations, natural symmetry requirements enable us 
either to  analytically solve the problem of finding the optimal auxiliary func- 
tion, or a t  least reduce this problem to the easier-to-solve problem of finding 
a few parameters. 

In particular, for convex understimators, we show that we can thus explain 
both the aBB method [AAF98, ADAF98, Flo00, MF94] and its modifications 
recently proposed in [AF04, AF061. 

2 Case Study: Selecting Convex Underestimators 

2.1 Why Convex Underestimators? 

It  is well known that convex functions are computationally easier to minimize 
than non-convex ones; see, e.g., [FloOO]. This relative easiness is not only an 
empirical fact, it also has a theoretical justification; see, e.g., [KK05, Vavgl]. 

Because of this relative easiness, one of the approaches to minimization 
of a non-convex function f (x) = f (XI,.  . . , x,) (under certain constraints) 
over a box [xL, xu] = [xf , xy] x . . . x [xk, xy] is to first minimize its convex 
LL~ndere~timator" ,  i.e., a convex function L(x) < f (x). 

Since the new function L(x) is convex, it is easy to minimize; 
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since L(x) is an underestimator, i.e., L(x) 5 f (x), the minimum of L(x) 
is a lower bound for the minimum of f (x). 

By selecting L(x) as close to f (x) as possible, we can get estimates for min f (x) 
which are as close to the actual minimum as possible. 

The quality of approximation improves when the boxes become smaller. 
So, to get more accurate bounds on min f (x), we can: 

bisect the box [xL, xu] into sub-boxes, 
use the above technique to estimate min f over each sub-box, and 
return the smallest of these estimates as the lower bound for min f over 
the entire box [xL, xu]. 

2.2 Example: aBB Techniques 

A known efficient approach to designing a convex underestimator is the aBB 
global optimization algorithm [AAF98, ADAF98, Flo00, MF941, in which we 
select an underestimator L(x) = f (x) + @(x), where 

Here, the parameters ai are selected in such a way that the resulting function 
L(x) is convex and still not too far away from the original objective function 
f (x). 

2.3 Natural Generalization of aBB Techniques 

In many optimization problems, aBB techniques are very efficient, but in 
some non-convex optimization problems, it is desirable to improve their per- 
formance. One way to do that is to provide a more general class of methods, 
with more parameters to tune. 

In the aBB techniques, for each coordinate xi, we have a single parameter 
ai affecting this coordinate. Changing ai is equivalent to a linear re-scaling 
of xi. Indeed, if we change the unit for measuring xi to a new unit which 
is Xi  times smaller, then all the numerical values become Xi times larger: 
X i  + yi = gi (xi), where gi (xi) = Xi .xi. In principle, we can have two different 
re-scalings: 

X i  + yi = g i ( ~ i )  = Xi  . xi on the interval [x:, xi], and 
xi + zi = hi (xi) = pi . xi on the interval [xi, XU]. 

If we substitute the new values yi = gi(xi) and zi = hi(xi) into the formula 
(I), then we get the following expression 
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For the above linear re-scalings, we get 

where Gi = ai . Xi . pi. 
From this viewpoint, a natural generalization is to replace linear re-scalings 

gi(xi) and hi(xi) with non-linearones, i.e., to consider convex underestimators 
of the type L(x) = f (x) + Pi($), where @(x) is described by the formula (2) 
with non-linear functions gi (xi) and hi (xi). Now, instead of selecting a number 
ai for each coordinate i ,  we have an additional freedom of choosing arbitrary 
non-linear functions gi(xi) and hi(xi). Which are the best choices? 

2.4 Empirical Fact: Exponential Functions gi (xi) and hi (xi) Are 
the Best 

In [AF04, AF061, several different non-linear functions have been tried, and it 
turned out that among the tested functions, the best results were achieved for 
the exponential functions gi(xi) = exp(yi . xi) and hi(xi) = - exp(-yi . xi). 
For these functions, the expression (2) can be somewhat simplified: indeed, 

2.5 Questions 

Two related questions naturally arise: 

first, a practical question: an empirical choice is made by using only finitely 
many functions; is this choice indeed the best - or there are other, even 
better functions gi(xi) and hi(xi), which we did not discover because we 
did not try them? 
second, a theoretical question: how can we explain the above empricial 
fact? 

2.6 Natural Idea of Symmetry: Intuitive Motivations 
for Shift-Invariance 

The starting (0) point for measuring each coordinate xi is often a matter of 
arbitrary choice; e.g.: 
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Fahrenheit and Celsius scales use different starting points for measuring 
temperature, 

0 different calendars use different starting points as Year 0, 

etc. 
If a selection of the functions gi(xi) and hi(xi) is "optimal" (in some 

intuitive sense), then the results of using these optimal functions should not 
change if we simply change the starting point for measuring xi - i.e., replace 
each value xi with a new value xi + s ,  where s is the shift in the starting point. 
Indeed, otherwise, if the "quality" of the resulting convex underestimators 
changes with shift, we could apply a shift and get better functions gi(xi) and 
hi(xi) - which contradicts to our assumption that the selection of gi(xi) and 
hi(xi) is already optimal. 

So, the "optimal" choices gi(xi) and gi(xi) can be determined from the 
requirement that each component ai . (gi(xi) - g i ( ~ f ) )  . (hi(." - hi(xi)) in 
the sum (2) be invariant under the corresponding shift. Let us describe this 
requirement in precise terms. 

Definition 1. A pair of smooth functions (g(x), h(x))) from real numbers to 
real numbers is shift-invariant if for every s and a ,  there exists Z(a,  s )  such 
that for every xL,  x, and xu ,  we have 

Comment. Smoothness is needed because smooth functions are easier to op- 
timize, and we therefore want our techniques to preserve smoothness. 

2.7 Consequences of Shift-Invariance 

At first glance, shift invariance is a reasonable but weak property. It turns 
out, however, that this seemingly weak property actually almost uniquely 
determines the optimal selection of exponential functions: 

Proposition 1. If a pair of functions (g(x), h(x)) is shift-invariant, then this 
pair is either exponential or linear, i.e., each of the functions g(x) and h(x) 
has the form g(x) = A + C . exp(y. x) or g(x) = A + k . x. 

Comments. 

For reader's convenience, all the proofs are placed in a separate (last) 
section. 

0 One can easily see that adding a constant to each of the functions g(x) 
and h(x) does not change the expression (2), so we can safely assume that 
each of these functions has the form g(x) = exp(y . x) and h(x) = x. 
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2.8 Additional Symmetry x + -a: and the Final Result 

In addition to  shift, another natural symmetry is changing the sign: e.g., for 
electric charge, the fact that electrons are negatively charged is just a matter 
of definition; we can as well consider them positively charged. If we require 
that the expression (2) remain invariant if we change the sign, i.e., replace x 
by -x, then we get the relation between g(x) and h(x): h(x) = -g(-x). So, 
if a pair (g(x), h(x) is shift-invariant and sign-invariant, then: 

0 either g(x) = exp(y . x )  and h(x) = -exp(-y . x ) ,  
0 or g(x) = h(x) = x. 

In other words, the optimal generalized a B B  scheme is either the original 
aBB, or the scheme with exponential functions described in [AF04, AF061. 
Thus, we have answers to both above questions: 

yes, the exponential functions are indeed optimal, and 
yes, we have a theoretical explanation of why they are optimal - because 
they are the only pair of functions which satisfies the condition of symme- 
try (shift-invariance and sign-invariance) that optimal pairs should satisfy. 

2.9 Auxiliary Result: Scale Invariance 

In addition to  changing the starting point for x, we can also (as we have 
mentioned) change a unit for measuring x, i.e., consider scaling transforma- 
tions x + X . x. Shall we require scale-invariance as well? In other words, 
shall we require that the expression (2) be invariant not only w.r.t. shifts but 
w.r.t scalings as well? 

We already know that there are only two shift-invariant solutions: ex- 
ponential and linear functions. Out of these two solutions, only the linear 
solution - corresponding to aBB - is scale-invariant. Thus, if we also require 
scale-invariance, we restrict ourselves only to aBB techniques - and miss on 
(often better) exponential generalizations. 

Since we cannot require both shift- and scale-invariance, a natural next 
question is: what if we only require scale invariance? 

Definition 2. A pair of smooth functions (g(x), h(x)) from real numbers to 
real numbers is scale-invariant if for every X and a ,  there exists G(a, A) such 
that for every xL, x, and xu ,  we have 

Proposition 2. If a pair of functions (g(x), h(x)) is scale-invariant, then this 
pair is either exponential or linear, ie . ,  each of the functions g(x) and h(x) 
has the form g(x) = A . xY or g(x) = A + k . ln(x). 
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From the theoretical viewpoint, these functions may look as good as the 
exponential functions coming from shift invariance, and in practice, they do 
not work so well. 

The problem with these solutions is that, as we have mentioned, we want 
to preserve smoothness. Both linear and exponential functions which come 
from shift-invariance are infinitely differentiable for all x and hence, adding 
the corresponding term @(x) will not decrease the smoothness level of the 
objective function. 

In contrast, in general, the functions g(x) = xY which come from scale 
invariance are not infinitely differentiable at x = 0. They are differentiable 
only for integer values y. So, if we use scale invariance to select a convex 
underestimator, we end up with a new parameter y which only attains integer- 
valued values and is, thus, less flexible than the continuous-valued parameters 
coming from scale-invariance. 

2.10 Auxiliary Shift-Invariance Results 

Instead of an expression (2), we can consider an even more general expression 

Whet can we conclude from shift-invariance in this more general case? 

Definition 3. A pair of smooth functions (a(%, xL), b(x, xu)) from real num- 
bers to real numbers is shift-invariant i f f o r  every s and a ,  there exists G ( a ,  s )  
such that for every xL, x, and xu,  we have 

G(a, s )  . a(x + s ,  xL + s )  . b(x + s ,  xu + s).  (6) 

Proposition 3. If a pair of functions (a(x,xL), b(x, xu)) is shift-invariant, 
then 

a(., xL) . b(x, xu)  = A(x - xL) . B(X' - x) . e ~ ' " ~  

for some functions A(x) and B(x) and for some real number y .  

Comment. If we additionally require that the expression a(x, xL) . b(x, xu)  be 
invariant under x + -x, then we conclude that B(x) = A(x). 

Another shift-invariance result comes from the following observation. Both 
aBB expression -(x - xL) . (xu - x) and the generalized expression 

have the form a(x - xL) . a(xU - x) with a(0) = 0. The differences x - xL and 
xu -x come from the fact that we want these expressions to be shift-invariant. 
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The product form makes sense, since we want the product to be 0 on each 
border x = xL and x = xu of the corresponding interval [xL, xu]. 

On the other hand, it is well known that optimizing a product is more 
difficult than optimizing a sum; since we will be minimizing the expression 
f (x) + @(x), it is therefore desirable to be able to reformulate it in terms of 
the easier-to-minimize sum, e.g., as b(x - xL) + b(xu - x) + c(xU - xL) for 
some functions b and c (for minimization purposes, c does not depend on x 
and is thus a constant). It is worth mentioning that both the a B B  expression 
and its exponential generalization allow such representation: 

1 
from the known equality a .  b = -((a + b)' - a2 - b2), we conclude that 

2 

for the exponential function, simply multiplying the two sums leads to  the 
desired expression: 

Interestingly, the above two expressions are the only one which have this 
easiness-to-compute property: 

Definition 4. We say that a smooth function a(x) from real numbers to real 
numbers describes an easy-to-compute underestimator if a(0) = 0, al(0) # 0, 
and there exist smooth functions b(x) and c(x) such that for every x, xL,  and 
xu ,  we have 

Comment. The condition al(0) # 0 comes from the fact that otherwise, for 
def small Ax = x - xL and xu - x, each value a(x - xL) will be quadratic 

in x - xL,  the resulting product will be fourth order, and we will not be 
able to compensate for quadratic non-convex terms in the original objective 
function f (x) - which defeats the purpose of using f (x) + @(x) as a convex 
underestimator. 

Proposition 4. The only functions which describe easy-to-compute underes- 
timators are a(x) = k . x and a(%) = k . (1 - e7'"). 

Comment. This is already a second shift-invariance related results which se- 
lects linear and exponential functions as "the best" in some reasonable sense. 
In the following section, we show that this is not an accident: namely, we 
will prove that any "natural" shift-invariant optimality cruetrion on the set of 
all possible underestimator methods selects either a linear or an exponential 
function. 
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3 Selecting Convex Underestimatiors: From Informally 
"Optimal" to Formally Optimal Selections 

3.1 In the Previous Section, We Used Informal "Optimality" 

In the above text, we argued that if a selection is optimal (in some reasonable 
sense), than it is natural to expect that this selection should be shift-invariant. 
We used this argument to justify the empirical selection of convex underesti- 
mators. 

In this section, we will go one step further, and explain that the empirical 
selection is indeed optimal - in the precise mathematical sense of this word. 

3.2 What Are We Selecting? 

In effect, we are selecting the functions g(x) and h(x). However, as we have 
mentioned earlier, what we are really interested in is the corresponding family 
of functions 

@(x) = - a .  (g(x) - g(xL)) a (h(xu) - h(x)). 

The difference is that (as we have mentioned) we can change one (or both) of 
the functions g(x) and h(x) and still end up with the same class of functions. 
For example, if we replace the original function g(x) with a new function 
g(x) = A .  g(x) + B, then we end up with the same class of functions @(x). 
With this in mind, let us introduce the following definition. 

Definition 5. B y  a family, we m e a n  the family of functions 

where g(x) and h(x) are fixed, and a goes over all real numbers. 

Denotat ion.  We will denote a family generated by functions g(x) and h(x) by 
F(g1 h). 

In these terms, the question is how to select, out of all possible families, 
the family which is optimal in some reasonable sense, i.e., which is optimal in 
the sense of some optimality criterion. 

3.3 What is an Optimality Criterion? 

When we say that some optimality criterion is given, we mean that, given two 
different families F and F ' ,  we can decide whether the first or the second one 
is better, or whether these families are equivalent w.r.t. the given criterion. 
In mathematical terms, this means that we have a pre-ordering relation 5 on 
the set of all possible families. 
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3.4 We Want to Solve an Ambitious Problem: Enumerate All 
Families that are Optimal Relative to Some Natural Criteria 

One way to approach the problem of choosing the "best" family F is to select 
one optimality criterion, and to find a family that is the best with respect 
to  this criterion. The main drawback of this approach is that there can be 
different optimality criteria, and they can lead to  different optimal solutions. 
It is, therefore, desirable not only to describe a family that is optimal relative 
to some criterion, but to describe all families that can be optimal relative 
to different natural criteria3. In this section, we are planning to implement 
exactly this more ambitious task. 

3.5 Examples of Optimality Criteria 

Pre-ordering is the general formulation of optimization problems in general, 
not only of the problem of choosing a family F. In general optimization theory, 
in which we are comparing arbitrary alternatives a', a", . . . , from a given 
set A, the most frequent case of such a pre-ordering is when a numerical 
criterion is used, i.e., when a function J : A + R is given for which a' 5 a" 
iff J(a')  5 J(a1'). 

Several natural numerical criteria can be proposed for choosing a function 
J .  For example, we can take, as a criterion, the average number of iterations 
that lead to  determining all global minima with a given relative accuracy 
(average in the sense of some natural probability measure on the set of all 
problems). 

Alternatively, we can fix a class of problems, and take the largest number 
of iterations for problems of this class as the desired (numerical) optimality 
criterion. 

Many other criteria of this type can be (and have actually been) proposed. 
For such "worst-case" optimality criteria, it often happens that there are 
several different alternatives that perform equally well in the worst case, but 
whose performance differ drastically in the average cases. In this case, it makes 
sense, among all the alternatives with the optimal worst-case behavior, to 
choose the one for which the average behavior is the best possible. This very 
natural idea leads to the optimality criterion that is not described by one 
numerical optimality criterion J (a ) :  in this case, we need two functions: Jl (a) 
describes the worst-case behavior, Jz(a)  describes the average-case behavior, 
and a 5 b iff either Jl (a) < Jl (b), or Jl (a) = Jl (b) and J2 (a) < Jz (b). 

We could further specify the described optimality criterion and end up 
with one natural criterion. However, as we have already mentioned, the goal 

In this phrase, the word L'natural" is used informally. We basically want to say 
that from the purely mathematical viewpoint, there can be weird ("unnatural") 
optimality criteria. In our text, we will only consider criteria that satisfy some re- 
quirements that we would, from the common sense viewpoint, consider reasonable 
and natural. 
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of this chapter is not to find one family that is optimal relative to some 
criterion, but to  describe all families that are optimal relative to some natural 
optimality criteria. In view of this goal, in the following text, we will not 
specify the criterion, but, vice versa, we will describe a very general class of 
natural optimality criteria. 

So. let us formulate what "natural" means. 

3.6 What Optimality Criteria are Natural? 

We have already mentioned that the value x often represents the value of 
some measured quantity, and that the numerical value of a measured quantity 
changes if we select a new starting point. It is natural to require that the 
relative quality of two families does not depend on the choice of the starting 
point. 

How does replacing a starting point change the family F ?  If we replace a 
starting point by a new one that is smaller by a constant s ,  then the quantity 
that was initially described by a value x will be described by a new value 
x + s. Correspondingly, xL is replaced by xL + s ,  and xu by xu + s. Thus, 
after this shift T,, the original family (8) turns into the new family 

T,(F) zf { -a .  (g(x + s) - g(zL + s ) )  . (h(xU + s) - h(x + s))) .  (9) 

In these terms, the above requirement is that if F is better than F', then the 
"shifted" F (i.e., the family Ts(F)) should be better than the "shifted" F' 
(i.e., than TS(F1)). 

There is one more reasonable requirement for a criterion, that is related 
with the following idea: If the criterion does not select a single optimal family, 
i.e., if it considers several different families equally good, then we can always 
use some other criterion to help select between these "equally good" ones, 
thus designing a two-step criterion. If this new criterion still does not select a 
unique family, we can continue this process until we arrive a t  a combination 
multi-step criterion for which there is only one optimal family. Therefore, we 
can always assume that our criterion is final in this sense. 

Definition 6. By an optimality criterion, we mean a pre-ordering (i.e., a 
transitive reflexive relation) 5 on the set A of all possible families. An opti- 
mality criterion 5 is called: 

0 shift-invariant if for all F ,  F', and s,  F 5 F' implies T,(F) 5 T,(F1). 
0 final if there exists one and only one family F that is preferable to all the 

others, i.e., for which F' 5 F for all F' # F .  

Proposition 5. 

If a family F is optimal w.r.t. some shift-invariant final optimality cri- 
terion, then this family F is generated by linear or exponential functions 
g(x) and h(x). 
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For every two exponential or linear functions g(x) and h(x), there exists a 
shift-invariant final optimality criterion for which the only optimal family 
is F(g ,  h). 

Comments. 

In other words, if the optimality criterion satisfies the above-described 
natural properties, then the optimal convex underestimator is generated 
by linear or exponential functions. 
If, in addition to shift-invariance, we also require sign-invariance, then we 
conclude that either both functions g(x) and h(x) are linear (as in aBB), 
or both are exponential (as in the empirically best generalization of aBB). 

4 Other Cases when a Symmetry-Based Approach Leads 
to Optimal Techniques for Solving Global Optimization 
Problems 

Similar symmetry-based ideas have been applied to produce an optimal aux- 
iliary function in other aspects of global optimization. Let us overview the 
main results obtained by following this direction. 

4.1 Optimal Bisection 

As we have mentioned, applying the optimization technique to the original 
function (or its convex underestimator) on the original box [xL,xu] is not 
always the best strategy. One way to improve the optimization algorithm is 
to subdivide (e.g., bisect) the box into several sub-boxes and apply optimiza- 
tion techniques to these sub-boxes. Some of these sub-boxes must be further 
subdivided, etc. Two natural questions arise: 

which box should we select for bisection? 
which variable shall we use to  bisect the selected box? 

To answer both questions, several heuristic techniques have been proposed, 
and there has been an extensive empirical comparative analysis of these tech- 
niques. It turns out that for both questions, the symmetry-based approach 
enables us to theoretically justify the empirical selection: 

Until recently, for subdivision, a box B was selected for which the com- 
puted lower bound f (B) was the smallest possible. Recently (see, e.g, 
[CG98, CGCOO]), it was shown that the optimization algorithms converge 
much faster if we select, instead, a box B with the largest possible value 
of the ratio 
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where Fis  a current upper bound on the actual global minimum. In [KCOl], 
we give a symmetry-based theoretical justification for this empirical crit_e- 
rion. Namely, we condider all possible indictaor functions I( - f ( B ) ,  T ( B ) ,  f ), 
and we show that: 
- first, that the empirically best criterion I0 is the only one that is in- 

variant w.r.t. some reasonable symmetries - namely, shift and scaling; 
and 

- second, that this criterion is optimal in some (symmetry-related) rea- 
sonable sense. 

We can bisect a given box in n different ways, depending on which of n 
sides we decided to halve. So, the natural question appears: which side 
should we cut? i.e., where to bisect a given box? Historically the first idea 
was to cut the longest side (for which x" xf -+ max). It was shown (in 
[Rat92, Rat941) that much better results are achieved if we choose a side 
i for which (dil(x" xz)  -+ max, where di is the known approximation 

a f for the partial derivative -. In [KK98], we consider arbitrary selection 
dxi 

criteria, i.e., functions 

which map available information into an index S E {1,2 , .  . . , n) ,  and we 
show that the empirically best box-splitting strategy is the only scale- 
invariant one - and is, thus, optimal under any scale-invariant final opti- 
mality criterion. 

4.2 Optimal Selection of Penalty (Barrier) Functions 

A similar approach can be used for reducing constraint optimization to 
non-constrained one. A well-known Lagrange multiplier method minimizes 
a function f (x) under a constraint g(x) = 0 by reducing it to the un- 
constrained problem of optimizing a new objective function f (x) + X . g(x). 
One of the known approaches to solving a similar problem with a constraint 
g(x) > 0 is the penalty (barrier) method in which we reduce the original prob- 
lem to the un-constrained problem of optimizing a new objective function 
f (x) + A. g(x) + p . P(g(x)),  for an appropriate (non-linear) penalty function 
P(y) .  Traditionally, the most widely used penalty functions are P(y)  = y-ln(y) 
and P(y)  = y2. 

In [NK97], we show that the only y-scale-invariant families {X.y+p.P(y))  
are families corresponding to P(y)  = y . ln(y) and P(y)  = ya for some real 
number a. Thus, under any scale-invariant optimality criterion, the optimal 
penalty function must indeed take one of these forms. 

This example also shows that we can go beyond theoretical justification 
of empirically best heuristic, towards finding new optimal heuristics: indeed, 
for penalty functions, instead of single-parameter families {A . y + X . P(y)) ,  
we can consider multiple-parameter families 
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{A.y+/11 . P I  ( ~ ) + . . . + / 1 m . & ( ~ ) )  

for several functions Pl(y),  . . . , Pm(y). In this case, the optimal functions have 
also been theoretically found: they are of the type 

Pi(y) = La" ( l n ( ~ ) ) ~ ;  

for real (or complex) values ai and non-negative integer values of pi. 

4.3 Other Examples 

Similar symmetry-based techniques provide an explanation of several other 
empirically optimal techniques: 

sometimes, it is beneficial to  (slightly) enlarge the original (non- 
degenerate) box [xL,xU] and thus improve the performance of the al- 
gorithm; the empirically efficient "epsilon-inflation" technique [Rum80, 
Rum921 

u L [x" xy] -+ [ ( l  + E)X? - E + x;, (1 + &)xi - E . xi ] 

was proven to be the only shift- and scale-invariant technique and thus, 
the only one optimal under an arbitrary shift-invariant and scale-invariant 
optimality criterion [KSM97] (see also [Rum98]); 
by using shift-invariance, we explain why the probability proportional to 
exp(-y . f (x)) is optimal in simulated annealing [NK97], 
by using scale- and shift-invariance, we explain why exponential and power 
re-scalings of the objective function are optimal in genetic algorithms 
[NK97]; 
by using appropriate symmetries, we also explain, in [ISKS02], the empiri- 
cally optimal selection of probabilities in swarm ("ant") optimization (see, 
e.g., [KESOl]). 

Proofs 

5.1 Proof of Proposition 1 

For cu = 1, the condition (3) takes the form 

where we denoted C(s) sf 6(1, s). To simplify this equation, let us separate 
the variables: 
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let us move all terms containing xL to the left-hand side - by dividing 
both sides by (g(x + s)  - g(xL + s)), and 
let us move all terms containing xu to the right-hand side - by dividing 
both sides by (h(xU) - h(x)). 

As a result, we arrive at  the following equation: 

Let us denote the left-hand side of this equation by A. By definition, the value 
A depends on x, s ,  and xL. Since A is equal to the right-hand side, and the 
right-hand side does not depend on xL, the expression A cannot depend on 
xL, SO A = A(x,s), i.e., 

Multiplying both sides by the denominator, we conclude that 

Differentiating both sides by xL, we conclude that 

i.e., equivalently, 

In this equation, the left-hand side does not depend on x, so the right-hand 
does not depend on x either, i.e., A(x, s)  = A(s). Thus, (13) takes the form 

where we denoted a(s)  ef l/A(s). 
The function g(x) is smooth, hence the function a(s) is smooth too - as the 

ratio of two smooth functions. Differentiating both sides of (16) with respect 
to s and taking s = 0, we get 

def where a = at(0). 
To simplify this equation, let us separate the variables, i.e., let us move all 

the term depending on x to the right-hand side and all the terms depending 
on xL to the left-hand side. As a result, we arrive at  the following: 
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The right-hand side is a function of x only, but since it is equal to the left- 
hand side - which does not depend on x at all - it is simply a constant. If we 
denote this constant by b, we get the following equation: 

i.e., 

and 

1 
When a = 0, integrating both sides of this equation, we get - . g(x) = x + C,  

b 
b 

i.e., g(x) = b . x + b . C. When a # 0, then for g(x) ef g(x) + -, we get 
a 

-- dL' - dx, 
a . 5  

1 
hence - .ln(g(x)) = x + C  thence ln(ij(x)) = a . x  + a . C ,  so g(x) = C.exp(a.x) 

a 
b 

and g(x) = $(x) - - = C . exp(a. x) + C1 for some constants C,  a ,  and CI. 
a 

The proposition is proven. 

5.2 Proof of Proposition 2 

By introducing new variables X = ln(x), X L  = ln(xL), and X U  = ln(xU) - 
so that x = exp(X), xL = exp(XL), and xu = exp(xU) ,  and by introducing 
new functions G(X)  = g(exp(x)) and H ( X )  = h(exp(x)), one can easily check 
that if the pair (g(x), h(x)) is scale-invariant, then the new pair (G(X), H(X) )  
is shift-invariant. 

We already know, from Proposition 1, how shift-invariant pairs look like: 
we have either G(X) = A + C . exp(y . X)  or G(X) = A + k . X .  From the 
definition of G(X),  we conclude that g(x) = G(ln(x)); thus, we have either 
g(x) = A+C.exp(y.ln(x)) = A+C.xY or g(x) = A+k.ln(x). The proposition 
is proven. 

5.3 Proof of Proposition 3 

For a = 1, the shift invariance requirement (6) takes the form 

where C(s) Ef 6(1, s). Let us separate the variables by dividing both sides of 
this equation by a(x, xL) and b(x, xu);  we then get 



38 Christodoulos A. Floudas and Vladik Kreinovich 

The left-hand side C of this equality depends only on x, xL, and s. Since it 
is equal to the right-hand side, which does not depend on xL at  all, we can 
conclude that C only depends on x and s: 

i.e., equivalently, 
a(x + s ,xL + s)  - 

a(x, xL) 
= q x ,  s),  (26) 

- 
where C(x, s) de' = - e(x' '). For convenience (and without losing generality), we 

C(s) 
can describe as depending on x and x + s: 

a ( x + s , x L  + s )  

a(x, xL) 

def - where N(x, a )  = C(x, a - x). 
We can perform the transition from 

= N(x, x + s ) ,  (27) 

x to x + s in one step, as above, or we 
can first go to  x + (-2) = 0, and then to 0 + (x + s)  = x 4 s .  We then have 

a(0 + (x + s),  (xL - x) + (x + 5)) a(x + (--x),xL - x) = 
(28) a(0, xL - x) a(x, xL) 

N(0 ,x  + s)  . N(x,O), 

For s = 0, (27) leads to N(x,  x) = 1, hence from (29), we conclude that 

N(0, x) . N(x, 0) = 1 thence N(x, 0) = - thus, (29) takes the form 
N(0, x) ' 

where n(x) ef N(0,x). Substituting (30) into the formula (27), we conclude 
that 

In particular, for s = -xL, we conclude that 
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def a(z,O) where Ao(z) = - . Similarly, b(x,x") = Bo(xU - x) . m(x) for some 

functions B(z) and m(x). Hence, 

def where p(x) = m(x) . n(x) . 
In this expression, the terms Ao(x -xL) and BO (xu - x) are shift-invariant, 

so shift-invariance (23) of the product (34) means that C(s) . p(x + s )  = p(x) 
for all x and s ,  i.e., that 

where c(s) ef l /C(s) .  Since the functions a and b are smooth, the functions 
p and c are smooth as well. Differentiating both sides of (35) w.r.t. s and 

def substituting s = 0, we conclude that pl(x) = y .p(x),  where y = cl(0), hence 

- dp = y . p ,  - = y .dx ,  and ln(p(x)) = 7 . x  +CI ;  thus, p(x) = Cz .exp(y .x) .  
dx P 

Since exp(y .x) = exp(y - (x - xL)) .exp(y .xL),  (34) takes the desired form 

where A(z) sf A0(z) . C2 . exp(y. z). The proposition is proven. 

5.4 Proof of Proposition 4 

def def u For convenience, let us introduce new variables X = x - xL and Y = x - x. 
In terms of these variables, xu - xL = X + Y, and thus, the desired formula 
(7) takes the form 

a (X)  a(Y) = b(X) + b(Y) + c(X + Y). (37) 

Differentiating both sides of this equality w.r.t. Y, we conclude that 

a (X)  . al(Y) = bl(Y) + cl(X + Y). (38) 

Differentiating once again, this time w.r.t. X ,  we conclude that 

a l(X) . al(Y) = c1I(X + Y ) .  (39) 

In particular, for Y = 0, we get 
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Substituting this expression for cl'(X) into the formula (39), we conclude that 

Dividing both sides by al(0), we get 

where A(X) def = - a'(X) . Differentiating both sides of (43) by Y and substituting 
a'(0) 

Y = 0, we conclude that A1(X) = y . A(X), where y ef A1(O). Similarly to 
the proof of Proposition 3, we get A(X) = C1 . exp(y . X )  for some constant 

C1. Therefore, a t (X)  = al(0) . A(X) = C2 .exp(y. X), where C2 !Sf at(0) . C1. 
Thus: 

If y = 0, we get a t (X)  = C2, hence a (X)  = C2 . X + C3 for some constant 
C3. From the condition a(0) = 0, we conclude that C3 = 0. 

*f C2 If y # 0, then a (X)  = C3 .exp(y - X )  + C4, where C3 - -. Here too, from 
Y 

I 

the condition that a(0) = 0, we conclude that a (X)  = Cq. (1 - exp(y ex ) ) .  

The proposition is proven. 

5.5 Proof of Proposition 5 

We have already shown, in the proof of Proposition 1, that: 

for linear or exponential functions, the corresponding family is shift- 
invariant, and 
vice versa, that if a family is shift-invariant, then it has the form F(g,  h) 
for some linear or exponential functions g(x) and h(x). 

lo. To prove the first part of Proposition 5, we thus need to show that for 
every shift-invariant and final optimality criterion, the corresponding optimal 
family Fopt is shift-invariant, i.e., that T,(Fopt) = Fopt for all s.  Then, the 
result will follow from Proposition 1. 

Indeed, the transformation T, is invertible, its inverse transformation is a 
shift by -s: Ty l  = T-,. Now, from the optimality of Fopt, we conclude that 
for every F' E A, T;l(IF1) 5 Fopt. From the invariance of the optimality 
criterion, we can now conclude that F' 5 Ts(Fopt). This is true for all F' E A 
and therefore, the family T(Fopt) is optimal. 
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But since the  criterion is final, there is only one optimal indicator function; 
hence, T,(Fopt) = Fopt. So, the optimal family is indeed invariant and hence, 
due to  Proposition 1, it coincides with F(g ,  h) for some linear or exponential 
functions g(x) and h(x). The first part is proven. 

2". Let us now prove the second part of Proposition 5. Let g(x) and h(x) be 
fixed linear or exponential functions, and let Fo = F(g ,  h) be the correspond- 
ing family. We will then define the optimality criterion as follows: F 5 F' iff 
F' is equal to  this Fo. 

Since the family Fo is shift-invariant, thus the defined optimality criterion 
is also shift-invariant. It is also clearly final. 

The family Fo is clearly optimal w.r.t. this shift-invariant and final opti- 
mality criterion. The proposition is proven. 
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