
Problem Definitions and Formulations 

In this chapter we will specify the densest packing of equal circles in a square problem, 
and discuss some equivalent problem settings. Since, besides the geometric investi­
gations, we also consider the problem from a global optimization point of view, some 
possible mathematical programming models will be included here. 

2.1 Geometrical models 

Informally speaking, the packing circles in a square and its related problems can be 
described in the following ways: 

Problem 2.1. Place n > 2 equal and non-overlapping circles in a square, such that 
the common radius of the circles is maximal. 

Problem 2.2. Place n > 2 points in a square, such that the minimum of the pairwise 
distances is maximal. 

Problem 2.3. Place n > 2 equal and non-overlapping circles with the common radius 
in the smallest possible square. 

Problem 2.4. Place n > 2 points with pairwise distances of at least a given positive 
value in the smallest possible square. 

Of course, in order to investigate these problems and their relations in detail, we 
need their formal definitions and a consistent system of notation. 

Formal description of Problem 2 J: 

Definition 2.5. P{rn-> S) G Pr^ is a circle packing with the 
the square [0, S]'^, where Pr^ = {{{xi,yi),... ,{xn,yn)) ^ [0,3]'^'^ \ {xi - Xj)"^+ 
iVi - Vjf > ^rl;xi,yi G [rn,5 - Tn] {1 < i < j < n)}. P{rn,S) G Pr^ is an 
optimal circle packing ,iffrt— max r^. 
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Problem V^. Determine the optimal circle packings for a given n > 2 integer. 

Formal description of Problem 2.2: 

Definition 2.6. A{mn^ ^) G A^^ is a point arrangement with the minimal pair-
wise distance rrin in the square [0, E]^, where Amr, — {((^ î̂  2/1)5 • • • 5 (^n, Vn)) ^ 
[0, r]2^ I {xi - Xjf + {Vi - % ) ^ > m2; (1 < i < j < n)}. A{mn, E) e A^n^ is 
an optimal point arrangement, if fUn = max m^. 

Problem P ^ . Determine the optimal point arrangements for a given n > 2 integer. 

Formal description of Problem 2.3: 

Definition 2.7. P'{R^Sn) G P^^ is an associated circle packing with the com­
mon radius R in the square [0,5^]^, where P^ = {((xi ,?/ i) , . . . , (xn,yn)) ^ 
[0,5n]^^ I (x^ - Xj)^ + (i/i - %-)^ > ^R^\Xi,yi\ [R,Sn - R] {I < i < j < n)]. 
P'(R, Sn) ^ Pi is an optimal associated circle packing, if ~Sn = min Sn-

Problem V^. Determine the optimal associated circle packings for a given n > 2 
integer. 

Formal description of Problem 2.4: 

Definition 2.8. ^ ' (M, Gn) ^ A'^^ is an associated point arrangement with the min­
imal pairwise distance M in the square [0,cr^]^, where A'^^ = {((xi,2/i), • . . , 
{Xn^Vn)) e [0,(Jn]2 | {Xi - X^f + fe - V^f > M^ {1 < i < 3 < u)}. 

A'{M,an) ^ A'-^^ is an optimal associated point arrangement, if an = min a^ 

Problem 7^ .̂ Determine the optimal associated point arrangements for a given n > 2 
integer. 

Theorem 2.9. The Problems Vi, V2, Vs, and V2 are equivalent in the sense that, 
if someone is able to solve one of the problem types for a fixed n > 2 integer, then 
this solution yields the solutions of all the other problem types. That is, for each n the 
optimal solutions of the particular problems can be derived from each other. 

The theorem will be proved through four lemmas, each of them giving the equiv­
alence of two different problems. First, we prove that the circle centres of a P{rn', S) 
optimal circle packing result in an A{mn^ E) optimal point arrangement. Then we 
show that the circles drawn around the points of an A{mn, E) optimal point arrange­
ment with a proper radius result in a P'(i?, Sn) optimal associated circle packing. In 
the next step, we prove that circle centres of a P'{R, Sn) optimal associated circle 
packing result in an A'{M., an) optimal associated point arrangement. Then we show 
that the circles drawn around the points of an A'{M^ an) optimal associated point 
arrangement with a proper radius result in a P(r^, S) optimal circle packing. 
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Fig. 2.1. Each circle packing corresponds to a point arrangement. 

Lemma 2.10. Let P{rn, S) be an optimal circle packing. Then the centres of the 
circles correspond to an A{mn^ S) optimal point arrangement with U = S — 2rn, 

PROOF. Assume the opposite ofthe statement ofthe lemma, i.e. that A(2rn, S — 2rn) 
is not optimal. Then there exists an A{m'^^S — 2r^) point arrangement with 
m^ > 2rri. Create a circle packing from A{m'^^ S — 2rn) by drawing a circle of 
radius m^/2 from each point of the packing (see Figure 2.1). Clearly, each such 
circle is located in a square of side S - 2rn + m^. Reduce this square to a square 
of side S, using the midpoint of the square as the centre of the transformation. The 
transformation changes the common radius of the circles to 

mLS 
2{S - 2rr, + m^J ' 

P{rnj S) is an optimal circle packing, thus 

2{S-2rn-hm'J 

holds, from which we get {2rn — m'){S — 2rn) > 0. Since it is easy to see that 
S — 2rn > 0 holds for all n > 2, we obtain 2rn — m' > 0, but this contradicts the 
original assumption that m' > 2rn. This contradiction completes the proof. D 

Lemma 2.11. LetA{mn, ^) be an optimal point arrangement. Then the circles drawn 
around the points with a common radius of R = mn/2form a P^{R, Sn) optimal 
associated circle packing with Sn = I^ + rrin-

PROOF. Assume that the P'{7x1^/2, X'-f m^) associated circle packing is not optimal. 
Then there exists a P'(mn/2, s'^) associated circle packing with s'^ < E -\- rrin- The 
centres of this latter packing are located in a square of side 5^ — m„. Enlarge this 
square to a square of side E, using the midpoint of the square as the centre of the 
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transformation. The enlargement changes the minimal pairwise distance between the 
circle centres to 

Since A{mn, ^) is an optimal point arrangement, 

rur,. > — 
si 

holds. Using the obvious rrin > 0 condition, we can divide both sides by rrin, and 
after rearrangement we obtain s^ — m^ > ^ . But this contradicts the assumption 
< < r + mn. • 

Lemma 2.12. LetP'{R^ Sn) be an optimal associated circle packing. Then the centres 
of the circles correspond to an A'{M^ an) optimal associated point arrangement with 
M = 2R, an=- Sn- 2R 

PROOF. Assume that ̂ '(2i?, Sn-2R) is not optimal. Then there exists an 74'(2i?, a^) 
associated point arrangement for which a'^ < Sn — 2R. Create a circle packing from 
this latter arrangement by drawing a circle of radius R around each point. These 
circles are located in a square of side a^ + 2R. Since P\R^Sn) is an optimal as­
sociated circle packing, 5n < cr̂  + 2R, which contradicts our original assumption 
ai, <Sn- 2R. D 

Lemma 2.13. Let A'{M, an) be an optimal associated point arrangement. Then the 
circles drawn around the points with a common radius of r^ = M/2 form a P{rn, S) 
optimal circle packing with S = an + M. 

PROOF. Assume that the P(M/2,(Jn + M) circle packing is not optimal, that is, 
there exists a P(r^, cr̂  + M) circle packing with r^ > M/2. The centres of this latter 
packing are located in a square of side cr̂  + M — 2r^. Reduce this square (using 
the midpoint of the square as the centre of the transformation) in such a way that 
the minimal pairwise distance between the centres becomes M. Then the side of the 
reduced square is 

Mjan + M- 2r'J 

Since A'{M, an) is an optimal associated point arrangement, we obtain 

M{an + M - 2 < ) 
< 

2r' 

from which, after rearrangement, we get 0 < {an + M){M — 2r!^). The first term 
on the right-hand side is positive, which yields M — 2r'^ > 0, but this contradicts the 
assumption r^ > M/2. D 
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Table 2.1, Relations between the parameters of the problems. 

Sm-n P{rn,S) 

A{mn,I^) 

P\R,Sn) 

A'{M,C7n) 

1 

M ( S - 2 r n ) 

Tr 

1 

5r 

cr, 

2 (mn+i : ) 

_ 2R{mn + i:) 
rrin 

_ M i : 

Table 2.2. Relations between the parameters of the problems. 

P'{R,Sn) A'{M,an) 
RS ^ — MS 

2(M+c7^) P{rn,S) Tn 

P\R,Sr.) 1 s^=.m^^^ 

Moreover, of course, the transformed circle packings and point arrangements used 
in the previous proofs are in shifted squares, where the left lower comer of a square 
is in the (0,0) point. 

Definition 2.14. The density of a circle packing P{rn-> S) is given by the formula 

2 

Since the density of a circle packing is a quadratic function of the radius Tn, the 
following problem formulation is equivalent (in the sense of Theorem 2.9) to the 
Problems Pf, 1 < i < 4: 

Problem V^. Determine the densest P{rn, S) circle packings for a given n > 2 
integer. 

Corollary 2.15. The relations between the parameters of the circle packings, point 
arrangements, associated circle packings, and associated point arrangements derived 
from each other are the ones listed in Tables 2A and 2.2. 

P R O O F . Each entry of Tables 2.1 and 22 is a straightforward consequence of the 
transformations used in the proofs of Lemmas 2.10 to 2.13. D 

In the sequel, the Problems Pf, V2, and V^ will be investigated in the unit 
square. (Obviously, one can fix the square this way without the loss of generality. 
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since the different domain squares can be transformed to each other without affecting 
the structures of the packings.) 

In the following, we consider two packings to be identical^ if they can be trans­
formed to each other by applying symmetry transformations or index permutations. 
Note that this consideration is obvious from a geometrical point of view. However, 
as we shall see later, one of the main difficulties the numerical methods have to cope 
with is finding one configuration and avoiding the other identical configurations. 

Definition 2.16. Let us suppose that there is a given solution of Problem (2.1) (or the 
equivalent ones (2.2)-(2.4)). We say that a circle is free (or a rattler) if its centre can 
be moved towards a positive distance point without causing the others overlap. 

Definition 2.17. We say, that 

• a circle is fixed if it isn 't a free circle, 
• a packing is rigid if all of its circles are fixed. 

We should point out here that when a packing contains one or more free circles, 
then the solution is obviously not unique. Moreover, the possible locations of the 
centre of any free circles form a non-empty interior and cormected set. In the present 
volume the number of contacts will be denoted by Cn, and the number of free circles 
by fn. In each figure a contact will be represented by a short line section and free 
circles will be indicated by dark shading. 

2.2 Mathematical programming models 

As we have already mentioned, the circle packing problem was originally a geo­
metrical problem; on the other hand, it can also be viewed as a continuous global 
optimization problem. 

In this book, we will usually refer to the following bound-constrained, max-min 
optimization model of the point arrangement problem in the unit square (that is. 
Problem 2.2 or Problem V^): 

max min J{xi - Xjf-\-{yi-y^f 
Xi,yi l<i<j<n \ -" •" ( 2 . 1 ) 

subject to 0 < Xi,yi <1 (1 < i < n), 

where Xi.yi are the coordinates of the i-th point. The goals are to find the global 
optimum of the problem (the maximum of the minimal pairwise distance of the 
points), and also, to find the global optimizer(s), that is, the respective locations of 
the points. 

Besides (2.1), the mathematical programming models of Problem V2 can be 
represented in various different ways, for instance: 

a) as a continuous, nonlinear, inequality-constrained global optimization problem 
[66]: 
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max t, 
Xi,yi 

subject to 

(xi - Xj)^ - {yi - VjY >t (1 < i < j < n), 

0 < Xi^yi <1 {I <i < n). 

b) as a DC programming problem [48]: 

A DC (difference of convex functions) programming problem is a mathematical 
programming problem, where the objective function is given by the difference be­
tween two convex functions. In [48], the minimalpairwise squared distance is treated 
as the objective function, and a DC decomposition of this function is given. That is, 
the point arrangement problem is formulated as 

max min {{zi - Zk)'^ + {zn+i - Zn-^kf} , 
zje[o,i]^, l<i<k<n 
l<j<2n 

with 
Z =^ yXi^ . . . J Xji^ y i , . . . , yn}-) 

which is obviously equivalent to the original Problem V2' Using the additional nota­
tion 

J - { l , . . . , 2 n } , 

Jik = {i,k,n + i,n + k}, 

the objective function can be written as 

min {{zi - Zkf + [zn+i - Zn+kf] 
l<i<k<n 

2n 2n 
2 mm < {zi - Zkf 4- {zn^i - Zn-^kf - 2 ̂  2:| + 2 ̂  ^ 
J l<i<k<n . 

2n ( 

=^2X^-^1+ J^^?^ ^ - 2 Y" z]-{Zi^Zk)^-{Zn+i-{-Zn^kf 
j = i (̂  jeJ\Jik 

2n ( 

= 2 ̂  2:| - max ^ 2 ^ z'j + (zi-\- zuY + (^n+i + Zn^kf 
i = i I jeJ\Jik 

Thus, the objective function can be specified as the difference of two convex 
functions ^ : R '̂̂  -> R+ and /i : R^^ -> R+: 
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h{z) = max < 2 ^ 2:| + (2:̂  + 2:̂ )̂  + {zn^i + 2:^+^)^ ) : 1 < i < A: < 
I \ jeJ\Jik 

c) fl^ a« all-quadratic optimization problem (or QCQP - Quadratically Constrained 
Quadratic Problem): 

The general form of an all-quadratic optimization problem [97] is 

min [a:^QOx + ( d Y ^ ] , 

subject to 
x^Q^x + {d^)^x + ĉ  < 0 / = 1 , . . . ,j9 

xeP, 

where Q^ (/ = 0 , . . . ,p) are real (n + 1) x (n + 1)-dimensional matrices, d^ 
{I = 0 , . . . ,p) are real (n + 1)-dimensional vectors, ĉ  (/ = 1 , . . . ,p) are real 
numbers, p is the number of constraints, and P is a polyhedron. 

Problem V2 can be written as a special case of the all-quadratic optimization 
problem with a linear objective function in the following way: 

QO = 0 , x^- (xo ,a ; i , . . . , a ;2n) , (^i^f - ( - 1 , 0 , . . . ,0), 

{dV = 0, c ^ - 0 , p ^ ! ^ i ! ^ , P ^ [ 0 , ^ / 2 ] x [ 0 , i r , 

[Q%=Qr-i 

if i = J zrz / 

f 2r, 
2r, 

i = 2 r + l andj = 2/̂  + 1, 
i = 2 r a n d j - 2 r , 
2 - 2 ^ + 1 andj = 2 r + l, 
i = 2r andj=::2r, 

0, otherwise, 

1 <ij < 2n + l, 

1 < r < /'' < n. 

In this model, XQ is the minimal distance between the points. The coordinates of 
the f-th point (1 < i < n) are {x2i-i, X2i). 
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The above models may be of interest for mathematical programming solvers 
as very hard optimization problems. To demonstrate the expected difficulty of the 
problem, we might mention the example of the sophisticated, interval arithmetic-based 
global optimization solver GlobSol [51 ], which was unable to return sufficient results 
even for the case of packing five circles/points with reasonable parameter settings 
[125]. However, as the previous and current numerical studies show, approaches that 
use not only optimization models, but also the geometrical aspects of the problem are 
often more effective (cf. the methods of Chapters 7 and 8). Hence in the next chapter 
some of these useful geometrical characteristics will be investigated in detail. 




