
TOWARDS A COMMON DEPLOYMENT MODEL
FOR GRID SYSTEMS

Massimo Coppola and Nicola Tonellotto
ISTl
Area della Ricerca CNR, 56124 Pisa
Italy

coppola@di.unipi.it

nicola.tonellotto@isti.cnr.it

Marco Danelutto and Corrado Zoccolo
Dept. of Computer Science, University of Pisa
L.go B. Pontecorvo, 3, 56127 Pisa
Italy

marcocl@di.unipi.it

zoccolo@di.unipi.it

Sebastien Lacour and Christian Perez and Thierry Priol
IRISA/INRIA
Campus de Beaulieu, 35042 Rennes Cedex
France

Christian.Perez@irisa.fr

Thierry.Priol@irisa.fr

Abstract Deploying applications within a Grid infrastructure is an important aspect that
has not yet been fully addressed. This is particularly true when high-level abstrac
tions, like objects or components, are offered to the programmers. High-level
applications are built on run-time supports that require the deployment process
to span over and coordinate several middleware systems, in an application inde
pendent way. This paper addresses deployment by illustrating how it has been
handled within two projects (ASSIST and GridCCM). As the result of the inte
gration of the experience gained by researchers involved in these two projects, a
common deployment process is presented.

Keywords; Grid computing, deployment, generic model.

16 INTEGRATED RESEARCH IN GRID COMPUTING

1. Introduction

The Grid vision introduced in the end of the nineties has now become a
reality with the availability of quite a few Grid infrastructures, most of them
experimental but some others will come soon in production. Although most
of the research and development efforts have been spent in the design of Grid
middleware systems, the question of how to program such large scale comput
ing infrastructures remains open. Programming such computing infrastructures
will be quite complex considering its parallel and distributed nature. The pro
grammer vision of a Grid infrastructure is often determined by its programming
model. The level of abstraction that is proposed today is rather low, giving the
vision either of a parallel machine, with a message-passing layer such as MPI,
or a distributed system with a set of services, such as Web Services, to be or
chestrated. Both approaches offer a very low level programming abstraction
and are not really adequate, limiting the spectrum of applications that could
take benefit from Grid infrastructures. Of course such approaches may be suffi
cient for simple applications but a Grid infrastructure has to be generic enough
to also handle complex applications with ease. To overcome this situation, it
is required to propose high level abstractions to facilitate the programming of
Grid infrastructures and in a longer term to be able to develop more secure
and robust next generation Grid middleware systems by using these high level
abstractions for their design as well. The current situation is very similar to
what happened with computers in the sixties: minimalist operating systems
were developed first with assembly languages before being developed, in the
seventies, by languages that offer higher levels of abstraction.

Several research groups are already investigating how to design or adapt pro
gramming models that provide this required level of abstraction. Among these
models, component-oriented programming models are good candidates to deal
with the complexity of programming Grid infrastructures. A Grid application
can be seen as a collection of components interconnected in a certain way that
must be deployed on available computing resources managed by the Grid in
frastructure. Components can be reused for new Grid applications, reducing
the time to build new applications. However, from our experience such models
have to be combined with other programming models that are required within
a Grid infrastructure. It is imaginable that a parallel program can be encap
sulated within a component. Such a parallel program is based on a parallel
programming model which might be for instance message-based or skeleton-
based. Moreover, a component oriented programming model can be coupled
with a service oriented approach exposing some component ports as services
through the use of Web Services.

The results of this is that this combination of several models to design Grid
applications leads to a major challenge: the deployment of applications within

Towards a common deployment model for Grid systems 17

a Grid infrastructure. Such programming models are always implemented
through various runtime or middleware systems that have their own dependen
cies vis-a-vis of operating systems, making it extremely challenging to deploy
applications within a heterogeneous environment, which is an intrinsic property
of a Grid infrastructure.

The objective of this paper is to propose a common deployment process
based on the experience gained from the ASSIST and GridCCM projects. This
paper is organized as follows. Section 2 gives an overview of the ASSIST and
GridCCM projects. Section 3 presents our common analysis of what should be
the different steps to deploy grid applications. Section 4 shortly describes GEA
and Adage, the two deployment systems designed respectively for ASSIST
and GridCCM, and how they already conform to the common model. Finally,
Section 5 concludes the paper and presents some perspectives.

2. ASSIST and GridCCM Software Component Models
Both University of Pisa and INRIA-Rennes have investigated the problem of

deploying component-based Grid applications in the context of the ASSIST and
GridCCM programming environments and came out with two approaches with
some similarities and differences. In the framework of the CoreGRID Network
of Excellence, the two research groups decided to join their efforts to develop
a common deployment process suitable for both projects taking benefits of the
experience of both groups. In the remaining part of this section, the ASSIST
and GridCCM programming and component models are presented, so as to
illustrate the common requirements on the deployment system.

2.1 Assist
ASSIST (A Software development System based upon Integrated Skeleton

Technology [13]) is a complete programming environment aimed at efficient
development of high-performance multi-disciplinary applications. Efficiency
is pursued both w.r.t. the development effort and to overall performance, as
the ASSIST approach aims at managing the complexity of applications, easing
prototyping and decreasing time-to-market.

ASSIST provides a basic modularization of parallel applications by means
of sequential and parallel modules iparmods), with well-defined interfaces ex
ploiting stream-based communications. The ASSISTcl coordination language
describes modules and composition of them.

Sequential modules wrap code written in several languages (e.g. C, C+4-,
FORTRAN). Parmods describe parallel execution of a number of sequential
functions within Virtual Processes (VPs), mainly activated by stream commu
nications, and possibly exploiting shared state and/or explicit synchronization
at the parmod level. The abilities to (1) describe both task and data-parallel

INTEGRATED RESEARCH IN GRID COMPUTING

Functional Interfaces <aldl:application xmlns « ... >

<aldl:requirement name * "libraries">

<nsl:lib fileName = "libACE.so.5.4.0" fileSystemName »

"/tmp" arch « "iese" executable = "no">

<nsl:source url « ••aar:///Modules/lib/libACE. so.5.4.0'7>

</nsl:lib>

</aldl:requirement>

<aldl:requirement name » "NDOOl Ivp">

<nsl:executable master * "no" strategy = "no" arch = "i686">

Modules/bin/i686-pc-linux-gnu/ND001„_ivp </nsl:executable>

<nsl:hoc nHocTot = "3" nHoc » "1" prefixAlias = "NDOOl shared '

hocExName = "hoc" hocConfName = "hoc.conf" bridge = "no"

fileSystemName = "/trap" arch « "all">

<nsl:source urlExHoc * "aar:///Modules/bin/hoc" urlConfHoc

« "aar:///Modules/svc/hoc.conf"/>

</nsl:hoc>

</aldl:requirement>

<aldl:requirement name = "CAM^sConfiguration">

<nsl:executable master = "no" strategy = "yes" arch =

"i686">Modules/bin/i686-pc-linux-gnu/CAM.s

</nsl:executable>

</aldl:requirement>

</aldl:application>

Figure L The process schema of a simple ^̂ '̂ '̂̂ ^ 2. Excerpt from the ALDL describing
Grid it component. ^ Grid.it component (ellipsis shown as . . .).

behavior within a parmod, (2) to fine-control nondeterminism when dealing
with multiple communication channels and (3) to compose sequential and par
allel modules into arbitrary graphs, they allow expressing parallel semantics
and structure in a high-level, structured way. ASSIST implements program
adaptivity to changing resource allocation exploiting the VP granularity as a
user-provided definition of elementary computation.

ASSIST supports component-based development of software by allowing
modules and graph of modules to be compiled into Grid.it components [2],
and separately deployed on parallel and Grid computing platforms. The Grid.it
framework supports integration with different frameworks (e.g. CCM, Web
Services), and implementation of automatic component adaptation to varying
resource/program behavior. Component-based applications can exploit both
ASSIST native adaptivity and Grid.it higher-level "super-components", which
arrange other components into basic parallel patterns and provide dynamic
management of graphs of of components within an application.

ASSIST applications and Grid.it components have a platform-independent
description encoded in ALDL [4], an XML dialect expressing the structure,
the detailed requirements and the execution constraints of all the elementary
composing blocks. Support processes shown in Fig. 1 are all described in the
ALDL syntax of Fig. 2, e.g. besides those actually performing computation and
implementing virtual shared memory support, we include those providing inter-
component communications and interfacing to other component frameworks.
ALDL is interpreted by the GEA tool (see Section 4.1), which translates re
quirements into specific actions whenever a new instance of a component has
to be executed, or an existing instance dynamically requires new computing
resources.

Towards a common deployment model for Grid systems 19

Summing up, the support of the ASSIST/Grid.it environment must deal with
(1) heterogeneous resources, (2) dynamically changing availability and alloca
tion of resources, (3) several sets of processes implementing application and
components, which need (4) different execution protocols and information (e.g.
setting up a shared memory space support versus instantiating a CORBA name
service).

Deploying an application is therefore a complex process which takes into
account program structure and resource characteristics, involves selecting re
sources and configuring several sets of processes to cooperate and obtain high-
performance. Finally, the deployment task continues during program execution,
processing resource requests from components, which utilize run-time recon
figuration to adapt and fulfill specified performance requirements [4].

The GEA tools has to provide these functionalities, shielding the actual
application run-time support from the details of the different middleware used
to manage the available resources.

22 GridCCM: a Parallel Component Model
The model GridCCM [12] is a research prototype that targets scientific code
coupling applications. Its programming model extends the CORBA Compo
nent Model (CCM) with the concept of parallel components. CCM specifies
several models for the definition, the implementation, the packaging and the
deployment of distributed components [11]. However, the embedding of a par
allel code, such as an MPI-based code, into a CCM component results in a
serialization of the communications with another component also embedding
a parallel code. Such a bottleneck is removed with GridCCM which enables
MxN communications between parallel components.

A parallel component is a component whose implementation is parallel. Typ
ically, it is a SPMD code which can be based on any kind of parallel technology
(MPI, PVM, OpenMP,...). The only requirements of GridCCM that the distri
butions of input and output data need to be specified. Such distributed data can
be the parameters of interface operations or can be the type of event streams.
Interactions between parallel components are handled by GridCCM which sup
ports optimized scheduled MxN communications. It is a two phase process.
First, data redistribution libraries compute the communication matrices for all
the distributed data of an operation invocation. These data redistributions are a
priori distinct. Second, a scheduling library takes care of globally optimizing
the transfer of all the data associated to the operation invocation with respect to
the properties of the network like the latency, the networking card bandwidth
and the backbone bandwidth for wide area networks. Data redistributions and
communication scheduling libraries may be extended at user-level.

20 INTEGRATED RESEARCH IN GRID COMPUTING

HPC
Component

A m
*

HPC
Component

B

J
i

^ // Comp, A

D D Q ^ —

paa^—

B-

^

H J ^

'''^//Comp.B

1 DDiO

A HDID

' DDID

^ -

Yl

Figure 3. On the left, a parallel component appears as a standard component. On the right,
communications between two parallel components are of type MxN.

<softpkg . . . >

</implementation>

<GridCCM type="MPI" id="pil">

<functional_prgrm>

<location>

http://g5k.org/Flow.mpi

</location>

</funct ional_prgrm>

</GridCCM>
</softpkg>

<MPI_application>

<programs>

<program id="master_program">

<binary vendor="MPICH">

<location>URL...</location>

</binary>

</program>

<application>

<world_size>32</world_size>

</application>
</MPI_application>

Figure 4, Example of a GridCCM descrip
tion of a MPI-based parallel component.

Figure 5. Partial view of the description of the
MPI-based parallel component implementation.

As illustrated in Figure 3, a parallel component looks like any CCM com
ponent and can be connected with any other CCM components. Hence, an
application may be incrementally parallelized, one component after the other.

The deployment The deployment of a GridCCM application turns out to be a
complex task because several middleware systems may be involved. There are
the component middleware, which implies to deploy CCM applications, and
the technology used by the parallel component which may be MPI, PVM or
OpenMP for example. Moreover, to deal with network issues, an environment
like PadicoTM [5] should be also deployed with the application.

The description of an GridCCM application is achieved thanks to an exten
sion of the XML CCM Component Software Description (CSD) language. As
shown in Figure 4, this extension enables the CSD to refer to another file to
actually describe the structure of the parallel component implementation as dis
played in Figure 5. This solution has been selected because GridCCM does not
enforce any parallel technology. More information is provided in [9]. Then,
Adage, a deployment tool described in Section 4.2 is used to deploy it.

Towards a common deployment model for Grid systems 21

As GridCCM is an extension of CCM, it implicitly provides the same het
erogeneity support than CORBA for operating system, processor, compiler,
libraries dependencies, etc.

2,3 Discussion

Both ASSIST and GridCCM expose programming models that required ad
vanced deployment tools to efficiently handle the different elements of an appli
cation to be deployed. Moreover, they provide distinct features like the dynamic
behavior and the different Grid middleware support of ASSIST and the multi-
middleware application support of GridCCM. Hence, a common deployment
process will help in integrating features needed for their deployment.

3, General Overview of the Deployment Process

Starting from a description of an application and a user objective function,
the deployment process is responsible for automatically performing all the steps
needed to start the execution of the application on a set of selected resources.
This is done in order to avoid the user from directly dealing with heterogeneous
resource management mechanisms.

From the point of view of the execution, a component contains a structured set
of binary executables and requirements for their instantiation. Our objectives
include generating deployment plans

• to deploy components in a multi-middleware environment.

• to dynamically alter a previous configuration, adding new computational
resources to a running application,

• for re-deployment, when a complete restart from a previous checkpoint is
needed (severe performance degradation or failure of several resources).

A framework for the automatic execution of applications can be composed of
several interacting entities in charge of distinct activities, as depicted in Figure 6.
The logical order of the activities is fixed (Submission, Discovery, Selection,
Planning, Enactment, Execution). Some steps have to be re-executed when the
application configuration is changed at run-time. Moreover, the steps in the
grey box, that interact closely, can be iterated until a suitable set of resources
is found.

In the following we describe the activities involved in the deployment of an
application on a Grid. We also detail the inputs that must be provided by the
user or the deployment framework to perform such activities.

22 INTEGRATED RESEARCH IN GRID COMPUTING

Appl icat ion
Submission

Resource
Discovery h—H Resource 1

Selection 1

r^ Deployment
Planning

Deployment
Framework

Deployment
Enactment

Execution
Framework '

^^^ ._,__;
Appl icat ion
Execut ion

' ^ . L _ -

Figure 6. Activities involved in the deployment process of an application.

3,1 Application Submission

This is the only activity which the user must be involved in, to provide
the information necessary to drive the following phases. This information
is provided through a file containing a description of the components of the
application, of their interactions, and of the required resource characteristics.

3.1.1 Application Description. The description of (the components of)
the submitted application, written in an user-understandable specification lan
guage, is composed of various kinds of data. First, the module description
deals with the executable files, I/O data and configuration files which make
up each module (e.g. each process). Second, there is information to guide the
stages related to mapping the application onto resources, like the resource con
straints - characteristics that Grid resources (computational, storage, network)
must possess to execute the application, the execution platform constraints
- software (libraries, middleware systems) that must be installed to satisfy ap
plication dependencies, the placement policies - restrictions or hints for the
placement of subsets of appHcation processes (e.g. co-location, location within
a specific network domain, or network performance requirements), and the
resource ranking - an objective function provided by the user, stating the op
timization goal of application mapping. Resource ranking is exploited to select
the best resource, or set of them, among those satisfying the given require
ments for a single application process. Resource constraints can be expressed
as unitary requirements, that is requirements that must be respected by a single
module or resource (e.g. CPU rating), and as aggregate requirements, i.e., re
quirements that a set of resources or a module group must respect at the same
time (e.g. all the resources on the same LAN, access to a shared file system);
some placement policies are implicitly aggregate requirements. Third, the De
ployment directives determine the tasks that must be performed to set up the
application runtime environment, and to start the actual execution.

Towards a common deployment model for Grid systems 23

As discussed in the following sections, the provided information is used
throughout the deployment process.

3*2 Resource Discovery
This activity is aimed at finding the resources compatible with the execution

of the application. In the application description several requirements can be
specified that available resources must respect to be eligible for execution. The
requirements can specify hardware characteristics (e.g. CPU rating, available
memory, disk space), software ones (e.g. OS, libraries, compilers, runtime
environments), services needed to deploy components (e.g. accessible TCP
ports, specific file transfer protocols), and particular execution services (e.g. to
configure the application execution environment).

Resources satisfying unitary requirements can be discovered, interacting with
Grid Information Services. Then, the information needed to perform resource
selection (that considers also aggregate requirements), must be collected, for
each suitable resource found.

The GIS^ can be composed of various software systems, implementing infor
mation providers that communicate with different protocols (MDS-2, MDS-3,
MDS-4, NWS, iGrid, custom). Some of these systems provide only static in
formation, while others can report dynamic information about resource state
and performance, including network topology and characteristics. In order to
interact with such different entities, an intermediate translation layer between
the requirements needed by the user and the information provided is necessary.
Information retrieved from different sources is mapped to a standard schema
for resource description that can be exploited in the following activities inde
pendently from the information source.

3,3 Resource Selection
When information about available resources is collected, the proper resources

that will host the execution of the application must be selected, and the different
parts of each component have to be mapped on some of the selected resources.
This activity also implies satisfying all the aggregate requirements within the
application. Thus, repeated interaction with the resource discovery mecha
nisms may be needed to find the best set of resources, also exploiting dynamic
information.

At this point, the user objective function must be evaluated against the char
acteristics and available services of the resources (expressed in the normalized
resource description schema), establishing a resource ranking where appropri
ate in order to find a suitable solution.

^ Grid Information Service

24 INTEGRATED RESEARCH IN GRID COMPUTING

3.4 Deployment Planning
A component-based application can require different services installed on

the selected resources to host its execution. Moreover, additional services can
be transferred/activated on the resources or configured to set up the hosting
environment.

Each of these ancillary applications has a well-defined deployment schema,
that describes the workflow of actions needed to set up the hosting environment
before the actual execution can start.

After resource selection, an abstract deployment plan is computed by gath
ering the deployment schemata of all application modules. The abstract plan
is then mapped on the resources, and turned into a concrete plan, identifying
all the services and protocols that will be exploited in the next phase on each
resource, in order to set up and start the runtime environment of the application.

For example, to transfer files we must select a protocol (e.g. HTTP, GridFTP),
start or configure the related services and resources, and finally start the transfer.
At the end of this phase, the concrete deployment plan must be generated,
specifying every single task to perform to deploy the application.

This activity can require repeated interactions with the resource discovery
and selection phases because some problems about the transformation from the
deployment schema to the deployment plan can arise, thus the elimination of
one or more eligible resources can force to find new resources, and restart the
whole planning process.

3.5 Deployment Enactment
The concrete deployment plan developed in the previous phase is submitted to

the execution framework, which is in charge of the execution of the tasks needed
to deploy the application. This service must ensure a correct execution of the
deployment tasks while respecting the precedences described in the deployment
plan. At the end of this phase, the execution environment of the application
must be ready to start the actual execution.

This activity must deal with different kinds of software and middleware
systems; the selection of the right ones depends on the concrete deployment
plan. The implementation of the services that will perform this activity must
be flexible enough to implement the functionalities to interact with different
services, as well as to add mechanisms to deal with new services.

Changes in the state of the resources can force a new deployment plan for
some tasks. Hence, this phase can require interactions with the previous one.

Towards a common deployment model for Grid systems 25

3.6 Application Execution

The deployment process for adaptive Grid applications does not finish when
the application is started. Several activities have to be performed while the
application is active, and actually the deployment system must rely on at least
one permanent process or daemon. The whole application life-cycle must be
managed, in order to support new resource requests for application adaptation,
to schedule a restart if an application failure is detected, and to release resources
when the normal termination is reached. These monitoring and controlling
activities have to be mediated by the deployment support (actual mechanisms
depend on the middleware), and it does seem possible to reliably perform them
over noisy, low-bandwidth or mobile networks.

4. Current Prototypes

4.1 GEA
In the ASSIST/Grid.it architecture the Grid Abstract Machine (GAM, [2])

is a software level providing the abstractions of security mechanisms, resource
discovery, resource selection, (secure) data and code staging and execution. The
Grid Execution Agent (GEA, [4]) is the tool to run complex component-based
Grid applications, and actually implements part of the GAM. GEA provides
virtualization of all the basic functions of deployment w.r.t. the underlying
middleware systems (see Tab. 1), translating the abstract specification of de
ployment actions into executable actions. We outlined GEA's requirements in
Sect. 2.1. In order to implement them, GEA has been designed as an open
framework with several interfaces. To simplify and make fully portable its
implementation, GEA has been written in Java.

As mentioned, GEA takes in charge the ALDL description of each compo
nent (Fig. 2) and performs the general deployment process outlined in Sect. 3,
interacting with Grid middleware systems as needed. GEA accepts commands
through a general purpose interface which can have multiple protocol adaptors
(e.g. command-line, HTTP, SSL, Web Service). The first command transfers to
the execution agent a compact archival form of the component code, also con
taining its ALDL description. The ALDL specification is parsed and associated
to a specific session code for subsequent commands (GEA supports deploying
multiple components concurrently, participating in a same as well as in different
applications). Component information is retained within GEA, as the full set of
GEA commands accepted by the front-end provides control over the life cycle
of a component, including the ability to change its resource allocation (an API
is provided to the application runtime to dynamically request new resources)
and to create multiple instances of it (this also allows higher-level components
to dynamically replicate hosted ones).

26 INTEGRATED RESEARCH IN GRID COMPUTING

[Parser]

Query Bu i lde r l ^

Mapper] |

(Stage/Exec) :^ j

120

100

80

V 60
E

40

20

0

stage out i
parallel execution c>&xe<3
slaves activation m^im^ii
master activation • • • •

discovery+mapping ĉ Si's.̂
xmi parsing ^-v::;s

1 2 3
of machines

Figure 7. Overall architecture of GEA. Figure 8. GEA launch time of a program
over 1-4 nodes in a Globus network.

Each deployment phase described in Sect. 3 corresponds to an implemen
tation class performing that step (see Fig. 7). GEA selects resources, maps
application processes onto them, possibly loops back to the research, and fi
nally deploys the processes, handling code and data staging in and out. This
tasks are carried on according to the specific design of the class implementing
each step, so that we can choose among several mapping and resource selec
tion strategies when needed. In particular, different subclasses are available
in the GEA source that handle the different middleware systems and protocols
available to perform the deployment.

Current GEA architecture contains classes from the CoGKit to exploit re
source location (answering resource queries through Globus MDS), monitoring
(through NWS), and resource access on Globus grids. Test results deploying
over 1 to 4 nodes in a local network are shown in Fig. 8. GEA also provides
classes to gather resource description on clusters and local networks (statically
described in XML) and to access them (assuming centralized authentication
in this case). Experiments have also been performed with additional modules
interfacing to a bandwidth allocation system over an optical network [14].

Different kinds of handshake among the executed processes happen in the
general case (e.g. servers or naming services may need to be deployed before
other application processes), thus creating a graph of dependencies among the
deployment actions. This is especially important whenever a Grid.it component
needs to wrap, or interact with, a CCM component or a Web Service. Currently,
GEA manages processes belonging to different middleware systems within a
component according to the Grid.it component deployment workflow. Work is
ongoing to redesign those classes managing execution order and configuration
dependencies for the "server" and "slave" processes. This will allow to pa
rameterize the deployment workflow and to fully support different component
models and middlewares.

Towards a common deployment model for Grid systems 27

4,2 Adage

Adage [7] {Automatic Deployment of Applications in a Grid Environment) is
a research project that aims at studying the deployment issues related to multi-
middleware applications. One of its originality is to use a generic application
description model (GADe) [10] to handle several middleware systems. Adage
follows the deployment process described in this paper.

With respect to application submission, Adage requires an application de
scription, which is specific to a programming model, a reference to a resource
information service (MDS2, or an XML file), and a control parameter file. The
application description is internally translated into a generic description so as
to support multi-middleware applications. The control parameter file allows
a user to express constraints on the placement policies which are specific to
an execution. For example, a constraint may affect the latency and bandwidth
between a computational component and a visualization component. However,
the implemented schedulers, random and round-robin, do not take into account
any control parameters but the constraints of the submission method. Processor
architecture and operating system constraints are taking into account.

The generic application description model (GADe) provides a model close to
the machines. It contains only four concepts: process, code-do-load, group of
processes and interconnection [10]. Hence, this description format is indepen
dent of the nature of the application (i.e., distributed or parallel), but complete
enough to be exploited by a deployment planning algorithm.

Adage supports multi-middleware applications through GADe and a plug-in
mechanism. The plug-in is involved in the conversion from the specific to the
generic application description but also during the execution phase so as to deal
with specific middleware configuration actions. Translating a specific applica
tion description into the generic description turns out to be a straightforward
task. Adage supports standard programming models like MPI (MPICH1-P4
and MPICH-G2), CCM and JXTA, as well as more advanced programming
models like GridCCM.

Adage currently deploys only static applications. After the generic descrip
tion is used by the planer to produce a deployment plan. Then, an enactment
engine executes it and produces a deployment report which is used to produce
two scripts: a script to get the status of deployed processes and a script to clean
them up. There is not yet any dynamic support in Adage.

Adage supports resource constraints like operating system, processor archi
tectures, etc. The resource description model of Adage takes into account (grid)
networks with a functional view of the network topology. The simplicity of the
model does not hinder the description of complex network topologies (asym
metric links, firewalls, non-IP networks, non-hierarchical topologies) [8]. A
planer integrating such piece of information is being developed.

28 INTEGRATED RESEARCH IN GRID COMPUTING

Table 1. Features of the common deployment process supported by GEA and Adage.

Feature
Component description in input

Multi-middleware application
Dynamic application
Resource constraints
Execution constraints
Grid Middleware

GEA
ALDL (generic)

Yes (in progress)
Yes
Yes
Yes

Many, via GAM
(GT 2-4, and SSH)

Adage
Many, via GADe (MPI,

(CCM, GridCCM, JXTA, etc.)
Yes

No (in progress)
Yes
Yes

SSH and GT2

4.3 Comparison of GEA and Adage

Table 1 sums up the similarities and difference between GEA and Adage
with respect to the features of our common deployment process. The two
prototypes are different approximations of the general model: GEA supports
dynamic ASSIST applications. Dynamicity, instead, is not currently supported
by Adage. On the other hand, multi-middleware applications are fully supported
in Adage, as it is a fundamental requirement of GridCCM. Its support in GEA
is in progress, following the incorporation of those middleware systems in the
ASSIST component framework.

5. Conclusion

ASSIST and GridCCM programming models requires advanced deployment
tools to handle both application and grid complexity. This paper has presented
a common deployment process for components within a Grid infrastructure.
This model is the result of several visits and meetings that were held during the
last past months. It suits well the needs of the two projects, with respect to the
support of heterogeneous hardware and middleware, and of dynamic reconfig
uration. The current implementations of the two deployment systems - GEA
and Adage- share a common subset of features represented in the deployment
process. Each prototype implements some of the more advanced features. This
motivates the prosecution of the collaboration.

Next steps in the collaboration will focus on the extension of each existing
prototype by integrating the useful features present in the other: dynamicity
in Adage and extending multi-middleware support in GEA. Another topic of
collaboration is the definition of a common API for resource discovery, and a
common schema for resource description.

Towards a common deployment model for Grid systems 29

References

[1] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for high performance Grid programming in
the Grid.it project. In V. Getov and T. Kielmann, editors, Proc. of the Workshop on
Component Models and Systems for Grid Applications (June 2004, Saint Malo, France).
Springer, January 2005.

[2] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a re
search framework for high-performance Grid programming environments. In J. C. Cunha
and O. F. Rana, editors. Grid Computing: Software environments and Tools. Springer, Jan.
2006.

[3] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applications in ASSIST. In 11th
Intl Euro-Par 2005: Parallel and Distributed Computing, LNCS, pages 771-781, Lisboa,
Portugal, August 2005. Springer.

[4] M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto, R. Baraglia, T. Fagni,
D. Laforenza, and A. Paccosi. HPC Application Execution on Grids. In V Getov,
D. Laforenza, and A. Reinefeld, editors. Future Generation Grids, CoreGrid series.
Springer, 2006. Dagstuhl Seminar 04451 - November 2004.

[5] A. Denis, C. Perez, and T. Priol. PadicoTM: An open integration framework for communi
cation middleware and runtimes. Future Generation Computer Systems, 19(4):575-585,
May 2003.

[6] P. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou, S. Lanteri, N. Melab, R. Namyst,
P. Primet, O. Richard, E. Caron, J. Leduc, and G. Momet. Grid'5000: A large scale,
reconfigurable, controlable and monitorable grid platform. In Grid2005 6th IEEE/ACM
International Workshop on Grid Computing, November 2005.

[7] S. Lacour, C. Perez, and T. Priol. A software architecture for automatic deployment
of CORE A components using grid technologies. In Proceedings of the 1st Francophone
Conference On Software Deployment and (Re)Configuration (DECOR'2004), pages 187-
192, Grenoble, France, October 2004.

[8] S. Lacour, C. Perez, and T Priol. A Network Topology Description Model for Grid Ap
plication Deployment. In the Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing (GRID 2004). Springer, November 2004.

[9] S. Lacour, C. Perez, and T. Priol. Description and packaging of MPI applications for
automatic deployment on computational grids. Research Report RR-5582, INRIA, IRISA,
Rennes, France, May 2005.

[10] S. Lacour, C. Perez, and T. Priol. Generic application description model: Toward auto
matic deployment of applications on computational grids. In the Proceedinfs of the 6th
IEEE/ACM Int. Workshop on Grid Computing (Grid2005). Springer, November 2005.

[11] Open Management Group (OMG). CORBA components, version 3. Document formal/02-
06-65, June 2002.

[12] C. Perez, T. Priol, and A. Ribes. A parallel CORBA component model for numerical code
coupling. The Int. Journal of High Performance Computing Applications, 17(4) :417-429,
2003.

[13] M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12): 1709-1732, Dec. 2002.

30 INTEGRATED RESEARCH IN GRID COMPUTING

[14] D. Adami, M.Coppola, S. Giordano, D. Laforenza, M. Repeti, N. Tonellotto, Design and
Implementation of a Grid Network-aware Resource Broker. In Proc. of the Parallel and
Distributed Computing and Networks Conf. (PDCN 2006). Acta Press, February 2006.

