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2.1 Introduction 

In the past decade, high-throughput measurement of gene expression has 
evolved from a tantalizing possibility to an everyday exercise, thanks to mi­
croarray technology. The initial excitement for microarrays was quickly fol­
lowed, for many scientists, with apprehension about appropriately analyzing 
large amounts of data of sometimes questionable quality. Most scientists have 
now developed an appreciation for the limitations and challenges presented 
by the technology. 

A microarray study should not be conducted without careful thought and 
planning, even if it is exploratory. As with any other type of scientific inves­
tigation, a successful microarray study starts with developing a well-defined 
project with well-defined goals. One must then develop and implement a sound 
experimental design based on these goals. This chapter will begin with a dis­
cussion of some of the basic issues to consider in the earliest stages of planning 
a microarray study. In Section 2.3, I discuss three general principles of star 
tistical design that apply generally to scientific experimentation: Replication, 
blocking, and randomization. We will review each of these concepts in turn, 
and discuss each of them in the context of array experiments. 

2.2 The "Pre-Planning" Stage 

By the time a scientist consults with a statistician about the experimental 
design for a microarray study, she has probably already made some important 
design choices. The scientist has probably already chosen the types of mRNA 
to be studied. That is, she has chosen the organism and tissue type, and 
has decided which treatments to apply or under what conditions the mRNA 
will be collected. These choices are primarily made based on scientific, not 
statistical, considerations, although a technical consideration is whether the 
samples can provide a sufficient amount of mRNA for the assay. 
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At this stage, it is important to recognize whether a study is an exper­
iment or an observational study. Unfortunately, microarray studies all tend 
to be called "experiments," but this can be a misnomer (Potter, 2003). For 
example, consider a study in which tissue samples are compared between pa­
tients with a particular kind of cancer and cancer-free control subjects. The 
investigator does not assign cancer status to the subjects, he is merely mak­
ing measurements on a sample of cases and controls. This is an observational 
study, even though the observations happen to be measurements of gene ex­
pression for thousands of genes. The fact that the investigation is an observar 
tional study has profound implications for the interpretation of the data. For 
example, the investigator would not be automatically justified in attributing 
any observed differences in gene expression between the cases and controls to 
their cancer status because the differences could be due to a confounding fac­
tor. That is, the cases and controls might differ in their distributions of age, 
sex, environmental exposures, or what they ate for breakfast. Unfortunately, 
in many such observational microarray studies, data on potential confounding 
factors are not collected and the possible impact of such factors is ignored. 
Such gross oversight makes an entire study scientifically questionable (Potter, 
2003). 

In the early planning stage, it is important to establish realistic expec­
tations for the array study. Because arrays produce more data than many 
biologists are used to, some biologists make the natural leap that they pro­
duce a vast amount of information. In a sense they do, but the information is 
fax from complete and a successful array study will produce at least as many 
questions as it answers. Thus, it is important to clarify the goals of the array 
experiment. Dudoit et al. (2002) describe three distinct goals of microarray 
experiments: Unsupervised learning (Goal 1), supervised learning (Goal 2), 
and class comparison (Goal 3). I discuss each of these briefly, then focus on 
Goal 3 for the remainder of this chapter. 

2.2.1 Goal 1: Unsupervised Learning 

In very general terms, unsupervised learning attempts to organize data into 
groups of "similar" observations. With microarray data, this might mean us­
ing gene expression data on multiple genes to organize or "cluster" subjects 
into groups with similar gene expression profiles. Alternatively, one could or­
ganize genes into groups within which the expression profiles are similar across 
individuals. Eisen et al. (1998) presented an early and infiuential microarray 
paper that demonstrated the application of a particular flavor of unsuper­
vised learning called hierarchical clustering. Sometimes clustering subjects 
and clustering genes are done simultaneously; this is especially common when 
hierarchical clustering is used. See Chapter 6 of this book for more informa­
tion on unsupervised learning techniques. Note that unsupervised learning is 
also called class discovery and, most often in microarrays, cluster analysis. 
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Sometimes unsupervised learning is used with a specific goal in mind, 
for example, discovering new sub-types of cancer that have previously been 
hypothesized to exist. More commonly, unsupervised learning is used as a 
completely exploratory technique. There is an emerging consensus that unsu­
pervised techniques are overused (Allison et al., 2006), as many studies that 
use these techniques would be better served supervised learning (Section 2.2.2) 
or class comparison (Section 2.2.3) approaches. 

The literature contains little discussion of design issues for studies in which 
unsupervised learning will be used. Dobbin and Simon (2002) may be the only 
paper on the subject. However, the lack of research in this area should not 
be interpreted as an indication that design issues are not important in these 
studies. Section 2.3.3 of this chapter gives an example that illustrates how 
poor design can produce misleading results in cluster analysis. 

2.2.2 Goal 2: Supervised Leeirning 

Supervised learning is also know as supervised classification and discriminant 
analysis. An example application is a study where the goal is to develop an 
algorithm to make an accurate prognosis for cancer patients based on gene ex­
pression measurements on biopsy samples. An accurate prognosis could help 
patients and their doctors decide whether to pursue more aggressive treat­
ment. The data include information on the eventual outcome for the subjects, 
and this information is used to develop (or "train") the algorithm, which is 
why the learning is called "supervised." See Chapter 9 for more information 
on supervised learning techniques. 

Supervised learning is typically done with the possibility of a clinical ap­
plication in mind. As such, the data used in a supervised learning analysis are 
invariably from an observational study, not an experiment. A truly useful clas­
sification algorithm must be able to classify new subjects, not just those in the 
sample. An important factor for facilitating this is to ensure that there are no 
obvious differences between the kinds of samples in study design. For example, 
suppose the biopsy samples for long-term cancer survivors tend to be older, 
whereas the samples for patients who died quickly tend to be fresher. Handling 
and storage differences could affect the array measurements, and these differ­
ences could influence the parameters of the classification algorithm. Thus, an 
algorithm that putatively discriminates between patients with good and poor 
prognoses is actually distinguishing between handling and storage differences 
between the RNA. Because of this design flaw, the algorithm will not perform 
well when tested on new samples from newly-diagnosed patients, all of whom 
provide fresh samples. 

2.2.3 Goal 3: Glass Gotnparison 

Class comparison is probably the most common goal of gene expression studies 
and is the focus of the remainder of this chapter. In a typical class comparison 
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study, an investigator wants to identify genes that are differentiaUy expressed 
between two or more classes of tissue. A class comparison investigation can 
be either an experiment or an observational study. For example, a comparison 
between laboratory mice treated with a certain drug and untreated mice is 
an experiment, as long as the pre-specified number of mice to receive the 
treatment are chosen randomly from all mice in the study. In contrast, a 
study that identified differentially expressed genes between patients with and 
without a particular malignancy is an observational study. 

In class comparison studies it is important to understand that microarrays 
do not remove inherent limitations in determining the "cause and effect" in 
some system. As a measurement tool, microarrays cannot be used to make 
causal inferences unless the study is explicitly designed to make this possible. 
In the observational study comparing malignant tissue with benign controls, 
microarrays cannot distinguish genes whose altered expression caused the mar 
lignancy from genes whose expression is altered as a result of the malignancy. 
In fact, the study can only conclude that altered expression is associated with 
the malignancy, keeping in mind that such an association could be due to a 
confounding factor (Potter, 2003). 

In the microarray experiment with the treated and untreated mice, we 
can justify causal inference about the effect of the drug on gene expression 
because of the initial randomization of the treatment. However, note that the 
causal inference is about the effect of the treatment. This is quite different 
from trying to infer the causal effect of gene expression changes. 

Once these basic issues have been considered, the next step is to plan the 
details of the microarray study itself. We now discuss the three fundamen­
tal principles of design, replication, blocking, and randomization, focusing on 
their application to microarrays and in particular to microarray studies for 
class comparison. 

2.3 Statistical Design Principles, Applied to Microarrays 

2.3.1 Replication 

Replication is probably the most widely-recognized principle of design. Re­
searchers carefully plan the sample size of their studies to ensure adequate 
replication. 

To appreciate the important role of replication, it is useful to review the 
general paradigm of statistics. Scientifically, we are often interested in compar­
ing different groups or classes of individuals: Treated and untreated; diseased 
and non-diseased; genotypes AA, Aa, and aa (see class comparison. Section 
2.2.3). In statistics, such groups are called populations. A population is gen­
erally either very large or infinite, so it is impossible to examine an entire 
population. Instead, we take a sample from the population. We may study 
the sample in excruciating detail, collecting and analyzing data. Ironically, 
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however, our true interest is not in the individuals in the sample. Our interest 
in the sample is as a means to making inference to the population from which 
it was drawn. A statistical inference is something more than a generalization 
or an educated guess. The theory of statistics allows us to make inferences 
with rigor: Using the data on a random sample, we can estimate certain char­
acteristics of a population (for example, the mean expression of gene xyz in 
the population), and we can also quantify our level of certainty in the estimate 
(often, with a confidence interval). However, rigorous statistical inference is 
only possible with replication. In other words, samples of size 1 are not suf­
ficient. Further, an adequate level of precision in inference is achieved only 
with an adequate amount of replication. 

Understanding this fundamental statistical paradigm can help a researcher 
understand the appropriate level on which to replicate. In research with mi-
croarrays, it is common to differentiate between technical replicates and bi­
ological replicates (Yang and Speed, 2002). Technical replicates are typically 
repeated hybridizations of the same RNA to multiple arrays. Replication in 
early array experiments was often limited to technical replication. Technical 
replication allows one to make inference about the particular RNAs being 
studied in light of the technical error (measurement error) of the assay. How­
ever, this is usually not the desired inference. Most often, the desired inference 
is from the sampled individuals to the population(s) they represent. This infer­
ence is only possible with biological replication: Multiple individuals sampled 
from each population of interest. 

Kerr (2003a) examines the relative benefits of biological and technical 
replication. Technical replication can be useful, but is usually unnecessary. It 
is usually best to use available resources to maximize biological replication 
and forego technical variation altogether (Simon et al., 2002; Kerr, 2003a). 

2.3.2 Blocking 

The term "blocking" comes from the agricultural origins of the field of sta­
tistical design. Suppose one wants to conduct a study to compare, say, the 
yields of different varieties of a crop. Suppose further that different blocks 
of land are available to use in the study. Different blocks of land will vary 
in many characteristics that can aifect yield, e.g., the amount of sunlight or 
the soil composition. It would be crucial to recognize this in planning the ex­
periment. The more variation among the blocks of land, the more important 
it is to explicitly address this source of variation in the experimental design. 
If block-to-block variability is large, an effective solution is to balance vari­
eties with respect to blocks. For example, if there are four varieties and each 
block can accommodate four sub-plots, then each block should contain one of 
each variety (Figure 2.1). In statistical design this would be called a "com­
plete block design." "Complete" refers to the fact that every block contains 
an equal number of replicates of each variety. 
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2 1 2 3 1 4 

4 3 1 4 3 2 

Fig. 2.1. An experiment in which the experimental units come in blocks of size 4. 
If there are four groups to compare, the best design is to put one of each variety in 
each block. 

Experimentalists routinely and intuitively use the principle of blocking. 
For example, if an assay is known to be sensitive to humidity, then an ex­
perimentalist may make sure to conduct all assays within a short period of 
time when humidity is constant. Two ocular treatments might be compared 
by applying each of them to one eye of multiple individuals. Each pair of eyes 
is a "block" in such a study design. This design controls for variation be­
tween individuals by enabling the treatments to be compared "within" each 
individual. 

In microarray studies, it can be important and useful to implement block­
ing as with any other kind of experiment. For example, if treatments are to 
be compared on mice from various litters, a litter of mice should be treated 
as a block. Ideally, each treatment could be applied to the same number of 
mice in each litter. 

For two-color microarray platforms, blocking is intrinsic to the technology. 
This is because spot characteristics (size, density, etc.) are variable, which 
means a large signal could result from a high level of gene expression or 
from a particularly large or dense spot. However, if spot characteristics lead 
to a high level of signal, then the signal should be brighter in both channels. 
Therefore, the relative sizes of the red and green signals is used as a measure of 
the relative levels of expression in the red- and green-labeled RNAs. In other 
words, ratios are used because they control for spot-to-spot variation from 
array to array. Taking ratios (or better, log-ratios) "cancels out" uninteresting 
variation that is due to spot heterogeneity. This is actually a textbook example 
of the principle of blocking. 

While the majority of analyses are based on the ratio of the red and green 
signals from each spot, some analytical methods start with the individual 
signal intensities rather than ratios. For example, see Kerr et al. (2000) and 
Wolfinger et al. (2001). Such methods simply handle the blocking structure 
of the data in a different way. In fact, the difference between intensity-based 
methods and ratio-based methods is somewhat more technical than substan­
tive - see (Kerr, 2003b). 

Because of spot heterogeneity, two-color arrays are used to measure rela­
tive gene expression, not absolute gene expression. A two-color array can be 
thought of as a comparison between the co-hybridized RNAs. When there are 
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multiple samples to be compared, this raises the question: Which hybridiza­
tions to perform? That is, what pairs of RNAs should be co-hybridized? Kerr 
and Churchill (2001) addressed this question for experiments that do not con­
tain biological replicates. Dobbin and Simon (2002) and Kerr (2003a) update 
these findings for experiments with biological replicates. 

When there are n replicates from two groups to be compared, an efficient 
and effective strategy is the multiple-dye-swap design, as seen in Figure 2.2(a). 
In this design, the n replicates from the two groups are randomly paired and 
each pair is co-hybridized to a pair of arrays, with a dye-swap to control for 
dye-effects. Another design, similar to those proposed by Rosa et al. (2005), 
is to alternate the dye-labeling between replicates (see Figure 2.2(b)). This 
will allow twice the number of replicates to be used for the same cost of 
arrays, while maintaining dye-balance. Another, popular strategy is to employ 
a "reference" RNA in the design; each RNA of interest is co-hybridized with 
the reference RNA. The reference RNA is not of interest and serves only to 
"connect" the other samples. In Figure 2.2(c), this strategy is employed for 
the two-group comparison problem, employing dye-swap. While the reference 
design is technically less efficient than the multiple-dye swap strategy, its 
efficiency disadvantage is small when biological variation is much larger than 
technical variation (Kerr, 2003a). It is an exceedingly simple and practical 
design choice for many investigations. 

(b) 

A^O 
A^O 

Fig. 2.2. Circles represent biological replicates from some population and triangles 
represent biological replicates from another population. Arrows represent two-color 
microarrays. An axrow between individual 1 and individual 2 indicates a hybridizar 
tion with red-labeled RNA from individual 1 and green-labeled RNA from individ­
ual 2. All designs are appropriate for a two-group comparison study, (a) Multiple 
dye-swap design; (b) Alternating-dye pairwise design; (c) Reference design - the 
rectangle represents the "reference" RNA, which is not of interest. 
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2.3.3 Randomization 

The principle of randomization says that once any blocking structure to a 
design is established, treatments should be applied to experimental units in 
random fashion. If three littermates are to be divided among treatments A, B, 
and C, then the mice should be randomly allocated to each treatment. "Ran­
dom" here does not mean the same thing as "arbitrary." Although tedious, it 
is useful to assign numbers to each mouse and use a random-number generator 
or draw numbers out of a hat to choose the mouse for each treatment. 

While blocking protects against known or anticipated biases in the data, 
randomization protects against unknown or unanticipated biases. For the pre­
vious example, suppose one had an unrecognized tendency to pick-up the 
slowest mouse out of a litter. If one assigned mice to treatments A, B, and 
C in sequence, treatment A mice would tend to be assigned the slowest mice 
and treatment C would tend to be assigned to the quickest mice. If quick mice 
are also healthier, the experiment would obviously be biased. 

Here is a more subtle, fictionalized example from the world of microarrays 
that shows that randomization is important even in observational studies. An 
experimenter is interested in a particular human mutation and recruits 20 
carriers of the mutation. The mutation is rare and non-carriers are easier to 
find, and she is able to recruit 40 non-carriers to serve as controls. She is 
interested in whether the mutation is associated with any gene expression dif­
ferences in humans. The investigator is reasonably confident that there are no 
other variables confounding the comparison between carriers and non-carriers. 
Using a single-color platform, the researcher uses one array to hybridize the 
mRNA for every individual. There is a practical limitation of a maximum of 
20 hybridizations a day, so the experiment is carried out over three days. 

The researcher applies a hierarchical clustering algorithm to explore the 
array data. The results appear as depicted in Figure 2.3(a). To the scientist's 
delight, the 60 samples appear to cluster into three primary groups: The 20 
samples from the carriers of the mutation, and two groups of the remaining 40 
non-carriers. The natural temptation is to conclude that gene expression data 
can discriminate carriers of the mutation from non-carriers, and that non-
carriers can further be divided into two sub-types. However, with a healthy 
respect for scientific skepticism, the experimenter re-examines her data. Upon 
closer scrutiny, she sees that the three clusters correspond exactly to the three 
days of hybridizations, as in Figure 2.3(b). 

In detail, the schedule for the hybridizations was: 

• Dayl: 20 carriers 
• Day 2: 20 non-carriers 
• Day 3: remaining 20 non-carriers 

The fatal flaw in this investigation was the lack of randomization. The day 
of hybridization was ignored as a factor, but it turned out to be an important 
source of variation. Samples should have been hybridized in random order. 
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m'rm 
Controls 

rmTTTi 
Mutants 

rm'rTTi 
Day 2 Day 3 

rTTTTTTl 
Dayl 

Fig. 2 .3. Results of clustering samples for the example in Section 2.3.3. (a) Samples 
labeled by mutation status; (b) samples labeled by day of hybridization. 

As is, the gene expression differences between caxriers and non-carriers are 
hopelessly confounded with day-to-day differences in the hybridizations. There 
is no way to "rescue" the experiment - the confounding is complete and there 
is no way to separate the genetic differences of interest from the nuisance 
experimental artifacts. 

Now tha t the day of hybridization is known to be an important factor, 
the researcher should probably "block" on the day of hybridization in future 
experimental plans. Tha t is, for each group she should hybridize the same 
number of samples on each day. 

2.4 Case Study 

A plant geneticist is interested in the effects on gene expression in arabadopsis 
arising from infection by an agrobacterium. He plans a basic class comparison 
microarray study. Prom his initial collection of 20 plants, he randomly divides 
them into t rea tment and control groups of size 10. The t reatment group is 
infected with the agrobacteria. The control group receives "mock" t reatment , 
undergoing each step of infection except the introduction of the bacteria. This 
is to make sure tha t differences between the groups can properly be ascribed 
to infectious agent. One t reated and control sample are produced every day, in 
random order. The RNA is extracted from each, and the t reated and control 
RNA with same-day preparation are co-hybridized to a pair of microarrays 
employing dye-swap. Tha t is, the design in Figure 2.2(a) is used, which is a 
very efficient design for comparing the two groups (Kerr, 2003a). This design 
will naturally handle any day-to-day differences in sample preparation (block­
ing) because day-to-day differences will cancel out in the treatment-control 
comparison due to the balance in the preparat ion schedule. 

2.5 Conclusions 

Replication, blocking, and randomization should all be considered in design­
ing a microarray experiment. It usually works to consider them in the order 
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presented here. First, make sure there is the right kind of replication to allow 
the desired inferences. Replication leads directly to the question of choosing 
a sample size. Sample size calculations are a tricky issue with microarrays 
and the subject of considerable research, beyond the scope of this article. See 
Simon et al. (2002); Lee and Whitmore (2002); Wei et al. (2004); and Tibshi-
rani (2005). Second, for two-color platforms the arrangement of the samples 
onto the arrays must be decided. For many class comparison experiments the 
layouts in Figure 2.2 can be adapted. See Rosa et al. (2005), for other ideas. 
Lastly, consider all opportunities for randomization. For example, arrays can 
be randomly assigned to planned hybridizations and the order of hybridiza­
tions should also be randomized. 

Although microarray studies are typically exploratory, one should still be 
able to clearly articulate a goal for the project. A well-defined goal will inform 
good choices in experimental design. A seriously flawed experimental design 
guarantees a study will be a failure, because it produces data that cannot 
answer the scientific question of interest. A sound experimental design does 
not guarantee a study will be a rousing success, but gives it a fighting chance. 
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