
THE POSSIO INTEGRAL EQUATION OF 
AEROELASTICITY: A MODERN VIEW 

A.V. ~a laknshnanl  
University of California, Department of Electrical Engineering, Los Angeles , CA, USA 

bal @ee.ucla.edu* 

Abstract A central problem of AeroElasticity is the determination of the speed of the air- 
craft corresponding to the onset of an endemic instability known as wing 'flutter'. 
Currently all the effort is completely computationa1:wedding Lagrangian NAS- 
TRAN codes to the CFD codes to produce 'Time Marching' solutions. While 
they have the ability to handle non-linear complex geometry structures as well 
as viscous flow,they are based approximation of the p.d.e. by o.d.e., and re- 
stricted to specified numerical parameters.This limits generality of results and 
provides little insight into phenomena. And of course are inadequate for Con- 
trol Design for stabilization. Retaining the continuum models,we can show that 
the basic problem is a Boundary ValueIControl problem for a pair of coupled 
partial differential equations,and the composite problem can be cast as a non- 
linear ConvolutionlEvolution equation in a f i lber t  Space. The Flutter speed 
can then be characterized as Hopf Bifurcation point, and determined completely 
by the linearised equations. Solving the linearised equations is equivalent to 
solving a singular integral equation discovered by Possio in 1938 for oscillatory 
r e s p o n s e h  this paper we examine the Equation and its generalizations from the 
modern mathematical control theory viewpoint. 
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1. Introduction 

The genesis of the Possio Equation and its role in the Aeroelasticity theory of 
the 1950's has been amply documented in [I]. This paper presents the current 
outlook on this equation, including generalizations, from the vantage point of 
recently developed control theory for partial differential equations [2]. 

A central problem of AeroElasticity is the stability of the wing structure in 
air flow. Much of the interest is in subsonic compressible flow. This can be 
formulated (see[3]) in the Time Domain as a nonlinear convolution/evolution 
equation in a Hilbert Space,and the instability ('Flutter') speed as a Hopf Bi- 
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furcation point which by the Hopf theory is completely determined by the lin- 
earised equations about the undisturbed flow. The linearised equations are of 
the Neumann boundary type, and hence can be cast equivalently as an Integral 
Equation -this is the Possio Equatioqwith a singular kernel. 

We may also place it in the context of the currently fashionable numerical 
computation schemes-indeed almost all the work in AeroElasticity today is 
computational. In essence the partial differential equations are approximated 
by ordinary differential equations - both Structural Dynamics and AeroDy- 
namics,and the most subjective part-often mysterious even-is the wedding of 
the Lagrangian Structure Dynamics to the Eulerian AeroDynamics. This is 
exactly where the Possio Equation would come in,if the full continuum models 
are retained. 

We begin in section 2 with the Wing Structure mode1,where we need to cal- 
culate the aerodynamic loading In section 3 we consider the AeroDynamic flow 
model-the Euler Full Potential Equation with aeroelastic boundary conditions 
for attached flow, and the Kutta-Joukowsky conditions. The linearization of the 
equations is in section 4. Finally in section 5 we study the role of the Possio 
Equation. 

2. Structure Model 
The simplest model - a uniform rectangular beam, endowed with two degrees 

of freedom, plunge and pitch - goes back to Goland [4] in 1945 (too late for 
Possio!). Let the projection of the flow velocity be along the positive X- 
axis,with x denoting the chord variable, -b I x < b. Similarly with y  denoting 
the span or length variable, along the Y- axis, 0  5 y  5 I ,  let 

where h( . )  is the plunge or bending along Z-axis; and O ( . )  is the pitch or torsion 
angle about the elastic axis located at x = ab. Then the structure dynamics 
equation is: 

Ms x ( . ,  t )  + KX(., t )  = Column ( L ( . :  t ) ,  hi'(., t ) ) ,  

where Ms is the MassIInertia matrix and K is the stiffness differential operator: 

d4  d 2  
Diagonal (EI-;  -GJ----), 

d y 4  d y 2  

L( . )  is the aerodynamic lift and hi'(,) the moment about the elastic axis, with 
boundary conditions: a) Cantilever 

h(0 , t )  = h'(0, t )  = 0  = O(0; t )  = Q f ( l ;  t )  = h f f f ( l ,  t )  = 0  = hf'(l ,  t ) .  



The Possio integral equation 

b) Free-Free 

See [5,6] for a Hilbert space formulation. The functions L( . )  and I C f ( . )  have to 
be determined from the Aerodynamic model. 

3. AeroDynamic Model 
The aerodynamic lift and moment (per unit length) are given by: 

b 
M ( y , t )  = / (s - a)6pdx 

-b 

61, = p(x; y; O f ,  t )  - p(x ,  y, 0-, t) ,  0 < y < 1; 1x1 < b 

where p(x,  y, z ,  t )  is the aerodynamic pressure,which along with the velocity 
vector q(x, y, z ,  t ) ,  the density ~ ( x ,  y ,  z ,  t )  are the basic aerodynamic vari- 
ables of interest. Under some simplifying assumptions (see[8]), we can show 
that the velocity is curl-free and is then characterized by the velocity potential 
$(x, y, z: t)  which satisfies the (Euler) Full Potential Equation: 

where q, is the undisturbed far-field velocity, a, is the far field speed of sound, 
em is the far field density. 

M (Mach Number) = (u) 5 1. 
a00 

The pressure is given by 

It is assumed that the far field potential is given by 



AeroElastic Boundary Conditions. 
The aeroelastic boundary conditions are: 
a) Attached Flow 

where w,(.) is the normal velocity of the structure, and is given by: 

b) Kutta-Joukowsky Condition: 

Sp = 0 ,  off the structure and at the trailing edge (goes to 0 ,  as x -+ b-) ,  

where Sp is the pressure jump : 

Sp = P ( X ,  Y, O+, t )  - P ( X ,  Y: 0 - 4  

We do not have an existence thcorem for this problem as yet! 

4. Linearization 
Because of the lack of existence theorem and other reasons it is customary to 

simplify the Full Potential Equation to the Transonic Small Disturbance Poten- 
tial (TSD) equation which is quasilinear and yet retains sufficient non-linearity 
to yield shocks - see [8]. Here however we go straight to the linearzation. Thus 
defining 

9=+-& 

we have: 

where now 
U 

U = / ( q , ) / ;  q i=Ucoscr i ;  M=- 
a00 

The boundary conditions are 

89 - = w a ( x ,  y ,  t ) ,  0 < y < 1 ;  1x1 < b, 
dz 



The Possio integral equation 

where 

With denoting the linearised acceleration potential 

the Kutta-Jukowslu conditions become: 

6 $ = $Izzo+ - $10- = 0,  off the structure, (3) 

64 i 0 as x i b - ,  O < y < l .  (4) 

These are the 3-D linear subsonic Compressible flow conditions with the aeroelas- 
tic boundary conditions - see [8] for more details. 

5. The Possio Integral Equation 
Let us begin with a statement of the Possio Integral Equation - actually this 

is a generalization of the original equation bearing his name which was 2-D, 
zero angle of attack, Fourier Transform (sinusoidal response) version. We state 
it for the 3-D case, in terms of the Laplace Transform variable A, Re X > a > 0, 
because the integrals defining the equation will be convergent (which is not the 
case for X = iw ,  as in the original formulation). Let 

To reduce complexity, we shall take 

ql = 1 (zero angle of attack) 

see [8] for the case 0 < ql < 1. Then the equation is (see [9]) 



and the spatial Fourier Transform of the kernel p(.: . ,  k )  is 

where 

We prefer the succinct form of the spatial Fourier Transform in contrast to the 
p ( . ,  ., k )  which is too long to specify see [10,13]. It has a singularity at the 
origin so that we have a singular integral equation [9]. Assume that (5) has a 
solution. Then the solution of the linearised potential equation (1) specialized 
for ql = l,q2,q3 both zero , is given by: 

= -(P^(iwl, iw2 ,  -2 ,  A ) ,  for z < 0 

where -oo < w l ,  w2 < cc and 

This is essentially a formula due to Kussner, an early German pioneer (see [I]) .  
We note that the existence of solution to (5) is still an open problem, despite 
early work on the problem [ll]. 
par To obtain the original 2 0  version of Possio we need to specialize to the 
'airfoil' case - or, 'high-aspect-ratio' wings where 

- - 
b 

- 00 
so that we may neglect the dependence on the y-coordinate . With ql equal to 
unity, this becomes 

d 2  v d 2  P d 2 ~  d Z y  - +2U- = & ( ( I  - M')-+ -). 
at2 d x d t  d x 2  d z 2  



The Possio integral equation 

And correspondingly (5) becomes: 

where setting w2 in (5) to be zero, we have, for w E (-oo, oo): 

,. 00 - k 2 M 2  + 2kAd2iw + ( 1  - M 2 ) w 2  
P ( i w ,  k )  = P ( X ,  k)e-"xdx = 

2 ( k  + i w )  
(10) 

where we have discarded the subscript 1.B In this case it becomes actually a 
Mikhlin multiplier - see [12 1. 

Second we need to consider the case of 'oscillatory' response-Fourier Trans- 
form in the time-domain; formally putting i w ~  for X everywhere. In this case, 
the corresponding kernel function becomes rather involved and too long to 
specify [13]; further, the integrals in the kernel function also require special 
interpretation as in [lo]. 

The importance of the Possio equation is that it links directly the structure 
velocity-the "input' in the problem to the 'output' E- the pressure jump which 
is all that is needed in the aeroelastic problem. We do NOT need to solve for the 
potential everywhere. On the other hand the potential can be determined from 
the pressure jump -this is the formula of Kussner (8). Thus solving the Possio 

- - 

equation is equivalent to solving the boundary value problem for the potential. 
It is true that this holds only for the linearised equations-we don't have yet a 
'non-linear' Possio Integral equation. But if stability - or Flutter speed - is the 
prime concern,then all we need is the solution to the Possio equation! Given 
this,it is surprising there is hardly a mention of this equation in recent Texts [15]. 
Indeed, a systematic use of the Possio equation would have reduced the size 
of the classic text [13]. Finally we note at present the existenceluniqueness of 
solutions to the Possio Equation is known only for the 'air-foil' case and even at 
that only for M = 0 and M = 1, (see [14 I). See [7] for some approximations. 
Otherwise the problem is open. 
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