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Abstract. We present our experience in visualization multivariate data when 
the data vectors have class assignment. The goal is then to visualize the data in 
such a way that data vectors belonging to different classes (subgroups) appear 
differentiated as much as possible. We consider for this purpose the traditional 
CDA (Canonical Discriminant Functions), the GDA (Generalized Discriminant 
Analysis, Baudat and Anouar, 2000) and the Supervised SOM (Kohonen, 
Makivasara, Saramaki 1984). The methods are applied to a set of 3-dimensional 
erosion data containing N=3420 data vectors subdivided into 5 classes of ero­
sion risk. By performing the mapping of these data to a plane, we hope to gain 
some experience how the mentioned methods work in practice and what kind of 
visualization is obtained. The final conclusion is that the traditional CDA is the 
best both in speed (time) of the calculations and in the ability of generalization. 

1 Introduction 

We consider the problem of multivariate data visualization when each data vector has 
a class (group) assignment. Generally, methods of data visualization perform linear or 
nonlinear mapping to a manifold of lower dimension. Say, this lower dimension is q. 
The most common visualization uses g' = 2. Generally, it is expected that the projec­
tion gives us an idea on the shape of the data cloud. Here, we want more: Using the 
information about crisp group assignment ('crisp' is used here in the opposite mean­
ing of 'soft'), we seek for such a projection (mapping), which shows distinctly differ­
entiation between various groups of the data. 
When intending a graphical visualization of the data, we should ask in first step about 
the intrinsic dimensionality of the data. It could happen that all the observed variables 
are generated by some unobserved variables, so called 'latent variables' located in a 
manifold of lower dimension - and we should know it. Thus, we should ask about the 
intrinsic dimensionality of the analyzed data. We will use for this purpose the correla­
tion integral C(r) and the correlation dimension D introduced by Grassberger and 
Procaccia [6], [4]. 
The next question is: What kind of projection or mapping should we use? The most 
simple method is the classical one using Fishers' criterion based on the between and 
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within class variance and yielding so called 'canonical discriminant variates' or ca­
nonical discriminant functions [2], [5], [7], [12]. The method belongs to the class of 
linear methods and is referred to as CDA or Fisherian LDA. The method is extend­
able to the class of nonlinear methods - by use of appropriate transformation of the 
data. In particular one may use kernel transformations [8], [9], [5], [11]. 
Using the kernel approach, Baudat and Anouar [2] proposed a non trivial generaliza­
tion of the canonical discriminant analysis. They called their algorithm GDA (gener­
alized discriminant analysis). It represents the nonlinear discriminant functions. 
As an alternative to the nonlinear GDA we will consider also quite a different algo­
rithm, called SOM supervised (SOMs) and based on a modification of Kohonens' 
self organizing map. 
In the following, we will show how the mentioned methods work when analyzing a 
real data set of a considerable size, i.e. about 3 thousands of data vectors. The data set 
is subdivided into 5 erosion classes. We take for our illustration only 3 variables 
known as predictors for the erosion risk. In the case of 3 variables it is possible to 
visualize the data in a 3D plot. For the considered erosion data, the 3D plot shows 
plainly that the relations between the variables are highly nonlinear; thus nonlinear 
projection methods might show a more distinctive differentiation among the erosion 
classes. 
The paper is organized as follows. In Sect. 2 we describe the data and their correla­
tion dimension. Sect. 3 explains the accepted Fishers' criterion of separation between 
classes and the principles of building canonical discriminant functions (CDA alias 
LDA). Sect. 4 shows the nonlinear extension of LDA using the kernel approach pro­
posed by Baudat and Anouar. In Sect. 5 we describe briefly the supervised SOM. 
Finally, Sect. 6 contains some concluding remarks. 

2 The Erosion Data 

Our interest in a trustful visualisation of subgroups of data originated from the re­
search of erosion risk observed in the Greek island Kefallinia. The entire island was 
covered by a grid containing 3422 cells. The area covered by each cell of the grid was 
characterized by several variables. For our purpose, to illustrate some visualization 
concepts, we will consider in the following only 3 variables: drainage density, slope 
and vulnerability of the soil (rocks). The values of the variables were rescaled to 
belong to the interval [0, I]. Thus, for our analysis, we got a data set containing 
N=3422 data vectors, each vector characterized by 3 variables. Using an expert GIS 
system, each data vector was assigned to one of five erosion classes: 1, very high 
(vH), 2. high (H), 3. medium (Me), 4. low (L) and 5. very low (vL). A 3D plot of the 
data is shown in Fig. 1. The data set contains a few outliers, which are strongly atypi­
cal observations. Two of them will be removed from further analysis. 
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Fig.l. Visualization of ttie Kefallinia erosion data containing N=3422 data points, subdivided 
into 5 classes of progressing erosion risk. In some parts of the space tlie data points are much 
condensed. Two severe outliers are visible top left - they will be dropped in further analysis 

The different classes of the data set are marked by different symbols and/or colours. 
Looking at the plot in Fig. 1 one may state that, generally, the distribution of the data 
is far from normality, also far from the ellipsoidal shape. The hierarchy of the classes 
exhibits a nonlinear pattern. Some parts of the space show a great concentration of 
the data points, while some other parts are sparsely populated. 
The fractal correlation dimension calculated using the Grassberger-Proccacia index 
[6], [4] equals D = 1.6039. This is the estimate of the intrinsic dimension for the con­
sidered erosion data (For comparison, we have performed analogous calculations for 
two synthetic data sets of the same size, generated from the 3D and 5D normal distri­
butions; as expected, we obtained the values D3 = 3.0971 and D5 = 4.9781 appropri­
ately). Thus - the intrinsic dimension of the considered data set is less then 2 and a 
planar representation of the data is justified. 
The data set contained two big outliers. To not confound the effects of the outliers 
and the effects of the methods, we have removed the outliers from the analyzed set. 
Next we subdivided the remaining 3400 data vectors into two parts (halves), each 
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counting N = 1710 data items. The first part (labelled sampl) was destined for learn­
ing (establishing the parameters of the models), and the second part (samp2) as test. 
In the next three sections we will show mapping of the data to a 2D plane using three 
different methods: canonical discriminant functions (CDA alias LDA), kernel dis­
criminant functions (GDA) and the supervised SOM (SOM_s). 

3 Canonical Discriminant Functions 

We show now the canonical discriminant functions derived from Fishers' criterion. 
The method is called sometimes also LDA [5], [2]. 
The case of the two-class problem. R. A. Fisher proposed to seek for the linear com­
bination (a) of the variables, which separates the two indicated classes as much as 
possible. The criterion of separateness, proposed by Fisher, is the ratio of between-
class to within-class variances. Formally, the criterion is defined as the ratio (see, e.g. 
Duda[6]orWebb[ll]) 

JF2 = [aT(ml-m2)]2 / [aTSw a], (2-class problem) 

where a is the sought linear form, mi and m2 denote the sample group means, and S„ 
is the pooled within-class sample covariance matrix, in its bias-corrected form given 
by 

S„ = (niSi+niSz) / (ni+n2-2). 

Maximizing the JF2 criterion yields as solution the sought linear combination a for the 
two-class problem. 
In the case of the multi-class problem, - when we have k classes, k>2, with sample 
sizes Ui, ..., ni, totaling N, and the overall mean m. - the criterion JF2 is rewritten as 
the criterion Jpk, which accommodates the between class and within class variances: 

J p k ^ ^ j n j a (mj—m. ) / [ a S„ a ] , j=l,...k (k-class problem) 

where mj denotes the mean of the j-th class and m. stands for the overall sample 
mean. The within class variance S„ is evaluated as (Sj denotes the covariance matrix 
in the jth class, j=l , . . . ,k): 

Sw = (I jniSj) /(N-k). 

Maximizing the criterion Jpk with respect to a we obtain, with accuracy to the sign, h 
solutions, i.e. h vectors ai, ..., an, h = min (k-1, rank of X), with X being the data 
matrix. From these we obtain h canonical variates: yj = Xaj, j = 1, ... , h, called also 
canonical discriminant functions. The separateness of the subgroups, attained when 
considering the transformation yielded by subsequent canonical discriminant variates, 
is measured by the criterion Jpk evaluated as JFk(aj) and called also lambda j . For each 
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vector aj we obtain its corresponding value lambdaj = lambdafa^) denoting the ratio 
of the between to the within class variance of the respective canonical variate derived 
from the vector HJ. Thus a big value of/amMo,-indicates a high discriminative power 
of the derived canonical variate. 
For the analyzed erosion data we got h=3 vectors ai, 82, 83 and corresponding to them 
3 values of lambda equal to [22.1995 0.7982 0.0003]. One may notice that the first 
canonical variate - compared to the remaining ones - has a very big discriminative 
power, while the contribution of the third canonical variate is practically none. 
The projection of the data, when using the first two canonical variates, is shown in 
Fig. 2. One may notice that the subgroups are quite well separated. One may notice 
also that the second canonical variate, which - taken alone - has practically no dis­
criminative power, however, when combined with the first variate, helps much in the 
display, i.e. in distinguishing the classes of erosion risk. We got very similar values 
of lambda and very similar displays both for the learning and the testing data sets 
(i.e. for sampl and samp2) - thus the method has good generalization abilities. 

CDA, samp1, k=5 N=1710 lambcla=22.22 
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Fig.2. Projection of the sampl data using the first two canonical discriminant functions de­
rived from Fisher's criterion. The very low and very high erosion points keep opposite posi­
tion, right and left, in the exhibit. The display for the samp2 data looks identical 
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4 Nonlinear Projection Using the Kernel Approach 

The CDA, described in previous section, considers only linear functions of the vari­
ables and is proper when the groups (classes) are distributed elliptically. For our data 
this is not the case. Therefore, some nonlinear methods might be better for visualizing 
the class differentiation. A kind of non-linear discriminant analysis, called GDA 
{Generalized Discriminant Analysis) was proposed by Baudat and Anouar [2]. Their 
algorithm maps the input space into an extended high dimensional feature space. In 
the extended space, one can solve the original nonlinear problem in a classical way, 
e.g., using the CDA. Speaking in other words, the main idea is to map the input space 
into a convenient feature space in which variables are nonlinearly related to the input 
space. The fact of mapping original data in a nonlinear way into an extended feature 
space was met in the context of support vector machines (SVM) see e.g., [5], [8], [9], 
[11]. The mapping uses predominantly kernel functions. Direct coordinates - in the 
extended space - are not necessary, because the kernel approach needs only computa­
tions of so called 'dot products' formed from the original features. 
Generally, the mapping reads 

with X denoting the input space (original data), and F the extended feature space, 
usually of higher dimensionality as the original data space. The mapping <I> trans­
forms elements x e X from the original data space into elements <I>(x) e F, i.e. ele­
ments of the feature space. 
Statistical and/or pattern recognition problems use extensively cross products (inner 
products), e.g. for obtaining the within and between group covariance. To calculate 
them, a special notation of kernel products was invented. 
Let Xi and Xj denote two elements (row data vectors) of the input data matrix X. The 
kernel function k(Xi,Xj) returns the inner product <l>'̂ (xi)$(xj) between the images of 
these inputs (located in the feature space). It was proved that for kernel functions 
satisfying some general analytical conditions (possessing so called Mercer properties) 
the kernel functions k(xi,Xj) can be expressed as simple functions of the inner product 
<Xi, Xj> of the original vectors. In such a case, we can compute the inner product 
between the projections of two points into the feature space without evaluating ex­
plicitly their coordinates (N denotes the number of data vectors, i.e. the number of 
rows in the data matrix X): 

k(Xi,Xj) = <I>̂ (Xi)0(Xj) = k(<Xi, Xj>), for ij = 1, . . . , N. 

The GDA algorithm operates on the kernel dot product matrix K = {k(<Xi, Xj>} of 
size N X N, evaluated from the learning data set. The most commonly used kernels are 
Gaussians (RBFs) and polynomials. 
Let X, y be the two (row) input vectors. Let d = x-y. Using Gaussian kernels, the 
elementz = k(<Xj, Xj>) is evaluated a s : z - exp{-(d*d^)/a}. The constant o, called 
kernel width, is a parameter of the model; its value has to be declared by the user. 
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Baudat and Anouar use as the index of separateness of the constructed projection a 
criterion, which they call inertia. This criterion is defined as the ratio of the between 
class to the total variance of the constructed discriminant variates. The inertia crite­
rion takes values from the interval [0, 1]. High values of inertia indicate a good sepa­
ration of the displayed classes. 
For our evaluation we have used Matlab software implemented by Baudat and 
Anouar. For k = 5 classes we got 4 discriminative variates. The largest values of 
inertia were noted, as expected, for the first two GDA variates. What concerns the 
kernel width c, we have tried several values: o = 0.0005, 0.005, 0.05, 0.5, 1,4, 6.5, 9, 
14. For each value of o, the system has been learning using the sampl data, next the 
established model was tested using the samp2 data. Each run (i.e. calculations for 
one value of o) needed about 12 minutes of computer time (PC, XPHome, Intel® 
Pentium® 4, Mobile CPU 1.80GHz, 512 MB RAM). The sampl and samp2 data 
were of size [1710, 3]. Thus the computations were quite lengthy. 
Generally, it was stated that for decreasing values of o the classes appeared more and 
more separated (for values o = 0.5 to 14, the displays were quite similar). As an ex­
emplary exhibit we show here Fig. 3, obtained for a = 1. The resulting inertias for 
variates no. 1-4 are: [0.968650 0.705236 0.550547 0.257248]. 
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Fig. 3. GDA using Gaussian kernels with a = 1 applied to the sampl data. Horizontal and 
vertical axes denote first and second GDA coordinates. Five classes of data points correspond­
ing to decreasing erosion risk - appearing from left (very high risk) to right (very low risk) -
are marked differently. Generally, the topology of the subgroups is preserved and the groups 
appear fairly separated and condensed 

The overall pattern of the point configuration in Fig. 3 is the same as in Fig. 2. From 
left to right we see groups of points corresponding to areas with very high (vH), high 
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(H), medium (Me), low (L), and very low (vL) erosion risk. Generally, the topology 
of the subgroups is preserved. Both variates contribute significantly to the differentia­
tion of the risk classes. Unfortunately, the model when applied to the test set, yields 
projections appearing in quite different areas; thus it is not able to make the generali­
zation. 

5 Supervised SOM 

Kohonen's self-organizing maps are a popular tool for visualization of muhivariate 
data. The method was successfully applied to the Kefallinia erosion data [1]. 
The SOM method uses a general purpose methodology without accounting specially 
for the additional information on class membership of the data points. However, after 
constructing the map, we may indicate by so called 'hits', what is the distribution 
(location) of the different classes. Map with hits of the classes is shown in Fig. 4 
below. 

Samplel Hits of 5 classes 

Fig.4. Ordinary self-organizing map SOM of size 19 x 11 constructed from the sampl learn­
ing data set using the Matlab SOM Toolbox by Vesanto et al. [10]. The erosion risk classes 
are neatly separated, with single overlapping hexagons. The erosion risk is progressing from 
the north (low risk) to the south (high risk) 

Similarly as Fig. 3, also Fig. 4 was obtained using the data set sampl. When con­
structing the map, the class membership information was not used. The map was 
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created and graphed using the Matlab SOM Toolbox [10]. The same toolbox contains 
also another procedure, called 'som_supervised' (SOM_s), and based on a proposal 
by Kohonen et al. [7], how to include during the process of training the information 
on class membership. The procedure was added to the Matlab SOM Toolbox by Juha 
Parhankangas, who keeps the copyright of that procedure [10]. 
We have applied the 'somsupervised' technique to our data with the hope that it will 
ameliorate the already good differentiation among the classes. The result was nega­
tive: we got even a deterioration of the display. 
We considered the idea that perhaps we should normalize our data in a different way, 
say statistically, to have the data with mean=0 and variance=l. Result: We got even 
more mixed classes. 
The quality of a SOM is usually measured by two indices: the quantization error q^ 
and the topographical error 4 [10]. They are: 

Ordinary map: 0.0362 0.0327 
Supervised map: 0.0453 0.1544 
Ordinary normalized: 0.2203 0.0246 
Supervised normalized: 0.2247 0.0596 

Thus our conclusion: the best SOM quality is attained for the ordinary SOM. 

6 Concluding Remarks 

We compared in detail three methods serving for visualization of muhivariate data, 
whose intrinsic dimension - as evaluated by the correlation fractal dimension - equals 
1.60. This justifies the mapping of the data to a plane. The data were subdivided into 
5 erosion risk classes and we wanted the mapping algorithm to take into account the 
class membership. 
From the 3 investigated methods, the first one uses classical canonical discriminant 
functions (CDA alias LDA), which provide linear projections. The other two applied 
methods were: Generalized Discriminant Analysis (GDA) based on Gaussian kernels, 
and the som supervised SOM (SOM_s), a variant of Kohonen's self-organizing map. 
All the 3 considered methods yielded similar results. In all projections, the erosion 
risk subgroups appeared fairly separated, as it should be. The GDA, by a proper tun­
ing of the parameter 'sigma', yielded the classes more and more condensed and sepa­
rated, however without generalization to other samples. 
All the 3 methods preserved roughly the topology of the data, although the GDA has 
twisted sometimes the planar representation of the high and very high erosion group. 
The SOMs appeared worse than the ordinary SOM, both in som quality and in dif­
ferentiation of the risk classes. This is to a certain degree justified, because the ordi­
nary SOM is trained to be optimal in the som quality, which means to be optimal in 
achieving both small quantization error and small topographic error. A change in 
conditions of the training may cause a deviation from optimality. 
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What concerns time of computing, the classical CDA and the SOM (also S O M s ) 
worked extremely fast (several seconds), while the kernel GDA needed about 12 
minutes. This happens not only for the GDA. Let us mention that lengthy calculations 
do happen also for some other nonlinear methods, especially, when the complexity of 
calculations depends essentially from the cardinality of the analyzed data set. 
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