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Basics of Infrared Detection

Before the in-depth analyses of quantum well, ISBT, and QWIP – a specific
infrared detector – we first discuss the general concept of how the tempera-
ture of an object influences the emission of infrared radiation, and how the
detection of this radiation allows us to sense the temperature of this object.
We also discuss the general properties of detector signal, noise, and figures of
merit such as noise-equivalent power (NEP), detectivity, and noise-equivalent
temperature difference (NETD).

2.1 Blackbody Radiation

To fully understand the process of infrared detection, we have to know some
basic properties of the signals. The concept of temperature is equivalent to
certain energy distributions. The Fermi–Dirac distribution describes the tem-
perature of an ensemble of indistinguishable particles obeying the exclusion
principle (fermions), e.g., of carriers in a semiconductor while the thermal en-
ergy distribution of particles with unlimited state occupancy (bosons) is given
by the Bose–Einstein distribution function

fB(E) =
1

exp(E/kBT ) − 1
. (2.1)

Here E is the energy, T is the temperature, and kB is the Boltzmann constant.
This distribution function describes in particular the energy distribution

of a photon field with temperature T . Applying (2.1) to the electromagnetic
modes (photon states) in a cavity yields Planck’s radiation law. In its com-
monly used form, it states that the irradiance Iν (total power per unit surface
area) at photon frequency ν is given by [31]

dIν =
2πh

c2

ν3dν

exp(hν/kBT ) − 1
. (2.2)
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Here h is the Planck’s constant which connects the frequency with the energy
E = hν of a photon, and c is the speed of light. Equation (2.2) characterizes
the radiation field inside a cavity with the radiation temperature T .

An important property of a thermal radiation field is that the radiation
temperature is constant at each position inside the cavity. Considering now
the walls of the cavity, thermal equilibrium can only exist if, at each part of
the surface, the absorbed radiation power equals the emitted radiation power.
The same is of course true for the surface of a small absorbing object inside
the cavity. Consequently, at any frequency and incident angle, the emissivity
ε of a surface equals the absorptivity (or (1 − reflectivity) if the object is
opaque).

Another important consequence of this concept is that the surface of an
object with temperature T still emits radiation in the absence of incident
radiation or, more generally, in the absence of thermal equilibrium between
the object and the radiation field. For a given emissivity ε(ν, Ω), the radiance
Hν,Ω (radiation power per unit area and steradian) can be expressed as

dHν,Ω = ε(ν, Ω)
2h

c2

ν3dν cos ϑdΩ

exp(hν/kBT ) − 1
, (2.3)

where dΩ = sinϑdϑdϕ.
In the simplest case, which is referred to as “blackbody,” the emissivity of

the surface is ε = 1, such that the emitted radiation is identical to a thermal
radiation field. Real objects often show a “greybody” behavior, where ε is
constant with a value slightly less than one.

In general, ε can exhibit a complicated angular and frequency dependence.
In particular, in the case of structured surfaces, ε may not just depend on the
polar angle ϑ but also on the azimuthal angle ϕ. Intentional modification of
these dependencies can be achieved by applying appropriate coatings (reflec-
tion/antireflection) and by structuring the surface. Moreover, the reflectivity
and thus also the emissivity are strongly affected if diffraction gratings are
fabricated at the surface. In addition to diffraction, the emissivity is also
influenced by surface plasmons, which can lead to a high degree of spatial
coherence and narrow angular dependence of the emitted radiation [32].

For isotropic ε, integration of Eq. (2.3) over ϑ and ϕ yields the total emitted
power density per frequency interval, which has the same value as Iν in (2.2)
times an additional factor ε. Substituting for the photon energy E yields the
power PE per energy interval radiated from a surface with area A:

dPE = Aε
2π

h3c2

E3dE

exp(E/kBT ) − 1
. (2.4)

Integration over the variable E (or ν) results in the Stefan–Boltzmann equa-
tion

Ptot = AεσT 4 (2.5)



2.2 Signal, Noise, and Noise-Equivalent Power 7

0.0 0.1 0.2 0.3 0.4

0.01

0.1

1

77
K

130
K

200
K

400 K
300 K

PHOTON ENERGY (eV)

d
P

/d
E

(W
/e

V
c

m
2 )

20 14 10 8 6
WAVELENGTH (µm)

34

Fig. 2.1. Energy distribution of blackbody radiation vs. photon energy

with the Stefan–Boltzmann constant σ=2π5k4
B/15c2h3 =5.67×10−8 W/m2K4.

According to Eq. (2.5), the total emitted radiation power density Ptot of a
blackbody with ε = 1 at 300 K equals 46 mW cm−2.

The radiative energy distribution of a blackbody with ε = 1 is shown in
Fig. 2.1. Note that a different functional shape is obtained if the distribution
is expressed as a function of the wavelength λ = c/ν, since dν = dλ/λ2.

The blackbody radiation incident onto a small detector with area A
through an optical objective can be expressed in terms of the f-number
F# of the objective, which is the ratio between its focal length fL and
the lens diameter DL. We thus obtain tan(ϑ/2) = DL/2fL = 1/2F#, or
sin2(ϑ/2) = 1/(4F 2

# + 1). The objective redirects the incident light emitted
from a blackbody onto the detector, and it can be shown that the incident
photon flux is the same as if the clear aperture of the lens itself were a black-
body with the same temperature. Integrating over the angular variables, (2.3)
thus yields

dPν,lens = A
1

4F 2
# + 1

2πhν3dν

c2(exp(hν/kBT ) − 1)
, (2.6)

which determines the radiation power incident onto the detector. This equa-
tion provides the basis for calculating the temperature resolution later in this
chapter. We note that ϑ or F# also determine the optical field of view.

2.2 Signal, Noise, and Noise-Equivalent Power

We now assume that the power PS of a signal with photon energy hν, which
is equivalent to a photon number Φ = PS/hν per unit time, is incident on
a photon detector with an area A. There is a probability η, also called the
(internal) quantum efficiency, that an incident photon is absorbed in the de-
tector and contributes to the signal current IS that is flowing in the external
circuit. The photoconductive gain gphoto is defined as the ratio between the
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statistically averaged number nx of electrons that are collected in the external
circuit and the average number ndet of absorbed or detected photons,

gphoto = nx/ndet. (2.7)

Here the statistical average x̄ of a stochastic variable x denotes its average
over a large set of samples, each with duration τint.

IS can thus be expressed as IS = eηgphotoΦ. The responsivity R is then
defined as the ratio IS/PS, which leads to

R =
e

hν
ηgphoto. (2.8)

In the case of a photoconductor, gphoto can be expressed as the ratio be-
tween the mean free path of the photoexcited carriers before recombination
and the total thickness of the active region between the contacts; and, equiv-
alently, as the ratio between the excited carrier lifetime and the total transit
time. In the case of a photodiode, each detected photon contributes exactly
one electron to the signal. The responsivity is thus given by (2.8) with g = 1,
though the concept of gain is usually not applied to a photodiode. For both
cases, we have implicitly assumed that τint is much larger than the duration
τp of the signal pulses associated with individual detected photons. If τint ap-
proaches τp, then the signal (and also the noise associated with the signal) will
depend on the sampling time and on the detection frequency. In the context
of QWIPs, this case will be discussed in Chap. 10.

The noise associated with a stochastic variable is determined by its statis-
tical properties. In mathematical terms, the noise associated with a stochastic
variable x is given by its variance, defined by var(x) = (x − x)2.

In the case of a photodiode, each detected photon gives rise to a pho-
tocharge of exactly one electron. Thus, the number nx of electrons collected
during the sampling time τint obeys a Poisson distribution, meaning that the
probability p(n) of collecting n electrons is p(n) = (nx

n/n!) exp(−nx). The
variance for the specific case of a Poisson distribution is var(nx) = nx.

The time-averaged current Ī = enx/τint is associated with the (squared)
noise current

i2n = var(I) (2.9)

which, in the case of a photodiode, gives rise to i2n = eĪ/τint. In practice, noise
is measured as a mean square current transmitted through a filter with an
effective bandwidth ∆f . It can be shown that the sampling or measurement
time τint is related to the bandwidth by

∆f = 1/2τint. (2.10)

The noise in,s associated with a Poisson distribution is called shot noise.
According to the previous discussion, it can be written as

i2n,s = 2eĪ∆f. (2.11)
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For a given signal, shot noise yields the lowest noise level obtainable for any
detector since there is a one-to-one correspondence with the noise already
contained in the statistics of the incident photons themselves.

An “ideal” photoconductor exhibits a somewhat more complicated statis-
tics, since the lifetime of photoexcited electrons obeys in turn a Poisson distri-
bution. Assuming again τint � τp, the signal is thus composed of a sequence
of short pulses that are Poisson-distributed in time, and their amplitudes also
show a Poisson distribution. It can be shown that these statistics result in the
following noise expression:

i2n,gr = 4egphotoĪ∆f. (2.12)

This expression can be understood by the argument (see Sect. 4.3) that both
carrier generation and recombination are associated with Poisson distribu-
tions, each of which generates a noise contribution as in (2.11). in,gr is thus
called generation-recombination (g-r) noise. We note that a “real” photo-
conductor may obtain additional noise contributions, attributable to, e.g.,
impurity levels, traps, or various scattering events including impact ioniza-
tion [33,34].

We point out that, for an ideal photoconductor, currents induced by op-
tically or thermally generated carriers and the associated g-r noise are by
definition asociated with the same gain. The index of gphoto will therefore be
omitted in the present context. Due to the discrete microscopic structure of
QWIPs, it will sometimes be necessary, however, to distinguish between the
gains arising from the responsivity and the noise.

Noise is not only induced by the signal PS itself, but also by a background
power PB originating, e.g., from objects adjacent to the signal source, stray
light, or emission from the objective, and by the dark current Idark of the
detector. Assuming that Idark is associated with the same noise behavior as
the optically induced currents, which is usually a good approximation for
most detectors, the resulting noise current is readily obtained by substituting
I = RPS +RPB + Idark into Eqs. (2.11) and (2.12). Depending on the relative
magnitudes of RPS, RPB, and Idark, we then distinguish between signal-noise-
limited, background-noise-limited, and dark-current-limited detection.

Assuming that the dark current is caused by thermal excitation, we define
the thermal generation rate Gth (the number of thermally generated carriers
per time and volume V). Idark is thus expressed as

Idark = egGthV. (2.13)

In the case of QWIPs, Gth is obtained by spatial averaging over the detector
volume. Background-limited (BL) detection thus refers to the situation that
the optical generation rate induced by the radiation exceeds Gth.

The NEP is defined as the signal power needed to obtain a unity signal-
to-noise ratio. Since the ratio between the signal power and the noise power
equals the ratio between the squared currents, the NEP is determined by the
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condition i2n = R2P 2
S , such that NEP = in/R. For signal-noise limited (SL)

detection, we thus obtain

(NEP)SL,s =
hν

ητint
=

2hν∆f

η
(2.14)

in the case of a photodiode, and

(NEP)SL,gr =
2hν

ητint
=

4hν∆f

η
(2.15)

for a photoconductor. Similarly, BL detection yields

(NEP)BL,s =

√
hνPB

ητint
=

√
2hν∆fPB

η
(2.16)

in the case of a photodiode, and

(NEP)BL,gr =

√
2hνPB

ητint
=

√
4hν∆fPB

η
(2.17)

for a photoconductor. In the dark-limited (DL) case, (2.13) gives rise to

(NEP)DL,gr =
hν

η

√
4GthV∆f =

hν

η

√
4GthV∆f

τint
. (2.18)

We point out that the NEP in (2.15), (2.17), and (2.18) is not influenced by
the gain of the photoconductor.

2.3 Detectivity and Noise-Equivalent Temperature
Difference

The detectivity D of a detector is defined as the inverse of NEP. In order to
specify the performance of a detector, the specific detectivity D� = D

√
A∆f is

often used. D� is the detectivity normalized with respect to the detector area
and the bandwidth of the measurement. This definition leads to the general
expression

D∗ =
R
√

A∆f

in
. (2.19)

For BL detection in the presence of the background photon flux density
ΦB,ph (irradiance I), given by

ΦB,ph =
PB

hνA
=

I
hν

, (2.20)

we thus obtain from (2.16) and (2.17) the specific detectivities
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D�
BL,s =

√
η

2hνI (2.21)

and

D�
BL,gr =

√
η

4hνI . (2.22)

Equations (2.21) and (2.22) are sometimes referred to as the D� of a photo-
voltaic and photoconductive detector, respectively.

In the DL case, (2.18) yields

D�
DL,gr =

η

hν
√

4GthLDet

, (2.23)

where we have introduced the total thickness LDet = V/A of the photoconduc-
tor. Assuming that the detected radiation is absorbed with the penetration
depth α, η is given by (1 − exp(αLDet)), and η is proportional to LDet for
small LDet. Therefore, the ratio α/Gth can be used as a figure of merit of the
detector material. For larger LDet, this figure of merit can still be used since
D∗ according to Eq. (2.23) has its maximum for LDet = 1.26/α, where it has
a value of (0.31/hν)

√
α/Gth [20].

As expected, the detectivities in Eqs. (2.21)–(2.23) are independent of the
measurement bandwidth and detector area. More generally, D� is a figure of
merit that specifies any detector for which i2n is proportional to the detector
area.

The NETD is defined as the temperature difference ∆T at which the in-
duced change ∆PB of the background power equals NEP, i.e.,

NETD =
NEP

dPB/dT
. (2.24)

We note that (2.24), if expressed in terms of signal electrons NS = PBRτint/e
and noise electrons NN = inτint/e, is equivalent to the intuitive relation NN =
(dNS/dT ) × NETD. The NETD is probably the most important figure of
merit characterizing detectors and arrays used for passive infrared detection
and imaging.

In order to keep the following discussion simple, we consider infrared de-
tection within a narrow spectral band ∆ν around the detection energy hν. In
addition, hν/kBT is assumed to be large enough such that the Bose–Einstein
distribution in Planck’s radiation formula can be approximated by a simple
exponential. In this case, we obtain

dPB

dT
≈ hν

kBT 2
PB, (2.25)

or equivalently,
dNS

dT
≈ hν

kBT 2
NS. (2.26)
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Equation (2.26) now allows us to relate thermal resolution to the signal-to-
noise ratio

NETD =
kBT 2

hν

NN

NS
. (2.27)

This means in particular that in order to achieve a certain NETD, the required
signal-to-noise ratio is proportional to the detection wavelength.

Restricting the discussion to an ideal photoconductor as in Eq. (2.17), the
NETD can now be expressed as

NETD = kBT 2

√
2

hνηPBτint
. (2.28)

Substituting for PB the accumulated signal electrons NS yields

NETD =
kBT 2

hν

√
2g

NS
. (2.29)

To give a typical example, let us assume thermal detection within the
spectral band from 8 to 9 µm at 300 K radiation temperature using a detector
with η = 10% and A = 30 × 30 µm2 through an F# = 2 objective at an
integration time τint = 20 ms. According to Eq. (2.6), we expect an incident
power of PB = 1.5 nW, and Eq. (2.28) predicts NETD = 7 mK. If gphoto = 1,
the photo charge amounts to about NS = 1.3 × 108 signal electrons. Since
this number is already somewhat larger than the typical storage capacity of
a readout integrated circuit, such an NETD is only achievable by increasing
the storage capacity or by working at reduced noise levels, which is achievable
for lower gphoto. We will come back to this point in Chap. 9.

Finally, it is worthwhile to take a closer look at the number of noise elec-
trons NN = in,grτint/e. To this end, we express Eq. (2.12) in terms of NS and
NN, which yields

NN =
√

2gNS . (2.30)

The above example then yields NS/NN = 8,000 (see also (2.27)), which im-
poses additional harsh requirements on the readout noise and on other noise
sources associated with the detection electronics. The difficulty arises from
the necessity to resolve very small changes in the thermal background, which,
according to (2.25), are as low as ∆PB/PB = 1.3 × 10−4 for ∆T = 7 mK.


