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Basic Theory of Electromagnetic Scattering

This chapter is devoted to present the fundamentals of the electromagnetic
scattering theory which are relevant in the analysis of the null-field method.
We begin with a brief discussion on the physical background of Maxwell’s
equations and establish vector spherical wave expansions for the incident field.
We then derive new systems of vector functions for internal field approxi-
mations by analyzing wave propagation in isotropic, anisotropic and chiral
media, and present the T-matrix formulation for electromagnetic scattering.
We decided to leave out some technical details in the presentation. Therefore,
the integral and orthogonality relations, the addition theorems and the basic
properties of the scalar and vector spherical wave functions are reviewed in
Appendices A and B.

1.1 Maxwell’s Equations and Constitutive Relations

In this section, we formulate the Maxwell equations that govern the behav-
ior of the electromagnetic fields. We present the fundamental laws of elec-
tromagnetism, derive the boundary conditions and describe the properties
of isotropic, anisotropic and chiral media by constitutive relations. Our pre-
sentation follows the treatment of Kong [122] and Mishchenko et al. [169].
Other excellent textbooks on classical electrodynamics and optics have been
given by Stratton [215], Tsang et al. [228], Jackson [110], van de Hulst [105],
Kerker [115], Bohren and Huffman [17], and Born and Wolf [19].

The behavior of the macroscopic field at interior points in material media
is governed by Maxwell’s equations:

OB
VxE= 5 (Faraday’s induction law) , (1.1)
oD
VxH=J+ e (Maxwell-Ampere law) , (1.2)

V-D =p (Gauss’ electric field law), (1.3)
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V-B =0 (Gauss’ magnetic field law), (1.4)

where t is time, E the electric field, H the magnetic field, B the magnetic
induction, D the electric displacement and p and J the electric charge density
and current density, respectively. The first three equations in Maxwell’s theory
are independent, because the Gauss magnetic field law can be obtained from
Faraday’s law by taking the divergence and by setting the integration constant
with respect to time equal to zero. Analogously, taking the divergence of
Maxwell-Ampere law and using the Gauss electric field law we obtain the
continuity equation:

dp
B 1.
Ved+ 5 =0, (1.5)

which expresses the conservation of electric charge. The Gauss magnetic field
law and the continuity equation should be treated as auxiliary or dependent
equations in the entire system of equations (1.1)—(1.5). The charge and current
densities are associated with the so-called “free” charges, and for a source-
free medium, J = 0 and p = 0. In this case, the Gauss electric field law can
be obtained from Maxwell-Ampere law and only the first two equations in
Maxwell’s theory are independent.

In our analysis we will assume that all fields and sources are time harmonic.
With w being the angular frequency and j = /—1, we write

E(r,t)=Re {E(r)e '}

and similarly for other field quantities. The vector field E(r) in the frequency
domain is a complex quantity, while E(r,t) in the time domain is real. As a re-
sult of the Fourier component Ansatz, the Maxwell equations in the frequency
domain become

VxE=jwB,

VxH=J-jwD,
V-D=p,
V-B=0.

Taking into account the continuity equation in the frequency domain V - J
—jwp = 0, we may express the Maxwell-Ampere law and the Gauss electric
field law as

Vx H=—jwDy,
V'tho,
where
D.=D+1J
w

is the total electric displacement.
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Across the interface separating two different media the fields may be dis-
continuous and a boundary condition is associated with each of Maxwell’s
equations. To derive the boundary conditions, we consider a regular domain
D enclosed by a surface S with outward normal unit vector n, and use the
curl theorem

/andV:/nxadS,
D s

to obtain

/andSzjw/ BdV,
S D

/andSz/JdV—jw/DdV,
s D D

and the Gauss theorem
/ V-adV:/n-adS7
D S

/n~DdS:/ pdV,
S D

/n-BdS:O.
s

Note that the curl theorem follows from Gauss theorem applied to the vector
field ¢ x a, where ¢ is a constant vector, and the identity V - (¢ x @) =
—c-(V x a). We then consider a surface boundary joining two different media
1 and 2, denote by m; the surface normal pointing toward medium 2, and
assume that the surface of discontinuity is contained in D. We choose the
domain of analysis in the form of a thin slab with thickness h and area AS,
and let the volume approach zero by letting h go to zero and then letting
AS go to zero (Fig.1.1). Terms involving vector or dot product by n will
be dropped except when m is in the direction of ny or —n,. Assuming that
D and B are finite in the region of integration, and that the boundary may
support a surface current J such that Js = limp_,¢ hJ, and a surface charge

to derive

nl A h
Medium 2 v
AR

AS
Medium 1

Fig. 1.1. The surface of discontinuity and a thin slab of thickness h and area AS
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density ps such that ps = limp_o hp, we see that the tangential component of
FE is continuous:

ny x (Ey— E;) =0,

the tangential component of H is discontinuous:
ny X (Hy— Hy) = Jy,

the normal component of B is continuous:

ny - (By — Bp) =0,
and the normal component of D is discontinuous:

ny - (Dy — D1) = ps.
Energy conservation follows from Maxwell’s equations. The vector identity

V-(axb)=b-(Vxa)—a-(Vxb)

yields the Poynting theorem in the time domain:

oB oD
(ExH+H- 22 8.2 - _E.
V- (ExH)+ 8t+ 5 J,

and the Poynting vector defined as
S=ExH

is interpreted as the power flow density. Integrating over a finite domain D
with boundary S, and using the Gauss theorem, yields

0B oD
- | E. — - H- =2+ .22
/D Jdv /Ss ndS+/D( T at)dV,

where as before, n is the outward normal unit vector to the surface S. The
above equation states that the power supplied by the sources within a volume
is equal to the sum of the increase in electromagnetic energy and the Poynt-
ing’s power flowing out through the volume boundary. Poynting’s theorem
can also be derived in the frequency domain:

V (ExH')=jw(B-H —E-D")—E-J*,

where the asterisk denotes a complex-conjugate value. The complex Poynting
vector is defined as S = E x H* and the term — fD E - J*dV is interpreted
as the complex power supplied by the source.

In practice, the angular frequency w is such high that a measuring instru-
ment is not capable of following the rapid oscillations of the power flow but
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rather responds to a time average power flow. Considering the time-harmonic
vector fields a and b,
a(r,t) = [a(r)e*j‘*’t + a*(r)ej“’t] ,

b(r,t) = = [b(r)e ¥ + b*(r)el'] |,

DN = DN =

we express the dot product of the vectors as
e(r,t) = a(r,t) - b(r,t)

= %Re {a(r) - b*(r) + a(r) - b(r)e ™'} .

Defining the time average of ¢ as

{e(r)) = lim %/0 c(r,t)dt,

T—o0

where T is a time interval, we derive

1 *
{e(r)) = SRefa(r) - b7(r)} ,
while for the cross product of the vectors
c(r,t) = a(r,t) x b(r,t),

we similarly obtain
1 *
(e(r)) = §Re {a(r) x b*(r)} .

Thus, the time average of the dot or cross product of two time-harmonic
complex quantities is equal to half of the real part of the respective product
of one quantity and the complex conjugate of the other. In this regard, the
time-averaged Poynting vector is given by

(S) = %Re{E < H*} |

The three independent vector equations (1.1)—(1.3) are equivalent to seven
scalar differential equations, while the number of unknown scalar functions
is 16. Obviously, the three independent equations are not sufficient to form
a complete systems of equations to solve for the unknown functions, and for
this reason, the equations given by (1.1)-(1.4) are known as the indefinite
form of the Maxwell equations. Note that for a free-source medium, we have
six scalar differential equations with 12 unknown scalar functions. To make
the Maxwell equations definite we need more information and this additional
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information is given by the constitutive relations. The constitutive relations
provide a description of media and give functional dependence among vector
fields. For isotropic media, the constitutive relations read as

D =c¢F,
B =uH,
J=0FE (Ohm’s law), (1.6)

where ¢ is the electric permittivity, u is the magnetic permeability and o is
the electric conductivity. The above equations provide nine scalar relations
that make the number of unknowns and the number of equations compatible,
while for a source-free medium, the first two constitutive relations guarantee
this compatibility. When the constitutive relations between the vector fields
are specified, Maxwell equations become definite. In free space gg = 8.85 x
107 Fm™! and pg = 47 x 107" Hm™!, while in a material medium, the
permittivity and permeability are determined by the electrical and magnetic
properties of the medium. A dielectric material can be characterized by a
free-space part and a part depending on the polarization vector P such that

D=cE+P.

The polarization P symbolizes the average electric dipole moment per unit
volume and is given by

P = EOXeEa

where X, is the electric susceptibility. A magnetic material can also be char-
acterized by a free-space part and a part depending on the magnetization
vector M,

B = poH~+poM ,
where M symbolizes the average magnetic dipole moment per unit volume,
M = XmH7

and Xy, is the magnetic susceptibility. A medium is diamagnetic if 4 < pg and
paramagnetic if p > po, while for a nonmagnetic medium we have p = pg.
The permittivity and permeability of isotropic media can be written as

e =¢eoer =0 (1+Xe) »
t= popte = o (1 + Xm)

where €, and pu, stand for the corresponding relative quantities. The consti-
tutive relation for the total electric displacement is

Dt :EtE7
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where the complex permittivity e; is given by
(e E)
ey = €oerg = €0 [ 1+ Xe + —
wEeQ

with e,y being the complex relative permittivity. Both the conductivity
and the susceptibility contribute to the imaginary part of the permittivity,
Im{et} = egIm{xc.} + Re{o/w}, and a complex value for £; means that the
medium is absorbing. Usually, Im{x.} is associated with the “bound” charge
current density and Re{o/w} with the “free” charge current density, and ab-
sorption is determined by the sum of these two quantities. Note that for a
free-source medium, 0 = 0 and &4y = €, = 1 + xe. The simplest solution to
Maxwell’s equations in source-free media is the vector plane wave solution.
The behavior of a vector plane wave in an isotropic medium is characterized
by the dispersion relation

k= w\/eu,

which relates the wave number k to the properties of the medium and to the
angular frequency w of the wave. The dimensionless quantity

m = c\/el

is the refractive index of the medium, where ¢ = 1/,/2gpg is the speed of light
in vacuum, and if kg = w./Egug is the wave number in free space, we see that

k

The constitutive relations for anisotropic media are

D =:E,
B =qH, (1.7)

where € and 71 are the permittivity and permeability tensors, respectively. In
our analysis we will consider electrically anisotropic media for which the per-
mittivity is a tensor and the permeability is a scalar. Except for amorphous
materials and crystals with cubic symmetry, the permittivity is always a ten-
sor, and in general, the permittivity tensor of a crystal is symmetric. Since
there exists a coordinate transformation that transforms a symmetric matrix
into a diagonal matrix, we can take this coordinate system as reference frame
and we have

e 00
E=|0¢g 0. (1.8)
0 0 e,

This reference frame is called the principal coordinate system and the three
coordinate axes are known as the principal axes of the crystal. If ¢, # ¢, # €.,
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the medium is biaxial, and if ¢ = €, = ¢, and ¢ # €., the medium is uniaxial.
Orthorhombic, monoclinic and triclinic crystals are biaxial, while tetragonal,
hexagonal and rhombohedral crystals are uniaxial. For uniaxial crystals, the
principal axis that exhibits the anisotropy is called the optic axis. The crystal
is positive uniaxial if £, > ¢ and negative uniaxial if ¢, < e.

In our analysis, we will investigate the electromagnetic response of isotropic,
chiral media exposed to arbitrary external excitations. The lack of geometric
symmetry between a particle and its mirror image is referred to as chirality
or optical activity. A chiral medium is characterized by either a left- or a
right-handedness in its microstructure, and as a result, left- and right-hand
circularly polarized fields propagate through it with differing phase veloc-
ities. For a source-free, isotropic, chiral medium, the constitutive relations
read as

D =cE+ sV X E,
B =pH + BV x H,

where the real number (§ is known as the chirality parameter. The Maxwell
equations can be written compactly in matrix form as

E E E
vx[E]-x[E]. v[2] -0 as)
where
B 1 Bk? jwp
K= 1 {_Jm W]
and k = w,/ep.

Without loss of generality and so as to simplify our notations we make the
following transformations:

1 1
F—- —FEH—-—H,
VEo vV Ho

D — \/¢gD,B — \/uoB.

As a result, the Maxwell equations for a free-source medium become more
“symmetric”:

V x FE =jkyB,

V x H = -jkyD,

V-D=0,

V-B=0, (1.10)

the constitutive relations are given by (1.6) and (1.7) with ¢ and p being
the relative permittivity and permeability, respectively, the wave number is
k = ko\/elt, and the K matrix in (1.9) takes the form

1 [ Bk? jkou}

K=——__
1— 32k2 | —jkoe BK?

(1.11)
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1.2 Incident Field

In this section, we characterize the polarization state of vector plane waves
and derive vector spherical wave expansions for the incident field. The first
topic is relevant in the analysis of the scattered field, while the second one
plays an important role in the derivation of the transition matrix.

1.2.1 Polarization

In addition to intensity and frequency, a monochromatic (time harmonic)
electromagnetic wave is characterized by its state of polarization. This concept
is useful when we discuss the polarization of the scattered field since the
polarization state of a beam is changed on interaction with a particle.

We consider a right-handed Cartesian coordinate system OXY Z with a
fixed spatial orientation. This reference frame will be referred to as the global
coordinate system or the laboratory coordinate system. The direction of prop-
agation of the vector plane wave is specified by the unit vector e, or equiva-
lently, by the zenith and azimuth angles 5 and «, respectively (Fig.1.2). The
polarization state of the incident wave will be described in terms of the vertical
polarization unit vector e, = e, X e;/|e, X ej| and the horizontal polarization
vector eg = e, x ej. Note that other names for vertical polarization are TM
polarization, parallel polarization and p polarization, while other names for
horizontal polarization are TE polarization, perpendicular polarization and s
polarization.

z A
€
€,
epoI
B . (xpol
B p
ke

0 y

o

W

Fig. 1.2. Wave vector in the global coordinate system
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In the frequency domain, a vector plane wave propagating in a medium
with constant wave number ks = kg./Esiis IS given by

E.(r) = Eqe™ ™, Eq-e, =0, (1.12)

where kg is the wave number in free space, k. is the wave vector, k. = ksey,
FE g is the complex amplitude vector,

EeO = EeO,ﬁeB + EeO,ozea )

and Fep g and Eg . are the complex amplitudes in the (- and a-direction,
respectively. An equivalent representation for Eog is

EeO = ‘Ee0| €pol 5 (113)

where e, is the complex polarization unit vector, |epol| = 1, and
1
€pol = m (EeO,Beﬁ + EeO,aea) .
e

Inserting (1.13) into (1.12), gives the representation
Ec(r) = |Ee| epolejke'r y €pol-er =0,

and obviously, |E.(r)| = |Ecol-
There are three ways of describing the polarization state of vector plane
waves.

1. Setting

Eeg_ﬂ = agejéﬁ s
Eeo.o = 400, (1.14)

where ag and a, are the real non-negative amplitudes, and dg and d,, are the
real phases, we characterize the polarization state of a vector plane wave by
ag, ao and the phase difference Ad = dg — d,.

2. Taking into account the representation of a vector plane wave in the time
domain

Eo(r,1) = Re { Bo(r)e '} = Re { Begel ke m 0},
where E¢(r,t) is the real electric vector, we deduce that (cf. (1.14))

E. g(r,t) = agcos (0g + ke - 7 — wit) |
Ee,a('f',t) = Qq COS (504 + ke - wt) ,

where

E (r,t) = Eeg(r,t)eg + Ee o(T,t)eqy -
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At any fixed point in space the endpoint of the real electric vector describes
an ellipse which is also known as the vibration ellipse [17]. The vibration
ellipse can be traced out in two opposite senses: clockwise and anticlock-
wise. If the real electric vector rotates clockwise, as viewed by an observer
looking in the direction of propagation, the polarization of the ellipse is
right-handed and the polarization is left-handed if the electric vector rotates
anticlockwise. The two opposite senses of rotation lead to a classification of
vibration ellipses according to their handedness. In addition to its handed-
ness, a vibration ellipse is characterized by Ey = Va2 + b2, where a and
b are the semi-major and semi-minor axes of the ellipse, the orientation
angle ¢ and the ellipticity angle x (Fig.1.3). The orientation angle v is
the angle between the a-axis and the major axis, and ¢ € [0, 7). The ellipticity
angle x is usually expressed as tan y = +b/a, where the plus sign corresponds
to right-handed elliptical polarization, and x € [—m/4, 7 /4].

We now proceed to relate the complex amplitudes Feg g and Ee o to
the ellipsometric parameters Fy, 1) and x. Representing the semi-axes of the
vibration ellipse as

b= +FEpsiny,
a = Eycosy, (1.15)

where the plus sign corresponds to right-handed polarization, and taking into
account the parametric representation of the ellipse in the principal coordinate
system Oa’ [’

e 5(r,t) = £bsin (ke - 1 — wt) |

/
e,a

(r,t) =acos (ke T —wt) ,

B AP

Ve

Fig. 1.3. Vibration ellipse
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we obtain
. 5(r,t) = Egsin xsin (ke - 7 — wt) = Egsin x cos (k:e T —wt — g) ,
E; ,(r,t) = Egcos x cos (ke -7 — wt) .

In the frequency domain, the complex amplitude vector E.; defined as

E.(r,t) = Re {E,’aoej(ke"'_“t)} ,
where
E{(r,t) = E_ 5(r,t)e; + E. ,(r,t)e;,
has the components
Eéoﬁ = —jEpsiny,

Ely. = FEocosx.

e

Using the transformation rule for rotation of a two-dimensional coordinate
system we obtain the desired relations

Eeo.3 = Eo (cosxsiny — jsin x cosv) ,
Eeo,0 = FEo(cos xcostp + jsinysing) ,

and

€epol = (cos xsiny — jsiny cosv)) eg

+ (cos x cos ) + jsin y sint) e, . (1.16)

If b = 0, the ellipse degenerates into a straight line and the wave is linearly
polarized. In this specific case x = 0 and

T
Ee 3 = Epsiny = Eycos (5 — w) = Ej cos apol
. (T )
Eeo,o = Egcostp = Eysin (5 - w) = Ep sin apor
where apo is the polarization angle and

Qpol =T/2 =1, apol € (—7/2,7/2] . (1.17)

In view of (1.16) and (1.17) it is apparent that the polarization unit vector is
real and is given by

€pol = COS Opoleg + sin apeleq - (1.18)
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If a = b, the ellipse is a circle and the wave is circularly polarized. We have
tan x = £1, which implies x = +7/4, and choosing ¢ = 7/2, we obtain

V2
2

V2

V2
EeO,a = :tJTEO .

Eep = —1FLy,

The polarization unit vectors of right- and left-circularly polarized waves then
become

E€R = (eﬁ +jea) )

e, =

S

(65 _jeot) )

and we see that these basis vectors are orthonormal in the sense that
er-eg=1,e,-e =1ander-ef =0.

3. The polarization characteristics of the incident field can also be described
by the coherency and Stokes vectors. Although the ellipsometric parameters
completely specify the polarization state of a monochromatic wave, they are
difficult to measure directly (with the exception of the intensity E3). In con-
trast, the Stokes parameters are measurable quantities and are of greater
usefulness in scattering problems. The coherency vector is defined as

—EcoﬁE:o,g
1 S Ee E: «
Je= o[ | o000 (1.19)
2V s EeO,aEeo’B
_EeO,aE:Qa
while the Stokes vector is given by
- 2 2
I |Eeo,8]” + [Eeo,al
2 2
1 S | Eeo, " - ‘EeO,a
I.=|9%|-ps. =L/ ’ .|, a20
U, 2\ ps _EeO,aEeo,ﬁ - EeO,ﬁEeO,a
V. i (Beo.a Bl 5 — FeopFioa )
where D is a transformation matrix and
10 0 1
10 0 -1
D= 0-1-10 |- (1.21)

0—-j 3 O
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The first Stokes parameter I,

1 /e
I = 5 /7 |Eol?

is the intensity of the wave, while the Stokes parameters @, U, and V, describe
the polarization state of the wave. The Stokes parameters are defined with
respect to a reference plane containing the direction of wave propagation, and
Q. and U, depend on the choice of the reference frame. If the unit vectors eg
and e, are rotated through an angle ¢ (Fig. 1.4), the transformation from the
Stokes vector I, to the Stokes vector I, (relative to the rotated unit vectors
ej; and e,) is given by

I.=L(y) I, (1.22)
where the Stokes rotation matrix L is
1 0 0 0
0 cos2¢ —sin2¢ 0

0sin2¢ cos2¢ 0
0 O 0 1

L(p) = (1.23)

The Stokes parameters can be expressed in terms of ag, a, and Ad as (omit-

ting the factor 3/ss/us)
I, = a% +a?,
Qe = a% - ai )
U, = —2aga, cos AJ,
Ve = 2agaq sin Ad,

!

€s

¢ eg

Fig. 1.4. Rotation of the polarization unit vectors through the angle ¢
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and in terms of Fy, ¥ and x, as
I. = Ef,
Q. = —Eg cos 2 cos 21 ,
Ue = ng cos 2 sin 27,
Ve = —Eg sin 2 .

The above relations show that the Stokes parameters carry information about
the amplitudes and the phase difference, and are operationally defined in terms
of measurable quantities (intensities). For a linearly polarized plane wave,
x = 0 and V, = 0, while for a circularly polarized plane wave, x = +w/4
and Q. = U, = 0. Thus, the Stokes vector of a linearly polarized wave of
unit amplitude is given by I, = [1, cos 2ap01, — sin 2ap01, 0] T, while the Stokes
vector of a circularly polarized wave of unit amplitude is I, = [1,0,0,F1]T.

The Stokes parameters of a monochromatic plane wave are not indepen-
dent since

2=Ql+ U+ V2, (1.24)

and we may conclude that only three parameters are required to characterize
the state of polarization. For quasi-monochromatic light, the amplitude of the
electric field fluctuate in time and the Stokes parameters are expressed in
terms of the time-averaged quantities (Eeo o0, q>, where p and ¢ stand for
and «. In this case, the equality in (1.24) is replaced by the inequality

Ie 2 Qi+ U+ VY,
and the quantity

/()2 U2 VQ
j2) Qe+e+e

= Ie

is known as the degree of polarization of the quasi-monochromatic beam. For
natural (unpolarized) light, P = 0, while for fully polarized light P = 1. The
Stokes vector defined by (1.20) is one possible representation of polarization.
Other representations are discussed by Hovenier and van der Mee [101], while a
detailed discussion of the polarimetric definitions can be found in [17,169,171].

1.2.2 Vector Spherical Wave Expansion

The derivation of the transition matrix in the framework of the null-field
method requires the expansion of the incident field in terms of (localized)
vector spherical wave functions. This expansion must be provided in the parti-
cle coordinate system, where in general, the particle coordinate system Oxyz
is obtained by rotating the global coordinate system OXY Z through the
Euler angles oy, 8p and v, (Fig. 1.5). In our analysis, vector plane waves and
Gaussian beams are considered as external excitations.
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Z z,

Fig. 1.5. Euler angles oy, By and 7, specifying the orientation of the particle
coordinate system Ozyz with respect to the global coordinate system OXY Z. The
transformation OXY Z — Oxyz is achieved by means of three successive rotations:
(1) rotation about the Z-axis through ap, OXYZ — Oz1y121, (2) rotation about
the yi-axis through B, Oz1y121 — Oxmay222 and (3) rotation about the zs-axis
through vp, Ozay222 — Ozyz

Vector Plane Wave

We consider a vector plane wave of unit amplitude propagating in the direction
(Bg, ag) with respect to the global coordinate system. Passing from spherical
coordinates to Cartesian coordinates and using the transformation rules under
coordinate rotations we may compute the spherical angles # and « of the
wave vector in the particle coordinate system. Thus, in the particle coordinate
system we have the representation

ike r
E.(r) = epo1€’™ ™, epor-er =0,

where as before, k. = kqey.
The vector spherical waves expansion of the incident field reads as

Eq(r) = Z Z amnM}nn (ksr) + bmnNinn (ksr) (1.25)
n=1m=—n

where the expansion coefficients are given by [9,228]

Amn = 4jnep01 : m;tn,n (ﬂv Ot)

= 4" [ Im| Iml (3 } —J
epol - |jmm);" (B)eg +1,)" eq| e,
2n(n+1) pol * |J (Bles )
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bmn - 4.]n 16pol : n:’m(ﬁva)
4" ' |m| ; |m| —jm
= ——————epo - |7, (B)eg —jmm,) " (B)eq| e (1.26
on(n+ 1) ( 1) pol { (Bes — ] (B) ] ( )

To give a justification of the above expansion we consider the integral repre-
sentation

epon(B, a)elke (BT _ /027r /O” epon(, a)el(5' ")
x§(a/ — a)d(cos B — cos B)sin ' A’ da’, (1.27)
and expand the tangential field
f (B, B',0") = epai(B, )6(a’ — a)d(cos f' — cos B) (1.28)

in vector spherical harmonics

oo

f(B,a,8,a") = 47;.” S G (8,8 +ibmnmmn (8,07) . (1.29)

n=1m=-—n

Using the orthogonality relations of vector spherical harmonics we see that
the expansion coeflicients a,,,, and b, are given by

27 T
mn = 4j”/o / F (8o al)-m, (6, 0)sin 8 dF dof
= 4jnep01(ﬁ7 a) ’ m:nn<ﬁ7 a) )
2 T
b = *‘”"H/o / F (B Ba') - ni, (B o) sin B dB do

= _4jn+1ep01(6a OZ) : n:nn(ﬂv OZ) .

Substituting (1.28) and (1.29) into (1.27) and taking into account the integral
representations for the regular vector spherical wave functions (cf. (B.26) and
(B.27)) yields (1.25).

The polarization unit vector of a linearly polarized vector plane wave is
given by (1.18). If the vector plane wave propagates along the z-axis we have
0 = a =0 and for § = 0, the spherical vector harmonics are zero unless m =
+1. Using the special values of the angular functions 7} and 7} when 3 = 0,

1
7T711 (0) = Tﬁ (0) = 27\/5\/71(71 +1)(2n+1),
we obtain

at1n = —j"V2n + 1 (£ cos apor + sin apol) ,
birn = —""V2n 4+ 1 (cos Qpol F jsinapol) -
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Thus, for a vector plane wave polarized along the z-axis we have

A1p = —A—1n = jnil V2n+1,
bin =b_1, =j"""V2n+1,

while for a vector plane wave polarized along the y-axis we have

A1p = A_1n = jn72 V2n +1 )
bln = _b—ln = jn_2m'

Gaussian Beam

Many optical particle sizing instruments and particle characterization meth-
ods are based on scattering by particles illuminated with laser beams.
A laser beam has a Gaussian intensity distribution and the often used
appellation Gaussian beam appears justified. A mathematical description of
a Gaussian beam relies on Davis approximations [45]. An nth Davis beam
corresponds to the first n terms in the series expansion of the exact solution
to the Maxwell equations in power of the beam parameter s,

s=7
where wy is the waist radius and [ is the diffraction length, | = ksw3. According
to Barton and Alexander [9], the first-order approximation is accurate to
s < 0.07, while the fifth-order is accurate to s < 0.02, if the maximum percent
error of the solution is less than 1.2%. Each nth Davis beam appears under
three versions which are: the mathematical conservative version, the L-version
and the symmetrized version [145]. None of these beams are exact solutions
to the Maxwell equations, so that each nth Davis beam can be considered as
a “pseudo-electromagnetic” field.

In the T-matrix method a Gaussian beam is expanded in terms of vector
spherical wave functions by replacing the pseudo-electromagnetic field of an
nth Davis beam by an equivalent electromagnetic field, so that both fields
have the same values on a spherical surface [81,83,85]. As a consequence
of the equivalence method, the expansion coefficients (or the beam shape
coefficients) are computed by integrating the incident field over the spher-
ical surface. Because these fields are rapidly varying, the evaluation of the
coefficients by numerical integration requires dense grids in both the 6- and
p-direction and the computer run time is excessively long.

For weakly focused Gaussian beams, the generalized localized approxima-
tion to the beam shape coefficients represents a pleasing alternative (see, for
instance, [84,87]). The form of the analytical approximation was found in
part by analogy to the propagation of geometrical light rays and in part by
numerical experiments. This is not a rigorous method but its use simplifies
and significantly speeds up the numerical computations. A justification of
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the localized approximations for both on- and off-axis beams has been given
by Lock and Gouesbet [145] and Gouesbet and Lock [82]. We note that the
focused beam generated by the localized approximation is a good approxima-
tion to a Gaussian beam for s < 0.1.

We consider the geometry depicted in Fig. 1.6 and assume that the middle
of the beam waist is located at the point Oy,. The particle coordinate system
Ozxyz and the beam coordinate system Opxyp 21, have identical spatial orien-
tation, and the position vector of the particle center O in the system Oy, yp 21,
is denoted by rg. The Gaussian beam is of unit amplitude, propagates along
the zp-axis and is linearly polarized along the xp-axis. In the particle coor-
dinate system, the expansion of the Gaussian beam in vector spherical wave
functions is given by

o0

E.(r) = Z Z A M 1, (k) JrgmnNirm (kst)

n=1m=—-n

and the generalized localized approximation to the Davis first-order beam is

Zimn = Kmnw()ejkszo |:ej(m—1)tpo Jm—l (u) - ej(m+1)@0 Jm+1 (U):| )

,gmn = Kmngloejkszo |:ej(m—1)<po Jmfl (u) + e'j(m+1)¢0 Jm+1 (u)} )

Zy ﬁ\
V4
Zy
y
(o)
X
)
\ 2w,
\ O, Yo
0 Po

W7

Fig. 1.6. The particle coordinate system Ozyz and the beam coordinate system
Oxvyb2zp have the same spatial orientation



20 1 Basic Theory of Electromagnetic Scattering

where (po, o, 20) are the cylindrical coordinates of 7,

2 2
. Py +PE 1 1 1
W = —_ —_— = —-—_——— 0o = -— —_ 5
0 JQema( jQ w? ) ;@ T2l T ntg

and

wo
The normalization constant K,,, is given by

nn+1)

Konn = 2" o+ 1

for m = 0, and by

jrtim! \/2n+1 (n + [m])!
(n+1) (n—|m|)!

for m # 0. If both coordinate systems coincide (pg = 0), all expansion coeffi-
cients are zero unless m = £1 and

2
Ziln:—Zi,ln:j \/2n+1eXp( Z)n> 5

0

Elnzg_ln:j \/2n—|—1exp< 5}") .

0

The Gaussian beam becomes a plane wave if wg tends to infinity and for this
specific case, the expressions of the expansion coefficients reduce to those of
a vector plane wave.

We next consider the general situation depicted in Fig.1.7 and assume
that the auxiliary coordinate system O, XpYpZ, and the global coordinate
system OXY Z have the same spatial orientation. The Gaussian beam propa-
gates in a direction characterized by the zenith and azimuth angles 3, and o,
respectively, while the polarization unit vector encloses the angle oo with
the xp-axis of the beam coordinate system Opxpynzn. As before, the parti-
cle coordinate system is obtained by rotating the global coordinate system
through the Euler angles oy, B, and v;,. The expansion of the Gaussian beam
in the particle coordinate system is obtained by using the addition theorem
for vector spherical wave functions under coordinate rotations (cf. (B.52) and
(B.53)), and the result is

Z Z a,,m k T') + bmn (k T) ’

n=1m=-—n
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Z
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y
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Yo/ 2 z,
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Yo
(OR Y,

X X,

Fig. 1.7. General orientations of the particle and beam coordinate systems

where

amn

n n
Z Z Dy (—pot, =Bg, —Atg) Dy (0, By, Vp) G 5
n

m'=—nm'' =—

bmn = Z Z D:Ln’m” (70113017 7ﬂga *Oég) D:Ln”m (apa ﬂpa Vp) bm/n ’

= =

m —_nm

and the Wigner D-functions D}, . are given by (B.34).

Remark. Another representation of a Gaussian beam is the integral repre-
sentation over plane waves [48,116]. This can be obtained by using Fourier
analysis and by replacing the pseudo-vector potential of a nth Davis beam
by an equivalent vector potential (satisfying the wave equation), so that both
vector fields have the same values in a plane z = const.

1.3 Internal Field

To solve the scattering problem in the framework of the null-field method it
is necessary to approximate the internal field by a suitable system of vector
functions. For isotropic particles, regular vector spherical wave functions of
the interior wave equation are used for internal field approximations. In this
section we derive new systems of vector functions for anisotropic and chiral
particles by representing the electromagnetic fields (propagating in anisotropic
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and chiral media) as integrals over plane waves. For each plane wave, we solve
the Maxwell equations and derive the dispersion relation following the treat-
ment of Kong [122]. The dispersion relation which relates the amplitude of
the wave vector k to the properties of the medium enable us to reduce the
three-dimensional integrals to two-dimensional integrals over the unit sphere.
The integral representations are then transformed into series representations
by expanding appropriate tangential vector functions in vector spherical har-
monics. The new basis functions are the vector quasi-spherical wave functions
(for anisotropic media) and the vector spherical wave functions of left- and
right-handed type (for chiral media).

1.3.1 Anisotropic Media

Maxwell equations describing electromagnetic wave propagation in a source-
free, electrically anisotropic medium are given by (1.10), while the constitutive
relations are given by (1.7) with the scalar permeability p in place of the
permeability tensor fi. In the principal coordinate system, the first constitutive
relation can be written as

E=)\D,
where the impermittivity tensor \ is given by
7 Az 00
A=10X 0
0 0 X,

)

and Ay = 1/e5, Ay =1/e, and A\, = 1/e..
The electromagnetic fields can be expressed as integrals over plane waves
by considering the inverse Fourier transform (excepting the factor 1/(27)3):

A(r) = /A(k) JEFTAV (k) |

where A stands for E, D, H and B, and A stands for the Fourier transforms
&, D, H and B. Using the identities

V x A(r) :j/kzxA(k:)ejk'TdV(k) :
V- A(r) :j/k.A(k)eik"“dV(k) ,

we see that the Maxwell equations for the Fourier transforms take the forms

kxéf:kjoB, kXH:—k()D,
kE-D=0, k-B=0,
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and the plane wave solutions read as

_ ko )
Sg—kBa, Ey = k’Bﬁ’

ko ko
:*7Da, a:*IDa
Hp A H 2 D

Dkzoa Bk:O,

23

(1.30)

where (k, 3, @) and (e, eg, e,) are the spherical coordinates and the spherical
unit vectors of the wave vector k, respectively, and in general, (Ag, Ag, Aq)
are the spherical coordinates of the vector 4. The constitutive relations for
the transformed fields £ = AD and H = (1/p)B can be written in spherical

coordinates by using the transformation

Az cosasinff cosacos 3 —sina | | Ag
Ay | = | sinasing sinacosf cosa Ag
A, cos 3 —sin 3 0 Aq

and the result is
Er = MgDg + AeaDa s
€s = A3pDp + AgaDa,
goc = )\aﬁpﬁ + )‘aocDa )

and ) 1
Hp =0, Hg:;Bg, Ha:pBa,
where
)\kg— (Az cos® a + Ay sin® a — A, ) sin Bcos 3,
= (Ay — A\g)sinacosasin 3,
)\gg—()\xcos a+ Ay sin a)cos B+ N\, sin? g,
Aga = (Ay — Ag)sinacosacos 3,
and

Aaﬁ = )\ﬁa )

Aaa = A\psin? a + Ay cos? a.

(1.31)

(1.32)

Equations (1.30) and (1.32) are then used to express g, & and Hg, Hy in

terms of Dg, D,, and we obtain

(1.33)
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The last two equations in (1.31) and the first two equations in (1.33) yield a
homogeneous system of equations for Dg and D,

[Dﬁ} =0. (1.34)

Ao — e
B8 — Hy2 Ba
D,

k
)\ﬂa >\ao¢ - le%

Requiring nontrivial solutions we set the determinant equal to zero and obtain
two values for the wave number k2,

K2, =kt
1,2 0)\1,2
where
1
A= 3 |:(/\[35 + )\aa) — \/()\55 — )\aa)Q + 4/\2a:| ,
and
1
do=s [(Aﬁg + Aaa) T/ (Ags — Aaa)® + 4/\24 .

The above relations are the dispersion relations for the extraordinary waves,
which are the permissible characteristic waves in anisotropic media. For an
extraordinary wave, the magnitude of the wave vector depends on the direc-
tion of propagation, while for an ordinary wave, k is independent of 5 and
a. Straightforward calculations show that for real values of A, A, and A_,
AspAaa > A3, and as a result \; > 0 and Ay > 0. The two characteristic
waves, corresponding to the two values of k2, have the D vectors orthogonal
to each other, i.e., DU . D) = 0. In view of (1.34) it is apparent that the
components of the vectors D) and D@ can be expressed in terms of two
independent scalar functions D, and Dg. For k1 = ko+/pt/ A1 we set

DY) = fDa, DY =Da,
while for ko = kg+/pt/ A2 we choose
Dy =Dy, DY = Dy,

where
ABa
I=="A

and

1
AN = 5 |:()\,35 — )\aa) + \/()\55 - )\aa)2 + 4)\2a
Next, we define the tangential fields
Vo = feﬂ + €éa,
vg = —eg + feq,
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and note that the vectors v, and vg are orthogonal to each other, v, -vg =0,
and v, = —ey X vg and vg = e X v,. Taking into account that ki (ex) =
k1 (ex) ex and ks (er) = ko (eg) ex, we find the following integral representa-
tion for the electric displacement:

D(r) = /Q [Da (e) v (e) €47 1Dy (1) v () 27| A2 (eyy)

with {2 being the unit sphere. The result, the integral representation for the
electric field is

E(r)=—

€wy
- /9 [Da (ex) WS, (ex) &*1 (&)™ — Dy (ex) w (ef) ()7 dR2 (er) ,

where

1
Eay = 3 (ex +&y)

and
wg = Exy [()\kﬁf + Aka) e+ )\lva} 5
weﬁ = Exy [()\kﬁ - )\kaf) €r — )\Q’Uﬁ] )

while for the magnetic field, we have

1 )
zy

+ Dy (ex) w (ex) 7] A2 ey,
where
w}; = 7\/5?6117)‘11)5 )
wh = /Errhava.
For uniaxial anisotropic media we set A = A, = A, derive the relations

Mg = (A= A.)sin feos, A =0,
)\[gﬁ :)\C0825+>\281n2ﬂ7 )‘504 :O’
)\aﬁzo, Aaa:Aa

and use the identities \; = A\n and Ay = Agg, to obtain
k2 = kiep, (1.35)

k2 = k2 e , 1.36
2 Ocos2 3+ ésinzﬂ ( )
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where A = 1/e and A, = 1/e,. Equation (1.35) is the dispersion relation for
ordinary waves, while (1.36) is the dispersion relation for extraordinary waves.

For f =0 it follows that D} = 0 and DY = 0, and further that DY = D,
and D(Bz) = —Dg. The electric displacement is then given by

27 T
D(r) :/0 /0 {Da(ﬁ,a)eaejkl(ﬁ’a)‘r —Ds(B, oz)e,gejkzw’o‘)"' sinGdfda,

(1.37)
where k1 (8, o) = k1eg (8, ), k2(8, a) = ka(B)ex (8, ), and for notation sim-
plification, the dependence of the spherical unit vectors e, and eg on the
spherical angles 3 and « is omitted. For €;, = ¢, the integral representations
for the electric and magnetic fields become

E(r) = i/% /W [Da(B.a)ene )7 (1.38)
0 0

— e[Mp(B)ex + Ags(B)es] Ds (0, a)ejkz(ﬁ’a)""} sinfdgda,

and

1 2w T .
— 1(8,a)r
Hir)=-— | /0 [Da(8,0)e ¢!

+ \/E)\@g(ﬂ)Dg(ﬂ,oz)eaejkz(ﬁ’o‘)'r} sinddgde, (1.39)

respectively. For isotropic media, the only nonzero A functions are Ags and
Aaa, and we have Agg = Ao = A. The two waves degenerate into one (ordi-
nary) wave, i.e., k; = kg = k, and the dispersion relation is

k? = kiep.

Next we proceed to derive series representations for the electric and mag-
netic fields propagating in uniaxial anisotropic media. On the unit sphere, the
tangential vector function D, (5, a)eq —Ds(5, a)es can be expanded in terms
of the vector spherical harmonics 1m,, and n,,, as follows:

oo n 1
Da(ﬂva)ea - Dﬂ(ﬁya)eﬁ = 752 Z W [7jcmnmmn(ﬂa a)

n=1m=-—n
+ dmnmn (6, )] . (1.40)

Because the system of vector spherical harmonics is orthogonal and complete
in L%(£2), the series representation (1.40) is valid for any tangential vector
field. Taking into account the expressions of the vector spherical harmonics
(cf. (B.8) and (B.9)) we deduce that the expansions of Dg and D, are given by
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1 m
~Ds(f,a EZ Z 4an+1 on(n + 1) [mﬂl (B)emn

n=1m=-—n

+ T’V‘Lml (ﬁ)dmn} e

and

1 slm
EZ Z 477Jn+1 (TL—I—]_) |;]Tr‘z l(ﬁ)cmn

n=1lm=-—n

+ jmal (B)dyn | 7

respectively. Inserting the above expansions into (1.38) and (1.39), yields the
series representations

Z Z Crn X oon (1) + dpn Y, (1) (1.41)

n=1m=—-n

r)=—j\f2 Z Cnn X (1) 4+ dpn YR (1), (1.42)

n=1m=—n

where the new vector functions are defined as

1 1 27 T .
Xe — i-lm| ISLANCE
") = = gt 2n(n+1)/0 /0 o)

+ e [Mep(B)er + Ags(B)es] mﬂlml(ﬂ)em(g,a).r}

xe™%sin BdS der, (1.43)
27 T
Yiul) =~ e [ | {gmall@e e, (1ag)
4mjntl \/Zn(n + 1) 0 0

+ 2 Dwa(B)er + Ags(Bes] ol (B)e 7 | e sin 5 dfda,

1 1 27 ™ )
h = — [l ki(B,a)-r
Xho() =~ e s [, [0 0 es (e

eXgs(B)mml™! <ﬁ)ej’“2<ﬂv“)"‘ea} ™ sin Bdf da,

and
1 1 27 T .
Yo, (r) = —— / / mrl™(3)elk1 ()T
'mL( ) 47TJn+1 \/m 0 0 |: n (IB) B

eAps(B)r m'(ﬂ)ejkm"’)'rea} e sin3dBda. (1.46)
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In (1.38)—(1.39), the electromagnetic fields are expressed in terms of the
unknown scalar functions D, and Dg, while in (1.41) and (1.42), the electro-
magnetic fields are expressed in terms of the unknown expansion coefficients
Cmn and d,,,. These unknowns will be determined from the boundary condi-
tions for each specific scattering problem. The vector functions X ¢® and Y&
can be regarded as a generalization of the regular vector spherical wave func-
tions M}, and N . For isotropic media, we have eAgg = 1, \yg = 0 and
k1 = ko = k, and we see that both systems of vector functions are equivalent:

Xion(r) =Y (r) = My, (kr),

mn mn

Y1) = Xo(r) = Ny, (kr) (1.47)

As a result, we obtain the familiar expansions of the electromagnetic fields in
terms of vector spherical wave functions of the interior wave equation:

Z Z cmn k?") + dmn (k‘T) N

n=1m=-—n
r):—j\/>z Z ConINE - (kr) + dpn ML (k7).
n=1lm=-—n

Although the derivation of X" and Y& differs from that of Kiselev et al.
[119], the resulting systems of vector functions are identical except for a mul-
tiplicative constant. Accordingly to Kiselev et al. [119], this system of vector
functions will be referred to as the system of vector quasi-spherical wave func-
tions. In (1.43)—(1.46) the integration over o can be analytically performed
by using the relations

e = sin 3 cos ae, + sin B sin aey, + cos fe;
eg = cos 3 cos ae, + cos Fsin ae, — sin e, ,
e, = —sinae; + cosae, ,

and the standard integrals
2 ) .
I, (z,0) = / e cos(a=p)gima oy = 97imel™? ], ()
0
27 . . .
ID (x, ) = / cos ael® ©os(@=@)gima o — [jm+1ej(m+1)‘me+1 (x)
0
e, (@)
2m . . .
I, (z,0) = / sin ael® cos(@=@)eIma qo = _jrr {jm+1ej(m+1)me+1 (x)
0

- m 1el(m 1)LPJ’H'L 1( ):| )
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where (e, ey, e,) are the Cartesian unit vectors and J,, is the cylindrical
Bessel functions of order m. The expressions of the Cartesian components of
the vector function X7, read as

X7 !

) = = e

+& [Ag(B) cos B+ As(B) sin B8] mz™(B)

I (BVI3, (1, p)el¥1 (70:0)

x It (xa, np)eij(r’e’ﬁ)} sin dg (1.48)
X, (r)= 1 Iml ¢, (x4, (p)ejyl(rﬂﬁ)
ey 4mjntl V2n(n+1)

+¢ [Aga () cos B+ As () sin ] mm)™ (3)
X I;(mg,ga)ejyz’(r’eﬁ)}sinﬂdﬂ, (1.49)

1 1 T .
mn, z(r) = _47Tjn+1 \/m‘/o € P‘kﬁ(ﬁ) COSﬁ - )‘ﬁﬁ(ﬁ) Slnﬂ}

Xmﬂ_\m|(6)lm(x2,(p)ejy’z(rﬂﬂ) 51nﬁdﬂ, (150)

where x1(r,0,3) = kyrsin siné, xa(r, 6, 3) = ko(B)rsin Gsin b, y,(r,0,5) =
kyrcos Bcos 8 and ya(r, 0, 8) = ko B)r cos B cos 8, while the expressions of the

Cartesian components of the vector functions Y¢,,, are given by (1.48)—(1.50)

with mz™ and 7™ interchanged. Similarly, the Cartesian components of the

vector function X! = are

Xxh L

(1) = = g \/Tﬂ

eAgg(ﬁ)mﬂLm‘ (B, (22, w)ejyz(r’eﬁ)] sin 3dg3, (1.51)

1 .
xXh — Iml I jy1(r,0,8)
mn’y("') 47TJ"+1 m/ B) cos BI3, (w1, p)e
a)\gg(ﬁ)mwllm(ﬁ)lfn(xg, ga)ejy"’(r’e’ﬁ)} sin 3dg3, (1.52)
1
Xh \m| ejyl r,0,3) 2 d
7nn,z(r) 47TJTL+1 \/’I’L——f—l/ xl (P) sin ﬂ 6

(1.53)
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and as before, the components of the vector functions Y  are given by
(1.51)~(1.53) with ma™ and 7™ interchanged.

In the above analysis, X% and Y& are expressed in the principal coor-
dinate system, but in general, it is necessary to transform these vector func-
tions from the principal coordinate system to the particle coordinate system
through a rotation. The vector quasi-spherical wave functions can also be
defined for biaxial media (¢, # &, # €,) by considering the expansion of
the tangential vector function Dy (5, a)ve + Dg(f, a)vs in terms of vector
spherical harmonics.

n

1.3.2 Chiral Media

For a source-free, isotropic, chiral medium, the Maxwell equations are given
by (1.10), with the K matrix defined by (1.11). Following Bohren [16], the
electromagnetic field is transformed to

)4 lk]

where A is a transformation matrix and

A=l 1

The transformed fields L and R are the left- and right-handed circularly po-
larized waves, or simply the waves of left- and right-handed types. Explicitly,
the electromagnetic field transformation is

E:L—j\/ﬁR,
€
. e
H=-j,/-L+R
Y

and note that this linear transformation diagonalizes the matrix K,

k
A=ATKA= [1—0“ _ " ] :
1+8k

Defining the wave numbers

TS

=T
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we see that the waves of left- and right-handed types satisfy the equations
VxL=kL, V-L=0 (1.54)

and
VxR=-krR, V-R=0, (1.55)

respectively.

For chiral media, we use the same technique as for anisotropic media and
express the left- and right-handed circularly polarized waves as integrals over
plane waves. For the Fourier transform corresponding to waves of left-handed

type,
L(r) = /L(k) JFT AV (k)

the differential equations (1.54) yield

and L = 0. The above set of equations form a system of homogeneous equa-
tions and setting the determinant equal to zero, gives the dispersion relation
for the waves of left-handed type

K= k2.

Choosing Lz as an independent scalar function, we express L as

27
/ / (e +j€a) La(B,)* 7 sin gdf da, (1.56)

where ki, (0, o) = krer (0, ). The tangential field (eg + je,)Ls is orthogonal
to the vector spherical harmonics of right-handed type with respect to the
scalar product in L2, (2) (cf. (B.16) and (B.17)), and as result, (e +je,)Ls
possesses an expansion in terms of vector spherical harmonics of left-handed
type (cf. (B.14))

(es +ijea) Ls(B, Z >

n=1m=—n

2{@ Cmnlmn (8, @) (1.57)

3

= Z Z 471'J Cmn mmn(ﬂv )+Jnmn(ﬁ7aﬂ )
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Inserting (1.57) into (1.56), yields

=Y e [ [ Fiman o)

n=1lm=-—n
+ nmn(ﬂ,a)] eJkL(ﬁ « Slllﬂdﬂ dOé
whence, using the integral representation for the vector spherical wave func-

tions (cf. (B.26) and (B.27)), gives

n

Z n mn kLr)

HMS HM8

Z Cmn kL’I“) + N (kL’I‘)} s

where the vector spherical wave functions of left-handed type L,,, are de-

fined as
L,,=M! +N. . (1.58)

For the waves of right-handed type we proceed analogously. We obtain the
integral representation

r)= /:Tr/oﬂ(eﬁ_jea)Rﬂ(ﬂ a)e*n (797 sin BB da

with R being an independent scalar function, and the expansion

= Z Z dmann (kRT)

n=1m=-—n

_Z Z Ao [M L, (kr) — N1, (krr)]

n=1m=—-n

with the vector spherical wave functions of right-handed type R,., being
defined as
R,,=M, — N! (1.59)

mn *°

In conclusion, the electric and magnetic fields propagating in isotropic, chiral
media possess the expansions [16,17,135]

= Z Z Canmn I{iLT‘) —.]\/Edmann (kRT) )

.]\/?Canmn (kLr) + dmann (kRT) .
y2



1.4 Scattered Field 33

An exhaustive treatment of electromagnetic wave propagation in isotropic,
chiral media has been given by Lakhtakia et al. [136]. This analysis deals with
the conservation of energy and momentum, properties of the infinite-medium
Green’s function and the mathematical expression of Huygens’s principle.

1.4 Scattered Field

In this section we consider the basic properties of the scattered field as they
are determined by energy conservation and by the propagation properties of
the fields in source-free regions. The results are presented for electromag-
netic scattering by dielectric particles, which is modeled by the transmission
boundary-value problem. To formulate the transmission boundary-value prob-
lem we consider a bounded domain D; (of class C?) with boundary S and
exterior Dg, and denote by m the unit normal vector to S directed into Dg
(Fig. 1.8). The relative permittivity and relative permeability of the domain
Dy are €¢ and ug, where t = s,1, and the wave number in the domain D is
ky = koy/e¢piy, where ko is the wave number in free space. The unbounded
domain Dy is assumed to be lossless, i.e., &5 > 0 and ug > 0, and the external
excitation is considered to be a vector plane wave

EC(T) = Ecoejke.r , Hc(r) - ﬁek X Ecoejke'ra

where Ej is the complex amplitude vector and ey is the unit vector in the
direction of the wave vector k.. The transmission boundary-value problem
has the following formulation.

Given E, H, as an entire solution to the Mazwell equations representing
the external excitation, find the vector fields Eg, Hy € C*(Ds) N C(Dg) and
E;,,H; c C'(D;) N C(D;) satisfying the Mazwell equations

V X Ey = jkouHy, V x Hy = —jkoeiEy, (1.60)

€ M ks \

Fig. 1.8. The domain D; with boundary S and exterior Ds
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in D¢, t=s,1, and the two transmission conditions
nx E—nxE;=nxE,,
nxH —nxH,=nxH,, (1.61)

on S. In addition, the scattered field Eg, Hs must satisfy the Silver—Mdiller
radiation condition

1
r x‘/uSHS+«/esEso<> , as T — 00, (1.62)
,

r

uniformly for all directions r/r.

It should be emphasized that for the assumed smoothness conditions, the
transmission boundary-value problem possesses an unique solution [177].

Our presentation is focused on the analysis of the scattered field in the
far-field region. We begin with a basic representation theorem for electro-
magnetic scattering and then introduce the primary quantities which define
the single-scattering law: the far-field patterns and the amplitude matrix. Be-
cause the measurement of the amplitude matrix is a complicated experimental
problem, we characterize the scattering process by other measurable quanti-
ties as for instance the optical cross-sections and the phase and extinction
matrices.

In our analysis, we will frequently use the Green second vector theorem

/[a~(V><V><b)—b~(V><V><a)]dV
D

:/n-[bx(V><a)—a><(V><b)]dS7
s

where D is a bounded domain with boundary S and n is the outward unit
normal vector to S.

1.4.1 Stratton—Chu Formulas

Representation theorems for electromagnetic fields have been given by Strat-
ton and Chu [216]. If E,, Hy is a radiating solution to Maxwell’s equations
in Dg, then we have the Stratton—Chu formulas

(E‘}f”) =Vx /Ses (r') g (ks,r,7')dS(r") (1.63)

+

j / ’ ’ r e D
kOESVxVX/ShS(r)g(ks,r,r)dS(r), (rEDi>
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and

(HB(T)) =V x /Shs (') g (ks, 7, 7") dS(r')

_koJMsV x V x /Ses (') g (ks,r,7")dS(r), (: 2 g?) ,
where g is the Green function and the surface fields es and hg are the tangential
components of the electric and magnetic fields on the particle surface, i.e.,
es =n x E, and hy = n x Hyg, respectively. In the above equations we use a
compact way of writing two formulas (for » € Dy and for r € D;) as a single
equation.

A similar result holds for vector functions satisfying the Maxwell equations
in bounded domains. With E;, H; being a solution to Maxwell’s equations in
D; we have

(EOI(T)) =V x /Sei (") g (k;, v, 7)) dS(r")

J (! . ’ ’ re b
+k0€iV><V></Shl(r)g(k:l,r,r)dS(r), <7’€DS)

and

(1{)1(7')) :Vx/shi (r') g (ki v, 7)) dS(r)

_k(;]uiv x V x /Sei (r") g (kj,r, ') dS(r), (: g g;) ,
where e; = n x E; and h; = n x H;.

A rigorous proof of these representation theorems on the assumptions Ey,
H, c CY(D,)NC(D) and E;, H; € C'(D;) N C(D;) can be found in Colton
and Kress [39]. An alternative proof can be given if we accept the validity
of Green’s second vector theorem for generalized functions such as the three-
dimensional Dirac delta function é(r — r’). To prove the representation the-
orem for vector fields satisfying the Maxwell equations in bounded domains
we use the Green second vector theorem for a divergence free vector field a
(V- a = 0). Using the vector identities V x V x b = —Ab + VV - b and
a-(VV-b)=V-(aV:-b) for V-a =0, and the Gauss divergence theorem
we see that

/[a~Ab+b~(V><V><a)]dV:/{n~a(V~b)+n~[a><(be)
D s

+ (Vxa)xbl}ds. (1.64)

In the above equations, the simplified notations VV - a and aV - b should
be understood as V(V - a) and a(V - b), respectively. Next, we choose an
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arbitrary constant unit vector uw and apply Green’s second vector theorem
(1.64) to a(r') = E;i(r') and b(r') = g(ki, ', r)u, for r € D;. Recalling that

Ng(ki, v’ r) + kg (ki,r' 7)) = =5 (r' —7) (1.65)

and V' x V' x E; = k?E;, we see that the left-hand side of (1.64) is

/D {E; (r") - Alg (ki,7,r)u+g ki, v, 7)u- [V x V' x E; (v')]}
‘><dV (r")
= —/D u-Ei(r)é(r' —r)dV (r') = —u - Ei(r).
Taking into account that for v’ # r,
V' x V' xgk,v,7)u=Ekgqgk,r,r)u+V'V gk, r)u,
we rewrite the right-hand side of (1.64) as
/S{n “E; [V - g(ki,")u]+n-[E x (V' xg(k,r)u)
+ (V' x E;) x g (ki,-r)ul}dS
:/S{n-Ei V' g (kiyor) ] + 1 [Bs % (V' x g (ki 7) )]

1
tan (V' x E;) x (V' x V' x g(ki, r)u)

— (V' x E) x V'V g(ki, r)u]}dS.
From Stokes theorem we have
/ n (V' x [HV' - g (ks,-r)u]} dS = 0,
s

whence, using the vector identity V x (ab) = Vax b+aV x b and the Maxwell
equations, we obtain

/n-Ei V' g (ki,-,r)u]dS
s

1

= ﬁ/n[(V’xEl) levl.g(ki,.’r)u]ds'
i JS

Finally, using the vector identity a-(bx ¢) = (a x b)- ¢, the symmetry relation
V'g(ki,r',r) = =Vg(ki, ', r), the Maxwell equations and the identities
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V' x g (ki, 7", 7) ul - [n (') x B ()]
={Vxg kv, r)[n() x E ()]} u
and
V' x V' x g (ki,r",r)u] - [ (r') x H; ('
={VxVxg(kir',r)[n@')x H(r')]}-

\_/%
-~ =
§

we arrive at

—u- Ei(r)=u- {Vx /Sn(r’) x E; (r") g (ki,r,v")dS(r")

kOleVx/S n(r ')xHi(r’)g(ki,r,r')dS(r’)}.

Since wu is arbitrary, we have established the Stratton—Chu formula for r» € D;.
If r € Dy, we have

/ w-E;(r')d(r' —r)dV (') =0,
D;

and the proof follows in a similar manner. For radiating solutions to the
Maxwell equations, we see that the proof is established if we can show that

{n'[ESX(V Xg(/ﬂs,7 )u)

1
—i—ﬁ(V’xEs)x(V x V' x g(ks,-,7) )]}dS—>O,

S

as R — oo, where Sy is a spherical surface situated in the far-field region.
To prove this assertion we use the Silver—Miiller radiation condition and the
general assumption Im{ks} > 0.

Alternative representations for Stratton—Chu formulas involve the free
space dyadic Green function G instead of the fundamental solution g [228].
A dyad D serves as a linear mapping from one vector to another vector,
and in general, D can be introduced as the dyadic product of two vectors:
D = a®b. The dot product of a dyad with a vector is another vector:
D.-c=(a®b)-c=a(b-c)and c- D = c-(a®b) = (c-a)b, while the cross
product of a dyad with a vector is another dyad: Dxc = (a®b)xc = a®(bxc)
and cx D = cx (a®b) = (c x a) ®b. The free space dyadic Green function
is defined as

— - 1
Ghrr') = (T4 50V ) g lbrr).
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where T is the identity dyad (D-T = I-D = D). Multiplying the differential
equation (1.65) by I and using the identities
VxVx(Ig)=VeVg—IAg,
VxVx(VeVg) =0,
gives the differential equation for the free space dyadic Green function
V xVxGkrr)=kGkrr)+5r—r)T. (1.66)

The Stratton—Chu formula for vector fields satisfying the Maxwell equations
in bounded domains read as

<_E6(r)) = /Sei (') [V x G (ki,,r")] dS(r)

L P . , r e D;
+J/<io,u1/sh1(7°) G (ki,r,7")dS(r'), <r6D5>

and this integral representation follows from the second vector-dyadic Green
theorem [220]:

/[a~(VxVxﬁ)—(Vxan)~de

D

:_/n.[ax(wﬁ)ﬂw(z)xmds,
S

applied to a(r’') = E;(r') and D(r') = G(k;,r',7), the differential equation
for the free space dyadic Green function, and the identity a-(bx D) = (a xb)-
D. For radiating solutions to the Maxwell equations, we use the asymptotic
behavior of the free space dyadic Green function in the far-field region

_ _ 1
T><[VxG(ks,r,r’)]—i—jksG(ks,r,r’):o(), as T — 00,

T T

to show that the integral over the spherical surface vanishes at infinity.

Remark. The Stratton—Chu formulas are surface-integral representations for
the electromagnetic fields and are valid for homogeneous particles. For inho-
mogeneous particles, a volume-integral representation for the electric field can
be derived. For this purpose, we consider the nonmagnetic domains Dg and
D; (us = p; = 1), rewrite the Maxwell equations as

VXEt :jkoHt, VXHt:—jk()EtEt in Dt, t:S,i,

and assume that the domain D; is isotropic, linear and inhomogeneous, i.e.,

e = ¢i(r). The Maxwell curl equation for the magnetic field H; can be
written as
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V x H; = —jkocs By — jkocs (i - 1) E;

S

ikg (m? —1) B,

= —jkoes By —
JRoE ko

where m, = m,(r) is the relative refractive index and ks = ko,/€s. Defining
the total electric and magnetic fields everywhere in space by

E;+FE.,in Dg,
E_{El in Di,

and

_(H,+H,in D,
H_{Hl in Di,

respectively, and the forcing function J by
J=k}(mi—-1)E,

where

1 in Dy,
My = .
rt my in D,

we see that the total electric and magnetic fields satisfy the Maxwell curl

equations,

V x E = jkoH , VXH:—jkosSE—k‘]—J in D,UD;.
0

By taking the curl of the first equation we obtain an inhomogeneous differen-
tial equation for total electric field

VxVXxE—-KE=J in DsUD;. (1.67)

Making use of the differential equation for the free space dyadic Green function
(1.66) and the identity

V x [G (ks,7,7") - T ()] = [V x G (ks, v, 7")] - T ('),
we derive
V XV x [G (ksyr, ') - J ()]
—k2G (kg,r, ) - T () =T-J ()6 (r —7') .

Integrating this equation over all 7’ and using the identity §(r—7r') = 6(r'—7),
gives [131]

(VxVXxT—KI) | Gks,r,r') - J(r')AV (r')=J(r). (1.68)
RS
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Because (1.67) and (1.68) have the same right-hand side we deduce that
E(r)= G (ks,r,7") - J (r)AV (v'), 7€ DU D;
R3

and, since J = 0 in Dy, we obtain
E(r)= / G (ks,r,7")-J(r)dV (v'), 7€ D;UD;.
D;

This vector field is the particular solution to the differential equation (1.67)
that depends on the forcing function. For r € Dy, the particular solution
satisfies the Silver—Miiller radiation condition and gives the scattered field.
The solution to the homogeneous equation or the complementary solution
satisfies the equation

VXxVXxE,~k’E,=0 in DgUD;.

and describes the field that would exist in the absence of the scattering object,
i.e., the incident field. Thus, the complete solution to (1.67) can be written as

E(r) = E.(r) + /D. G (ks,r,7") - J (r")dV (7))

= E.(r) + k2 /D.é(ks,r,r')- [(mZ (r') =1 E(r')dV (r') ,
r € DysUD;.

We note that for a nontrivial magnetic permeability of the particle, a volume-
surface integral equation has been derived by Volakis [245], and a “pure”
volume-integral equation has been given by Volakis et al. [246].

1.4.2 Far-Field Pattern and Amplitude Matrix

Application of Stratton—Chu representation theorem to the vector fields Fq
and E, in the domain Dy together with the boundary conditions es + e, = e;
and hg + h, = h;, yield

E (r)=V x /Sei (") g (ks,r,7")dS(r")
J

+k0<€s

V><V></hi(r/)g(ks,r,r’)dS(r’), r € Dy,
s

where Ey, Hy and FE;, H; solve the transmission boundary-value problem.
The above equation is known as the Huygens principle and it expresses the
field in the domain Dy in terms of the surface fields on the surface S (see, for
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example, [229]). Application of Stratton—Chu representation theorem in the
domain Dj; gives the (general) null-field equation or the extinction theorem:

E.(r) +V x /Sei (") g (ks,r,7")dS(r")
J

+ k‘oES

V><Vx/hi(r')g(ks,r,r’)dS(r’)=0, r € Dy,
s

which shows that the radiation of the surface fields into D; extinguishes the
incident wave [229]. In the null-field method, the extinction theorem is used
to derive a set of integral equations for the surface fields, while the Huygens
principle is employed to compute the scattered field.

Every radiating solution Eg, H to the Maxwell equations has the asymp-

totic form
elksr 1
ES(T’) = {Esoo(er)_‘_o(r)} y T 00,

,
jksT
Hs(’l"):er {Hsm(e,«)—&—O(i)}, r— 00,

uniformly for all directions e, = r/r. The vector fields Ey and H o defined
on the unit sphere are the electric and magnetic far-field patterns, respectively,

and satisfy the relations:
€
H,, = ier X Eseo
V s

er’Esoc:er'Hsoo:O-

Because F g, also depends on the incident direction ey, Eg, is known as the
scattering amplitude from the direction ey, into the direction e, [229]. Using
the Huygens principle and the asymptotic expressions

jks 7'77"| ejksr . ,
V x |a(r') © = jks {eﬂkb‘e""’ e, xa(r')+0 (E)} ;
|r — 7| r r
ks r—r'| olksT
VxVx|a(r) c = k2
|r — /]| r

x{eerre xla(r) x e, ]+ 0 (2)}

r

as r — 00, we obtain the following integral representations for the far-field
patterns [40]

E.(e.) = ‘ﬁfg{er X es(r')

+ ,/%er X [hg (7') x er]}ejkser"‘/ds (), (1.69)
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H,,(e.) = J%: /s {er X hg(r')

Es / —jkse,-r’ 7,,l
- \/;e, X [es (1) x er]}e ds(r") . (1.70)

The quantity o4 = | Esso|? is called the differential scattering cross-section and
describes the angular distribution of the scattered light. The differential scat-
tering cross-section depends on the polarization state of the incident field and
on the incident and scattering directions. The quantities ogqp = |ESOO,9|2 and
Ogs = |Eso<w|2 are referred to as the differential scattering cross-sections for
parallel and perpendicular polarizations, respectively. The differential scat-
tering cross-section has the dimension of area, and a dimensionless quantity
is the normalized differential scattering cross-section oq, = 04/ 7ra(2:, where a.
is a characteristic dimension of the particle.

To introduce the concepts of tensor scattering amplitude and amplitude
matrix it is necessary to choose an orthonormal unit system for polariza-
tion description. In Sect.1.2 we chose a global coordinate system and used
the vertical and horizontal polarization unit vectors e, and eg, to describe
the polarization state of the incident wave (Fig. 1.9a). For the scattered wave
we can proceed analogously by considering the vertical and horizontal po-
larization unit vectors e, and ey. Essentially, (ex,eg,en) are the spherical
unit vectors of k., while (e,,eq,e,) are the spherical unit vectors of ks in

Z ﬂ\ Z
er
€
(S
€
kS
€
e, Y
N
e
p

Fig. 1.9. Reference frames: (a) global coordinate system and (b) beam coordinate
system
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the global coordinate system. A second choice is the system based on the
scattering plane. In this case we consider the beam coordinate system with
the Z-axis directed along the incidence direction, and define the Stokes vectors
with respect to the scattering plane, that is, the plane through the direction of
incidence and scattering (Fig. 1.9b). For the scattered wave, the polarization
description is in terms of the vertical and horizontal polarization unit vectors
e, and eg, while for the incident wave, the polarization description is in terms
of the unit vectors e; = e, and e = ey X eg. The advantage of this sys-
tem is that the scattering amplitude can take simple forms for particles with
symmetry, and the disadvantage is that e ; and e depend on the scatter-
ing direction. Furthermore, any change in the direction of light incidence also
changes the orientation of the particle with respect to the reference frame.
In our analysis we will use a fixed global coordinate system to specify both
the direction of propagation and the states of polarization of the incident and
scattered waves and the particle orientation (see also, [169,228]).
The tensor scattering amplitude or the scattering dyad is given by [169]

E.(e.)=A(er,ex) Eq, (1.71)
and since e, - Ey, = 0, it follows that:
e -Ae,er)=0. (1.72)

Because the incident wave is a transverse wave, ey - Eoo = 0, the dot product

A(er, er) - e is not defined by (1.71), and to complete the definition, we take

Aler,e;) e, =0. (1.73)

Although the scattering dyad describes the scattering of a vector plane wave,
it can be used to describe the scattering of any incident field, because any
regular solution to the Maxwell equations can be expressed as an integral
over vector plane waves. As a consequence of (1.72) and (1.73), only four
components of the scattering dyad are independent and it is convenient to
introduce the 2 x 2 amplitude matrix S to describe the transformation of the
transverse components of the incident wave into the transverse components
of the scattered wave in the far-field region. The amplitude matrix is given
by [17,169,228]

Broted] = stenen 522 -

where g9 5 and Fepo do not depend on the incident direction. Essentially,
the amplitude matrix is a generalization of the scattering amplitudes including
polarization effects. The amplitude matrix provides a complete description of
the far-field patterns and it depends on the incident and scattering directions
as well on the size, optical properties and orientation of the particle. The
elements of the amplitude matrix



44 1 Basic Theory of Electromagnetic Scattering

S — {Seﬁ Soa ]
S@ﬁ Ssm
are expressed in terms of the scattering dyad as follows:
Sos =e€g-A-eg,
Spe =€9-A-e,,
Sep =€, A-eg,
Spa =€y A-e,. (1.75)

1.4.3 Phase and Extinction Matrices

As in optics the electric and magnetics fields cannot directly be measured be-
cause of their high frequency oscillations, other measurable quantities describ-
ing the change of the polarization state upon scattering have to be defined.
The transformation of the polarization characteristic of the incident light into
that of the scattered light is given by the phase matrix. The coherency phase
matrix Z. relates the coherency vectors of the incident and scattered fields

1
Js ('rer) - 7"72ZC (eryek) J87

where the coherency vector of the incident field J, is given by (1.19) and the
coherency vector of the scattered field Jg is defined as

Eso,0 (€r) Ei o (er
1 Es Esoo,a (er £,

)

) (er)

Js (7“67«) - 272 s Esoo,s/? (eT) Es*oo,@ (6r)
(er) (er)

Explicitly, the coherency phase matrix is given by
|Sos1° SepS5e SeaSis |Seal”
SopS5s SopSpa SeaSys SoaSha
S@HS;/B Swﬁsga SwaS;ﬁ S@Ozsga
2 X X 2
1S08]" SepSia SeaSys |Seal

©

The phase matrix Z describes the transformation of the Stokes vector of the
incident field into that of the scattered field

1
I (re,) = T—QZ (er,ex) e (1.76)
and we have

Z (e.,ex) =DZ, (e, ex) D!,
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where the transformation matrix D is given by (1.21), the Stokes vector of
the incident field I, is given by (1.20) and the Stokes vector of the scattered
field I is defined as

I (e;)
1 s(er
I (re,) = 2 gs ((ZT)) = DJs (re;)
Vs (er)
| Esoo,0 (e,)|2
_ 1 &
22 s _Esoo,so( ) E 500,0 (er) —

J [Bo (er) Bine g (e1) =

+ [ Esco, ) (er)
|Es<>o 0 (6»,«)|2 - |Esoo ] (67)
) E

‘2
‘2
500 0 (67« soo,go ( )

Eeoop (er) Bl , (€ )}

Explicit formulas for the elements of the phase matrix are:

Z22

Zoas
Zoa
Z31
Z32
Z33

1
5 (1081” + 1S0al® +1S,s]” +15,5al?) .

1
5 (19051" =1S0al* + 1S53/ = |S,al*) -

—Re {S@ﬁsga + quaS;ﬁ} ,

1 2 2
= (|Seg|2 + 1Soal” = 1Sl

- \s@af) ,

1
5 (19001 = 1S0al” = 1Sl +1S,pal?) .

—Re{SggS;‘a S S*ﬁ}

—Im {S‘ggsga + Swa @ﬁ} s
—Re {5955’;3 + SwaS;a} )
—Re {SQQS:;/(; - SgpaS;a} )

Re {SggSj,a + SgaSj,ﬂ} ,

Z34 = Im {SQBSZZQ + Sg,ﬁS;‘a} )

Zs = —Im {5,555 + SpaSsa} »
Z42 = 7IH1 {S¢5555 — S¢QS;Q} 5

Zay = Im {SpaSj5 = S0aS5s} -
Z44 = Re {Swasgﬂ — SQQS;ﬁ} .

(1.77)
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The above phase matrix is also known as the pure phase matrix, because
its elements follow directly from the corresponding amplitude matrix that
transforms the two electric field components [100]. The phase matrix of a
particle in a fixed orientation may contain sixteen nonvanishing elements.
Because only phase differences occur in the expressions of Z;;, ¢,5 = 1,2, 3,4,
the phase matrix elements are essentially determined by no more than seven
real numbers: the four moduli |S,,| and the three differences in phase between
the Spq, where p = 0, ¢ and ¢ = 3, . Consequently, only seven phase matrix
elements are independent and there are nine linear relations among the sixteen
elements. These linear dependent relations show that a pure phase matrix has
a certain internal structure. Several linear and quadratic inequalities for the
phase matrix elements have been reported by exploiting the internal structure
of the pure phase matrix, and the most important inequalities are Z3; > 0
and |Z;;| < Zyq for¢,j =1,2,3,4 [102-104]. In principle, all scalar and matrix
properties of pure phase matrices can be used for theoretical purposes or to
test whether an experimentally or numerically determined matrix can be a
pure phase matrix.

Equation (1.76) shows that electromagnetic scattering produces light with
polarization characteristics different from those of the incident light. If the
incident beam is unpolarized, I, = [I,0,0,0]7, the Stokes vector of the
scattered field has at least one nonvanishing component other than inten-
sity, Is = [Z111e, Zo11e, Z311e, Z411)T. When the incident beam is linearly
polarized, I. = [Io, Qe,U.,0]T, the scattered light may become elliptically
polarized since Vi may be nonzero. However, if the incident beam is fully po-
larized (P, = 1), then the scattered light is also fully polarized (Ps = 1) [104].

As mentioned before, a scattering particle can change the state of polar-
ization of the incident beam after it passes the particle. This phenomenon is
called dichroism and is a consequence of the different values of attenuation
rates for different polarization components of the incident light. A complete
description of the extinction process requires the introduction of the so-called
extinction matrix. In order to derive the expression of the extinction matrix
we consider the case of the forward-scattering direction, e, = ey, and define
the coherency vector of the total field E = Es + E. by

Using the decomposition

Ep(r)E;(r) = EeopEl 4 + Eeope™ " EZ (1)

S,q
+ By p (1) By g0 7T+ By (1) BL 4 (7).,

where p and ¢ stand for 8 and «, we approximate the integral of the generic
term Ej, E; in the far-field region and over a small solid angle A{2 around the
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Fig. 1.10. Elementary surface AS in the far-field region

direction ey by

Ey(r)E; (r)r?dQ2 (e,) = E, (rey,) E; (rex) AS,
AR

where AS = r2A (Fig. 1.10). On the other hand, using the far-field repre-
sentation for the scattered field

By, (r) = o {Em,p(er) +0 <1) }

r T

and the asymptotic expression of the plane wave exp(jk. - r) (cf. (B.7)) we
approximate the integrals of each term composing Ej, E; as follows:

/ EeopEly v d12 (€;) m Eeo pEl JAS
A

. 27j N
/ ECOyPeJke.TE:aq(r)T2 df? (eT) ~ _?JECQPESOOMI (ek) )
AR s
* —jke- 27TJ *
By p(r)E 4¢ Werr2 A2 (e,) = ?Esoom (ex) Edoq >
A s
. AS
ES,p(r)Es q(’l")T2 d? (67’) ~ ESOO,P (ek) Esoo,q (ek?) 2

AR

2

Neglecting the term proportional to r~*, we see that

E, (rek) E; (rek) AS ~ EeO,pEE:O,qAS

2mj

_?s [EeO;PE:oo,q (ek) - ESOO’P (ek) E:;O,q}

and the above relation gives

J (rei) AS = J,AS — K. (ex) Je,
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where the coherency extinction matrix K. is defined as

Sgs — Sop Saa —Soa 0
K, — 27j o8 Sea — Y03 ) 0 —S*ga
ks —Sp8 0 Sos = Sea Sga
0 _SWﬁ :’B S:;a - Sgoa
For the Stokes parameters we have
I (rex) AS =~ I.,AS — K (ex) I. (1.78)

with the extinction matrix K being defined as
K (ey) = DK (e,) D",

The explicit formulas for the elements of the extinction matrix are

2
Ki; = k—”lm{sw 4 Spat, i=1,234,
2T
K12 = K21 = kflm{SQﬁ - Sa,aoz} 5
2
Ki3 = K31 = _/?Im {Sea +Swﬁ} s

2
Kiy= Ky = I?Re {Sup — Soalt ,

2T
Koz = —Kgp = k—Im {88 — Soa} »

2
Koy = —Ky9 = —kiRe{Soa + 8o}

27
Koa = —Kig = —Re{Spa — Sas} - (1.79)

The elements of the extinction matrix have the dimension of area and only
seven components are independent. Equation (1.78) is an interpretation of
the so-called optical theorem which will be discussed in the next section. This
relation shows that the particle changes not only the total electromagnetic
power received by a detector in the forward scattering direction, but also its
state of polarization.

1.4.4 Extinction, Scattering and Absorption Cross-Sections

Scattering and absorption of light changes the characteristics of the incident
beam after it passes the particle. Let us assume that the particle is placed in a
beam of electromagnetic radiation and a detector located in the far-field region
measures the radiation in the forward scattering direction (e, = ej). Let W
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be the electromagnetic power received by the detector downstream from the
particle, and W) the electromagnetic power received by the detector if the par-
ticle is removed. Evidently, Wy > W and we say that the presence of the
particle has resulted in extinction of the incident beam. For a nonabsorbing
medium, the electromagnetic power removed from the incident beam Wy — W
is accounted for by absorption in the particle and scattering by the particle.

We now consider extinction from a computational point of view. In order to
simplify the notations we will use the conventional expressions of the Poynting
vectors and the electromagnetic powers in terms of the transformed fields
introduced in Sect. 1.1 (we will omit the multiplicative factor 1/,/€of10). The
time-averaged Poynting vector (S) can be written as [17]

(8) = LRe (B x H'} = {Sine) + (Sucae) + (Sext)

where E = E; + E, and H = H, 4+ H, are the total electric and magnetic
fields,

(Sine) = 3Re{Eo x H)
is the Poynting vector associated with the external excitation,
(Sscat) = %Re{ES x H'}
is the Poynting vector corresponding to the scattered field and
(Sext) = %Re{Ee x H; + E; x H%}

is the Poynting vector caused by the interaction between the scattered and
incident fields.

Taking into account the boundary conditions n X E; = nx E and nx H; =
n x H on S, we express the time-averaged power absorbed by the particle as

1
Wabs = —§/n~Re{Ei XHl*}dS
S

1
:—f/n~Re{E><H*}dS.
2Js

With S. being an auxiliary surface enclosing S (Fig. 1.11), we apply the Green
second vector theorem to the vector fields E and E* in the domain D bounded
by S and S.. We obtain

/n'(ExH*—kE*xH)dS:/ n-(Ex H*+ E* x H)dS,
S SC

and further

/n-Re{ExH*}dS:/ n-Re{E x H*}dS.
S Se
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S,

C

Fig. 1.11. Auxiliary surface Sc

The time-averaged power absorbed by the particle then becomes

1
Wabs:_i/ n-Re{ExH*}dS:—/ n-(S)dS
Se Se

= VVinc - Wscat + Wext )

where
1
Wine = —/ 7 - (Sine) dS = —5/ n-Re {E. x H?}dS, (1.80)
Se Se
1
Woens = / 7 - (Secat) dS = 5/ n-Re{B. x H*}dS, (1.81)
SC SC

1
Wext:—/ n-(Sext>dS:—§/ n-Re{E.x H* + E; x H*}dS.
S, Se

c

(1.82)

The divergence theorem applied to the excitation field in the domain D,
bounded by S, gives

v-(EexH;)dvz/ n-(E. x HY)dS,
DC Sc

whence, using

V- (Eo x HY) = jko (us \H.|* — < |Ee|2) ,

and
Re{V - (E., x H:)} =0

yield
Wine = 0.
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Thus, Weyt is the sum of the electromagnetic scattering power and the elec-
tromagnetic absorption power

Wext = Wscat + Wabs .

For a plane wave incidence, the extinction and scattering cross-sections are
given by
cht

Coxt = ———, (1.83)
% i -Ee0|2
Wsca
Cuat = ——24 (1.84)

2

1 £s
SRV

el
the absorption cross-section is
Cabs = Uext — Cscat > Oa

while the single-scattering albedo is

C.
w = scat S 1.
C'ext

Essentially, Cycat and Ch,ps represent the electromagnetic powers removed from
the incident wave as a result of scattering and absorption of the incident ra-
diation, while Coyy gives the total electromagnetic power removed from the
incident wave by the combined effect of scattering and absorption. The op-
tical cross-sections have the dimension of area and depend on the direction
and polarization state of the incident wave as well on the size, optical proper-
ties and orientation of the particle. The efficiencies (or efficiency factors) for
extinction, scattering and absorption are defined as

cht - Cscat o C'abs
G ) Qscat* G ) Qabs* G s

Qext =

where G is the particle cross-sectional area projected onto a plane perpendicu-
lar to the incident beam. In view of the definition of the normalized differential
scattering cross-section, we set G' = wa2, where a, is the area-equivalent-circle
radius. From the point of view of geometrical optics we expect that the ex-
tinction efficiency of all particles would be identically equal to unity. In fact,
there are many particles which can scatter and absorb more light than is
geometrically incident upon them [17].

The scattering cross-section is the integral of the differential scatter-
ing cross-section over the unit sphere. To prove this assertion, we express

Cycat as
_ [ :
Cocat = —54/ — e -Re{Es x H;}dS,
|Ee0| €s Js.
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where S, is a spherical surface situated at infinity and use the far-field repre-
sentation

1 S 1
eT'(ESXH:):ﬁ”% {|ESM|Q+O<T>] , T — 00

to obtain )
2
Cscat = 72/ |Esoo|” df2. (1.85)
|Eeo| (9]
The scattering cross-section can be expressed in terms of the elements of the

phase matrix and the Stokes parameters of the incident wave. Taking into
account the expressions of I, and I, and using (1.76) we obtain

Cscat - l\/ Is (er) ds (67«)
I. Jo

1
A / [Z11 (er,er) I + Z12 (€r, €r) Qe
eJo
+ Ziz(er,ex) Us + Z14 (er, ex) Vo] A2 (e,) . (1.86)

The phase function is related to the differential scattering cross-section by the
relation
4

2
plerer) = —————=|Esxo ()]
Cscat ‘-Ee0|2

and in view of (1.85) we see that p is dimensionless and normalized, i.e.,

1
— d=1.
47 Qp

The mean direction of propagation of the scattered field is defined as

1 / )
g = A - 2 |E oo (e’r‘)| er d.Q (67‘) (187)
Cicat |Ee0\2 o
and obviously
_ 1 / Llenye, d22 (e
9= CscatIc o s\€r)€Er €,
1
- m /Q [le (eT’ ek) Ie + Z12 (era ek) Qe

+ Z13(er,ex) Ue + Z14 (er, e) Vol e, df2 (e,) .

The asymmetry parameter (cos @) is the dot product between the vector g
and the incident direction ey, [17,169],
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1 2
(cosO) —g-ep — — / B (e,) €, - €4, A2 (e,)
Cscat |EeO‘2 0

= % Qp (er,er)cosO@dS? (e,) ,
where cos@ = e, - e, and it is apparent that the asymmetry parameter is
the average cosine of the scattering angle @. If the particle scatters more
light toward the forward direction (© = 0), (cos ©) is positive and (cos O) is
negative if the scattering is directed more toward the backscattering direction
(@ = 180°). If the scattering is symmetric about a scattering angle of 90°,
(cos ©) vanishes.

1.4.5 Optical Theorem

The expression of extinction has been derived by integrating the Poynting vec-
tor over an auxiliary surface around the particle. This derivation emphasized
the conservation of energy aspect of extinction: extinction is the combined
effect of absorption and scattering. A second derivation emphasizes the inter-
ference aspect of extinction: extinction is a result of the interference between
the incident and forward scattered light [17]. Applying Green’s second vector
theorem to the vector fields E4 and E} in the domain D bounded by S and
S, we obtain

/no(Est:JrE:xHS)dS:/ n-(Esx H; + E; x Hy)dS

S Se

and further

/n~Re{ESXH;‘+E2xHS}dS=/ n-Re{E;x H:+ E: x H,}dS.
S SC

This result together with (1.82) and the identity Re{E.x H:} = Re{E}x H}
give

1
Wext - _i/n'Re{Es X HZ +E: X HS}dS7
s
whence, using the explicit expressions for E, and H,, we derive

1
Weoxt = =Re {/ [EXy - hs (7))
2 s
— ;—5 (er. x EY)) - es (r’)] e ik 48 (r')} )

In the integral representation for the electric far-field pattern (cf. (1.69)) we
set e, = ey, take the dot product between Eg(ex) and E7,, and obtain
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fo B () = 2/ 2 [ (B ()
_ & (er x EY) - es (r’)} o ke’ g ().
V hs

The last two relations imply that
1 es 4m
Wex =-R — 7 . 'Esoo
= re{ /2B B ()]

_ 47
ks |‘E'eO|2

and further that

Im {EZO 3 RS (ek>} . (1.88)

ext

The above relation is a representation of the optical theorem, and since the
extinction cross-section is in terms of the scattering amplitude in the forward
direction, the optical theorem is also known as the extinction theorem or
the forward scattering theorem. This fundamental relation can be used to
compute the extinction cross-section when the imaginary part of the scattering
amplitude in the forward direction is known accurately. In view of (1.88) and
(1.74), and taking into account the explicit expressions of the elements of the
extinction matrix we see that
1
Oext — I [

e

K1 (ex) I + K12 (ex) Qe + K13 (ex) Ue + K14 () Vo] . (1.89)

1.4.6 Reciprocity

The tensor scattering amplitude satisfies a useful symmetry property which
is referred to as reciprocity. As a consequence, reciprocity relations for the
amplitude, phase and extinction matrices can be derived. Reciprocity is a
manifestation of the symmetry of the scattering process with respect to an
inversion of time and holds for particles in arbitrary orientations [169]. In
order to derive this property we use the following result: if E1, H; and Es,
H are the total fields generated by the incident fields Fo1, He; and Feo,
H .5, respectively, we have

/n~(E2><H1—E1><H2)dS:/ TL‘(EQXHl—E1><H2)dS,
S SC

where as before, S; is an auxiliary surface enclosing S. Since E; and FE5 are
source free in the domain bounded by S and S., the above equation follows
immediately from Green second vector theorem. Further, applying Green'’s
second vector theorem to the internal fields F;; and E;y in the domain Dj,
and taking into account the boundary conditions n x Ej; 2 = n x E; > and
nx Hijjos=nx HjsonlS, yields
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/’I’L(EQ XHl—El XHg)dSZO,
S

whence

/ n~(E2><H17E1><H2)dS:O, (190)
Se

follows. We take the surface S. as a large sphere of outward unit normal
vector e,., consider the limit when the radius R becomes infinite, and write
the integrand in (1.90) as

EQ XH1 —E1 XH2
:EeQ X Hel _Eel X He2+Es2 X Hsl _Esl X H32
+Es2 X Hel _Eel X Hs2+Ee2 X Hsl _Esl X H62'

The Green second vector theorem applied to the incident fields E.; and Eqo in
any bounded domain shows that the vector plane wave terms do not contribute
to the integral. Furthermore, using the far-field representation
Eyo xHg —Eg x Hy
erksr 1
= T {ESOO2 X Hsool — Egoo1 X Hso<>2 +0 (’I“>} )
and taking into account the transversality of the far-field patterns

EsooQ X Hsool _Esool X Hsoo2 :07

we see that the integral over the scattered wave terms also vanishes. Thus,
(1.90) implies that

/ er~(E52><Heleel><H52)dS:/ er~(Esleengengsl)dS.
Se Se

(1.91)
For plane wave incidence,

Eeu(r) = EeOu exp (Jkeu . 'I") 5 keu = ksek:u 5 u = 17 2a

the integrands in (1.91) contain the term exp(jksRex1.2 - €,). Since R is large,
the stationary point method can be used to compute the integrals accordingly
to the basic result

k‘ 2 T )
R / / 9 (6, ) SHRICD g dyp =
0 0

—_— eijf(est#Pst)
27j ’

;g (Bst st )
\/ f00f<p<p - fo%p

(1.92)
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where (6, pst) is the stationary point of f, fag = 0%f/002, fpp = 0*f/0p?
and fp, = 0>f/000p. The integrals in (1.91) are then given by

/ e (Egg X Hyy — Eey x Hyp)dS
Se

R e i
= —47TJk* = Buoor (—€k1) - Ecore 5,
sV Hs

/ €, - (Esl X Heg 7E92 X Hgl)ds
S

R e _j
= —47TJk*\/*Esoo1 (—exz) - Eggze 7R
s \ Ms

and we deduce the reciprocity relation for the far-field pattern (Fig.1.12):
Eq2 (—er1) - Eco1 = Esoo1 (—er2) - Ecoz -
The above relation gives

Eco1 - A(—ep1,ex2) Ecoz = Ecpz - A(—ex2, €x1) - Ecor

— —T
and sincea-D-b=b-D -a, and E, and E.y are arbitrary transverse
vectors, the following constraint on the tensor scattering amplitude:

A(—ep2,—er1) = A (er1;ex2)

follows. This is the reciprocity relation for the tensor scattering amplitude
which relates scattering from the direction —ey; into —ey2 to scattering from
ers to eg1. Taking into account the representation of the amplitude matrix
elements in terms of the tensor scattering amplitude and the fact that for

Ee2

Fig. 1.12. Illustration of the reciprocity relation
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€', = —ey, we have '3 = eg and €', = —e,, we obtain the reciprocity
relation for the amplitude matrix:

S (—6 —_e ) o SOB (ekla ek2) —S@ﬁ (ekh ekg)
R —Soa (€1, ex2) Spa (€k1,€x2)

If we choose ex1 = —ers = —ey, we obtain
Sep (—er,er) = —Spa (—er, er) ,

which is a representation of the backscattering theorem [169].
From the reciprocity relation for the amplitude matrix we easily derive the
reciprocity relation for the phase and extinction matrices:

Z(—ekr,—e)=QZ" (e;,e1) Q
and
K (—e:) =QK" (er)Q,

respectively, where @ = diag[1,1,—1,1].

The reciprocity relations can be used in practice for testing the results of
theoretical computations and laboratory measurements. It should be remarked
that reciprocity relations give also rise to symmetry relations for the dyadic
Green functions [229].

1.5 Transition Matrix

The transition matrix relates the expansion coefficients of the incident and
scattered fields. The existence of the transition matrix is “postulated” by the
T-Matrix Ansatz and is a consequence of the series expansions of the incident
and scattered fields and the linearity of the Maxwell equations. Historically,
the transition matrix has been introduced within the null-field method for-
malism (see [253,256]), and for this reason, the null-field method has often
been referred to as the T-matrix method. However, the null-field method
is only one among many methods that can be used to compute the transi-
tion matrix. The transition matrix can also be derived in the framework of
the method of moments [88], the separation of variables method [208], the
discrete dipole approximation [151] and the point matching method [181].
Rother et al. [205] found a general relation between the surface Green func-
tion and the transition matrix for the exterior Maxwell problem, which in
principle, allows to compute the transition matrix with the finite-difference
technique.

In this section we review the general properties of the transition matrix
such as unitarity and symmetry and discuss analytical procedures for aver-
aging scattering characteristics over particle orientations. These procedures
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relying on the rotation transformation rule for vector spherical wave func-
tions are of general use because an explicit expression of the transition matrix
is not required. In order to simplify our analysis we consider a vector plane
wave of unit amplitude

Eo(r) =epae™ ", H(r)= \/fjsek X epoieeT |
S

where epo1 - e =0 and |epq1| = 1.

1.5.1 Definition

Everywhere outside the (smallest) sphere circumscribing the particle it is ap-
propriate to expand the scattered field in terms of radiating vector spherical
wave functions

oo

Ey(r) = Z Z fmnM?;nn (ksr) + gmnNan (kst) (1.93)

n=1m=-—n

and the incident field in terms of regular vector spherical wave functions

o0 n
Eo(r)=>_ Y amnMy,, (k) + bpn N}, (kr) . (1.94)

n=1m=—n
Within the vector spherical wave formalism, the scattering problem is solved
by determining f,., and g¢,., as functions of a,,, and b,,,. Due to the lin-
earity relations of the Maxwell equations and the constitutive relations, the
relation between the scattered and incident field coefficients must be linear.
This relation is given by the so-called transition matrix T" as follows [256]

i el R o ) PO

Essentially, the transition matrix depends on the physical and geometrical

characteristics of the particle and is independent on the propagation direction
and polarization states of the incident and scattered field.

If the transition matrix is known, the scattering characteristics (introduced

in Sect. 1.4) can be readily computed. Taking into account the asymptotic

behavior of the vector spherical wave functions we see that the far-field pattern

can be expressed in terms of the elements of the transition matrix by the
relation

ESOO (eT) = kl Z (_j)n+1 [fmanLTl(eT) +jgmnnmn(er>]

=LY

s n,mmni,mi
11 12
X [(Tmn,mlnlamlnl + Tmn,mlnl bmﬂh) mmn(er)

+]J (Tﬁqln,mlmamml + T’rznzn,mlnlbmlnl) nmn<er)] . (1-96)



1.5 Transition Matrix 59

To derive the expressions of the tensor scattering amplitude and amplitude
matrix, we consider the scattering and incident directions e, and ey, and
express the vector spherical harmonics as

wmn(er) = Tmn,0 (er) €y + Tmmn,p (87«) €y,
mmn(ek) = Tmn,B (ek) €j + Tmn,«a (ek) €qn,

where &, stands for 1m,,,, and n,,,. Recalling the expressions of the incident
field coefficients for a plane wave excitation (cf. (1.26))

Amn = 4jnepol : m:nn (ek) 5

_4jn+1

b = €pol * Ty, (€k)

and using the definition of the tensor scattering amplitude (cf. (1.71)), we
obtain

A (eT7 ek Z Z n+1 TL] { [Tv}nln mini Mmn (eT)

+ G i Pomn (€0)] @ M, (er) + [—i T myn, Momn (€r)
+ Tgfn sming Pmn (er)} & n:unl (ek‘)} .
In view of (1.75), the elements of the amplitude matrix are given by

+1.
Spq (67«, ek Z Z " nl { [TT}”LIH m1n1mjn1n1»q (ek)

S n,mny,mq

T71n2n mlnln:llnl,q (ek)] mmn,p (eT’)

[T21 m* (ek) ,

mn,mini mini,q

22 *

Tmn mlnlnmlnl,q (6}.;)] nm’ﬂ,P (67«)} (197)
for p = 0,9 and q = (8, a. For a vector plane wave linearly polarized in the
p-direction, am, = 4j"my,, 5 and by, = —4jntin® > and Spg = Eseo g and
Syp = Fsoo,p- Analogously, for a vector plane wave linearly polarized in the
a-direction, amn = 4j"my,, , and by, = —4j"*1n Nnar a0d Sea = Fso o

and Syq = Fyoo,,- In practical computer calculations, this technique, relying
on the computation of the far-field patterns for parallel and perpendicular
polarizations, can be used to determine the elements of the amplitude matrix.

For our further analysis, it is more convenient to express the above equa-
tions in matrix form. Defining the vectors

e [fmm] e [im]
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and the “augmented” vector of spherical harmonics

(*j)nmmn (er)

vier)=|. N
(er) J(=1)" mmn (&)
we see that
E (er) = T (e.)s = LT (e;)Te = — L eTpTy (er), (1.98)
ks ks ks

and, since e = 4epor - v*(ey), we obtain
Sy ( Y Y 1.99
Pq ervek) - _ksvp (67‘) Yy (ek) = _ks C (ek) Up (er) . ( : )

The superscript T means complex conjugate transpose, and

v,()=1.," k ,

»() [J ()" annp (+)

where p = 6, ¢ for the e,.-dependency and p = (3, « for the ej-dependency.
The extinction and scattering cross-sections can be expressed in terms

of the expansion coefficients ampn, bmn, fin and gmy,. Denoting by S. the

circumscribing sphere of outward unit normal vector e, and radius R, and

using the definition of the extinction cross-section (cf. (1.82) and (1.83) with
|Beof = 1), yields

C’ext:—“?/ e, Re{E. xH; + E;x H:}dS
s Se

e {J Z Z /gc {(fm”a:nlnl + gm”brmnl)

n,mmni,mi

x [(er x M3,) - N+ (e, x N3 Y- M

mini mini
+ (fmnbjnlnl + gmnajnlnl)
x [(er x M2,) MY, + (e x N2,)- N 1}dS}.

mini miny

Taking into account the orthogonality relations of the vector spherical wave
functions on a spherical surface (cf. (B.18) and (B.19)) we obtain

n

Cext = —Re {JZR Z Z (fmna:nn + gmnb:nn)

n=1m=-—n

< {10 ) R — ) [ )]

whence, using the Wronskian relation
J
ksR’

B (k) [ B ()] — 3o (ks R) [k RAD (k)] = —
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we end up with

i - - * *
Coxt = =73 ST N Re{fmnthn + Gmnbin} - (1.100)

S n=1m=—-n

For the scattering cross-section, the expansion of the far-field pattern in terms
of vector spherical harmonics (cf. (1.96)) and the orthogonality relations of
the vector spherical harmonics (cf. (B.12) and (B.13)), yields

oo n
m
Cacat = 73 0 D, [ Fmnl* + lgmnl” - (1.101)

n=1 —

Thus, the extinction cross-section is given by the expansion coefficients of the
incident and scattered field, while the scattering cross-section is determined
by the expansion coefficients of the scattered field.

1.5.2 Unitarity and Symmetry

It is of interest to investigate general constraints of the transition matrix such
as unitarity and symmetry. These properties can be established by applying
the principle of conservation of energy to nonabsorbing particles (¢; > 0 and
ui > 0). We begin our analysis by defining the & matrix in terms of the T'
matrix by the relation

S=1I+2T,

where I is the identity matrix. In the literature, the S matrix is also known
as the scattering matrix but in our analysis we avoid this term because the
scattering matrix will have another significance.

First we consider the unitarity property. Application of the divergence
theorem to the total fields E = E;+ E, and H = Hy,+ H, in the domain D
bounded by the surface S and a spherical surface S. situated in the far-field
region, yields

/V~(ExH*)dV:—/n-(ExH*)dS+/ e.-(Ex H")dS. (1.102)
D S Se

We consider the real part of the above equation and since the bounded domain
D is assumed to be lossless (e > 0 and us > 0) it follows that:

Re{V . (E x H*)} = Re {jkous |H|? — jkoss |E|2} =0 in D. (1.103)

On the other hand, taking into account the boundary conditions n x E; =
nx Eandn x H;=n x H on S, we have

/n.(ExH*)dsz/n-(Eifo)dszf V- (B x HY)dV
S S D;
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and since for nonabsorbing particles
Re{V - (E; x H;)} = Re{jko |[Hi — jkosi |E{[*} =0 in Dy,

we obtain
/n'Re{ExH*}dS:O. (1.104)
s

Combining (1.102), (1.103) and (1.104) we deduce that

/ e.-Re{ExH"}dS=0. (1.105)
S

c

We next seek to find a series representation for the total electric field. For this
purpose, we use the decomposition

Ny ) 2 [\ Np N )]

where the vector spherical wave functions M?2, and N2, have the same
expressions as the vector spherical wave functions M2 and N3 . but with
the spherical Hankel functions of the second kind h,(f) in place of the spherical
Hankel functions of the first kind A%’. It should be remarked that for real

arguments , hZ (x) = [h%l)(x)]*. In the far-field region

M? (kr)ze_w " (6, 0) + O L
mn k,r mn b ,r b

N2 (kr):efjkr P (6, 0) + O 1
mn k/r mn b ’r b)

2

mn

as 7 — oo, and we see that M2 and N2, behave as incoming transverse

vector spherical waves.
The expansion of the incident field then becomes

E, = Z amnM}nn + bmnN:ann
n,m

1 1
=5 > amn My, + b N3, + 3 > amn My, + b N7,

whence

1 1

n,m

1 2 2
+§ Zamann + bmnNmn 9

n,m



1.5 Transition Matrix 63

follows. Setting

Cmn = 2fmn + amn ,

and using the T-matrix equation, yields

[dmn]_.s[bmn}._<z+zzq[bmn}.
The coefficients a,,, and b,,, are determined by the incoming field. Since in
the far-field region M2, and N2, become incoming vector spherical waves,
we see that the S matrix determines how an incoming vector spherical wave
is scattered into the same one.

In the far-field region, the total electric field

! 1
FE = 5 ;n CmnM?nn + dmnN?”n + 5 ;n ClmnMgnn + bmnNgnn

can be expressed as a superposition of outgoing and incoming transverse
spherical waves

E(r) = % {Egp(eT) +0 C)} + % {Eg?(er) +0 C)} ,

T — 00 (1.106)
with
1 “n .
Eg’) (er) = 2k HZ;n (=) i [CrnnMmn(€r) + jdmnTmn(er)]
1 o .
Eg) (67“) = ok, nz;nJ + [amnmmn(er) _mennmn(er)] .

For the total magnetic field we proceed analogously and obtain

- i o (2 fmtr o 1)

r— 00

with

HY =\ [Ze < BY.
HO — _ [Se x ED.
s
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Thus

1 s 2 2 1
Re{er~(ExH*)}—T21/;{‘Eg)’ f’Eg)‘ +O<r)}’ r — 00

and (1.105) yields
2 2
/ (\Egg] - ]Eg?\ )dQ ~0. (1.107)
2

The orthogonality relations of the vector spherical harmonics on the unit
sphere give

2
E(l)‘ 0= m * t Amn
| [B9] a2 = fz bl s's [

/Q ’Eg:)‘ df? = @ [amn’bmn] |:bmn:| (1108)
and since the incident field is arbitrarily, (1.107) and (1.108) implies that
217,228, 256]

Sis=1. (1.109)

The above relation is the unitary condition for nonabsorbing particles. In
terms of the transition matrix, this condition is

1
T~ T
T'T=— (T+T'),

or explicitly

2 o] n’
Z Z Z TrZH;L ,mn mjn’ ming 1 (Trjrffnl mn +T7’Lr{n mlnl) . (1110)
k=1n'=1m'=—n

For absorbing particles, the integral in (1.107) is negative. Consequently, the
equality in (1.110) transforms into an inequality which is equivalent to the
contractivity of the & matrix [169]. Taking the trace of (1.110), Mishchenko
et al. [169] derived an equality (inequality) between the T-matrix elements of
an axisymmetric particle provided that the z-axis of the particle coordinate
system is directed along the axis of symmetry.

To obtain the symmetry relation we proceed as in the derivation of the
reciprocity relation for the tensor scattering amplitude, i.e., we consider the
electromagnetic fields F,,, H, generated by the incident fields FE.,, H¢,, with
u =1, 2. The starting point is the integral (cf. (1.90))

/er-(EQXHl—E1XH2)dS:O
SC
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over a spherical surface S, situated in the far-field region. Then, using the
asymptotic form (cf. (1.106))

B = S5 B +o (1) b+ S B e o (1)}

for u = 1,2, we obtain

/ (e,« X Eggo) : (er x ng}o) 40 :/ (e,« x Eﬁ)o) : (er x ng;) 4.
[0 [0

(1.111)
Taking into account the vector spherical harmonic expansions of the far-field
patterns EEBO and EL%BO, u = 1,2, and the relations e, X M, = Ny, and
€r X Ny = —Myyyp, We see that

/ <€r x Eéi)0> - (e"' X Egi)o) a2 = i [al m1n17b1 m1n1] e mmm )
1% akz - ’

d?,—ml ni

1 2 ™ CL2,—mn
/Q (er X Ego)o> : (er X Eéo)o) dn = 473 [c1,mn, d1,mn] [b2,mn‘| )
(2)

where @y mn, bu,mn are the expansion coefficients of the far-field pattern Ey s,

while ¢y mn, du,mn are the expansion coefficients of the far-field pattern ES}O)O

Consequently, (1.111) can be written in matrix form as

11 12
b S—mlnl,—mn S—mlnl,—m,n a27*mn
[al,mﬂhv 17m1n1} S21 S22 by
n ,—mn

—mini,—m —mini,—mn

[al,mﬁh ) bl,mﬂh]

11 21
Smn,mlnl Smn,mlnl a2,—mn
812 822

mn,miny “mn,min; b27m”

and since the above equation holds true for any incident field, we find that

S”?m»mln1 = Sj—zm1n1,—mn
and further that - )
T’:;Zn7m1n1 = Tilrnlnl,fmn (1112)

for 4,7 = 1,2. This relation reflects the symmetry property of the transition
matrix and is of basic importance in practical computer calculations. We
note that the symmetry relation (1.112) can be obtained directly from the
reciprocity relation for the tensor scattering amplitude

T
A0, p1;02,02) = A" (m— 02,1+ po;m — 01,1+ 1)
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and the identities
Mo (T — 0,7+ ) = (=1)" My (0, ) ,
N (T = 0,7+ ¢) = (=1)" 1 (6, 0)

and

m*mn (07 ()0) 3
Ny (0,0) -

M_n (0, ¢)

N_mn (97 (P)

Additional properties of the transition matrix for particles with specific sym-
metries will be discussed in the next chapter. The “exact” infinite transition
matrix satisfies the unitarity and symmetry conditions (1.110) and (1.112),
respectively. However, in practical computer calculations, the truncated tran-
sition matrix may not satisfies these conditions and we can test the unitarity
and symmetry conditions to get a rough idea regarding the convergence to be
expected in the solution computation.

Remark. In the above analysis, the incident field is a vector plane wave
whose source is situated at infinity. Other incident fields than vector plane
waves can be considered, but we shall assume that the source of the inci-
dent field lies outside the circumscribing sphere S.. In this case, the incident
field is regular everywhere inside the circumscribing sphere, and both expan-
sions (1.93) and (1.94) are valid on S.. The T-matrix equation holds true
at finite distances from the particle (not only in the far-field region), and
therefore, the transition matrix is also known as the “nonasymptotic vector-
spherical-wave transition matrix”. The properties of the transition matrix
(unitarity and symmetry) can also be established by considering the energy
flow through a finite sphere S, [238]. If we now let the source of the incident
field recede to infinity, we can let the surface S. follow, i.e., we can consider
the case of an arbitrary large sphere and this brings us to the precedent
analysis.

1.5.3 Randomly Oriented Particles

In the following analysis we consider scattering by an ensemble of ran-
domly oriented, identical particles. Random particle orientation means that
the orientation distribution of the particles is uniform. As a consequence
of random particle orientation, the scattering medium is macroscopically
isotropic, i.e., the scattering characteristics are independent of the incident
and scattering directions e and e., and depend only on the angle bet-
ween the unit vectors e; and e,. For this type of scattering problem, it
is convenient to direct the Z-axis of the global coordinate system along
the incident direction and to choose the X Z-plane as the scattering plane
(Fig. 1.13).
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0O
y <

X o

Fig. 1.13. The Z-axis of the global coordinate system is along the incident direction
and the X Z-plane is the scattering plane

General Considerations

The phase matrix of a volume element containing randomly oriented particles
can be written as

Z(er,ex)=Z(0,0=0,=0,a=0),

where, in general, § and ¢ are the polar angles of the scattering direction
e, and B and « are the polar angles of the incident direction eg. The phase
matrix Z(6,0,0,0) is known as the scattering matrix F' and relates the Stokes
parameters of the incident and scattered fields defined with respect to the
scattering plane. Taking into account that for an incident direction (8, «),
the backscattering direction is (7 — 3, a + m), the complete definition of the
scattering matrix is [169]

F(0) =

Z(0,0,0,0), 6 € [0,m),
Z (m,m,0,0), 0=m.

The scattering matrix of a volume element containing randomly oriented par-
ticles has the following structure:

Fi1(0) Fi200) Fi3(0) Fi4(0)

| Fi2(0)  Fa2(0)  Fas(0) Foa(0)
F) = —F13(0) —Fy3(0) F33(6) F34(6) (1.113)

F14(0)  Fou(0) —F34(0) Fua(0)

If each particle has a plane of symmetry or, equivalently, the particles and
their mirror-symmetric particles are present in equal numbers, the scattering
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medium is called macroscopically isotropic and mirror-symmetric. Note that
rotationally symmetric particles are obviously mirror-symmetric with respect
to the plane through the axis of symmetry. Because of symmetry, the scat-
tering matrix of a macroscopically isotropic and mirror-symmetric scattering
medium has the following block-diagonal structure [103,169]:

F11(0) F12(0) 0 0
| Fi2(0) F2(8) O 0
Fe)= 0 0 Fy(0) Fau(0) | (1)

0 0  —F54(0) Fuu(0)
The phase matrix can be related to the scattering matrix by using the rotation
transformation rule (1.22), and this procedure involves two rotations as shown
in Fig. 1.14. Taking into account that the scattering matrix relates the Stokes
vectors of the incident and scattered fields specified relative to the scattering
plane, I, = (1/r?)F(©)I., and using the transformation rule of the Stokes

vectors under coordinate rotations I, = L(oy)I, and Iy = L(—09)I,, we
obtain

Z(0,¢,8,a)=L(—02) F(O)L(01),
where

cos® = ey, - e, = cos Bcosf + sin Bsinf cos (¢ — ) ,

Z{k

y <

Fig. 1.14. Incident and scattering directions e, and e,. The scattering matrix
relates the Stokes vectors of the incident and scattered fields specified relative to
the scattering plane
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, sin 8 cos @ — cos Bsinf cos (¢ — @)
Cosoy =€, e, = — - ,
sin ©

cos Bsin @ — sin B cos f cos (p — )
sin © '

COsOy =€, €, =

For an ensemble of randomly positioned particles, the waves scattered by
different particles are random in phase, and the Stokes parameters of these
incoherent waves add up. Therefore, the scattering matrix for the ensemble is
the sum of the scattering matrices of the individual particles:

F=N(F),

where N is number of particles and (F) denotes the ensemble-average scat-
tering matrix per particle. Similar relations hold for the extinction matrix
and optical cross-sections. Because the particles are identical, the ensemble-
average of a scattering quantity X is the orientation-averaged quantity

1 27 27 T )
(X) = 2 /0 /0 /0 X (ap, Bps ) sinfp dBp day, dyp

where ap, B, and v, are the particle orientation angles.

In the following analysis, the T matrix formulation is used to derive
efficient analytical techniques for computing (X). These methods work much
faster than the standard approaches based on the numerical averaging of
results computed for many discrete orientations of the particle. We begin with
the derivation of the rotation transformation rule for the transition matrix
and then compute the orientation-averaged transition matrix, optical cross-
sections and extinction matrix. An analytical procedure for computing the
orientation-averaged scattering matrix will conclude our analysis.

Rotation Transformation of the Transition Matrix

To derive the rotation transformation rule for the transition matrix we assume
that the orientation of the particle coordinate system Oxyz with respect to
the global coordinate system OXY Z is specified by the Euler angles ay, G,
and 7p.

In the particle coordinate system, the expansions of the incident and scat-
tered field are given by

E.(r,0,9) Z Z A M 3, (K, 0,0) 4 b N 1, (K, 0,0)
=1lm=—n
E,(r,0,¢) = Z Z Frn M2, (k72 0,0) + gumn N2, (ke 0,0)

n=1m=-—n
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while in the global coordinate system, these expansions take the form

(r,®,0) Z Z Amn ML (ksr, @, W) + by N- . (kr, &, W)

n=1m=-—n

s (r,®, ) Zmen (D) + Grn N3, (ker, &, )

n=1m=—-n

Assuming the T-matrix equations s = Te and s = 1~"’5~, our task is to express
the transition matrix in the global coordinate system T in terms of the tran-
sition matrix in the particle coordinate system T'. Defining the “augmented”
vectors of spherical wave functions in each coordinate system

M3 (ksr,0, ) |
N3 (ksTaea‘p)

mn

w13 (kst, 0, 0) = l

and

ML3 (kgr, &, W) ]

Wi (ks @, ) = NL3 (ker, ®,9) |

and using the rotation addition theorem for vector spherical wave functions,
we obtain

~T ~ ~T
E.=eTw,=¢'w,=¢ R (ap, Bp, 1p) w1,

E.=35"w;=sTw; =s"R (—Yp, —Bp, —p) W3 .
Consequently
e=R" (op, Bp, 1) €,
5 =R (v, —Fp, —p) s,
and therefore,
T (ap, fp: ) = RT (—9p: =B, ~0) TR (g, B, %) - (1.115)
The explicit expression of the matrix elements is [169,228,233]

T’rgn ,ming (ap;ﬂp7ryp Z Z D ’YIH Bp’ )T:r‘znm im1

77774777/ =—Nn3

D:Lnllm (ap, Bp; p) (1.116)

fori,j=1,2.

Because the elements of the amplitude matrix can be expressed in terms of
the elements of the transition matrix, the above relation can be used to express
the elements of the amplitude matrix as functions of the particle orientation
angles ap, B, and vp. The properties of the Wigner D-functions can then be
used to compute the integrals over the particle orientation angles.
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Orientation-Averaged Transition Matrix

The elements of the orientation-averaged transition matrix with respect to
the global coordinate system are given by

2m 2m
<T7Z7{n m1n1> = 87'('2 / / / mn ,ming Oép,ﬁp,’)/p) Sinﬁp dﬁp dO(p dFyP

27 p2m
= 7T2 Z Z T’rlinm nl/ / /Dn Vp’_ﬂpy_ap)

m/=
nml

XDZ;lmi (ap, BpyYp) sinf, A3, dag, dyp, - (1.117)

Using the definition of the Wigner D-functions (cf. (B.34)), the symmetry
relation of the Wigner d-functions d},,.(—6y) = d,,.,(Bp), and integrating
over ay and 7, yields

<Tvgn,mln1> Z Z Am m mlm/ 5m m 6mm1

r—_
m'=—nm|=

XT:ri n,m/ in1 / dmm ﬁp dnllmll (ﬁp) Sinﬁp dﬁp )

where A, is given by (B.36). Taking into account the identities: A,y =
A and (Apr)? = 1, and using the orthogonality property of the d-
functions (cf. (B.43)), we obtain [168,169]

(T myns ) = Bonoms S ] (1.118)
with
- 1 n .
9 = T, 1.119

The above relation provides a simple analytical expression for the orientation-
averaged transition matrix in terms of the transition matrix in the particle
coordinate system. The orientation-averaged (T*) matrices are diagonal and
their elements do not depend on the azimuthal indices m and my.

Orientation-Averaged Extinction and Scattering Cross-Sections

In view of the optical theorem, the orientation-averaged extinction cross-
section is (cf. (1.88) with |Eeo| = 1)

(Cox) = o1 { (e B (e))}
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Considering the expansion of the far-field pattern in the global coordinate sys-
tem (cf. (1.96)), taking the average and using the expression of the orientation-
averaged transition matrix (cf. (1.118) and (1.119)), gives

* 1 A\ ~ 7 *
<ep01 : Esoo (ez)> = ki Z (*.]) + {(tilamn + tizbmn) epol *Mmn (ez)

n,m
5 (1 mn + B ) €por - omn (e)]

where the summation over the index m involves the values —1 and 1. In

the next chapter we will show that for axisymmetric particles, T, ., =

T, and Tgn on = 0 for i # j, while for particles with a plane of sym-
metry, 779, .. = 0 for i # j. Thus, for macroscopically isotropic and mirror-

symmetric media, (1.119) gives t12 = 2! = 0. Further, using the expressions
of the incident field coefficients (cf. (1.26))

U = 45" €por - My, (€2) (1.120)
bmn = _4jn+1epol : n:nn (ez) 3 .

and the special values of the vector spherical harmonics in the forward direc-
tion
Mmn (ez) = # (.]mez - ey) )

V2n+1

_ (1.121)
Nmn (ez) =71 (em +Jmey) ;

we obtain [163]

(Cext) = —%Re {i(Qn +1) (th' + 1%2)} ,

n=1

n=1m=-—n

The above relation shows that the orientation-averaged extinction cross-
section for macroscopically isotropic and mirror-symmetric media is deter-
mined by the diagonal elements of the transition matrix in the particle coor-
dinate system. The same result can be established if we consider an ensemble
of randomly oriented particles (with t1? # 0 and t2! # 0) illuminated by a
linearly polarized plane wave (with real polarization vector epor).

For an arbitrary excitation, the scattering cross-section can be expressed
in the global coordinate system as

Cow = 155" 3 [

n=1m=-n

- Tt
+ |gmn|2 = ﬁsTs
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whence, using the T-matrix equation s = Te, we obtain

T

(Coen) = 128 (T (0, 0) T (0, 5,)) &

Since

T (ap, Bpy ) = RT (=7 —Bp, —p) TR' (@, Bps )
=4 * *
T (ap, Bp, 1) =R (apvﬁp77p)TTR (=7 =B, —p)

and in view of (B.54) and (B.55),

R* (_'va _ﬂm _ap) = (RT (_'va _Bpa _O‘p))_l s
R* (ap7ﬁp77p) = RT (_7p7 _ﬂp) _ap) )

we see that

i -
T (Oép7ﬁp7’7p) T (Oép,ﬂpﬁp) =R" (_’Yp> _ﬂpa _ap) T'TR" (apaﬂp77p) -

The above equation is similar to (1.115), and taking the average, we obtain

mn,mini

(@) i) = B OB

where

or explicitly,

#11 — 11 21 2
tn o 277,+]_ Z Z Z Tmlnh + ‘Tmlnlmn )
m/=—nni=1mi=—n1
12 — 11 12
= 2n+1 Z Z Z Tml"lhm TLTm1n1,m n
m/'=—nni=1lmi=—ny
21 22
Tm1n1 m’ nTmlnl m'n
21 T12x
tn tn )

2

|T22

mimni, m’'n

Zi 2n+1 Z Z Z T7}f121n1,

m/'=—nni=1lmi=—nq
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The orientation-averaged scattering cross-section then becomes

scat = 2 ZNll ‘~mn| n2~* Nmn
S n,m
72 AQ 2
A2 bl + 022 (b | (1.123)

where as before, the summation over the index m involves the values —1 and
1. For macroscopically isotropic and mirror-symmetric media, ¢.? = E%l =0,
and using (1.120) and (1.121), we obtain [120, 162]

(Cseat) = —Z Z 2n +1) (t1! +122)

n

[eS) 00 ) )
= Z S S [l T

2
5 m=—nni=1mi=—n1
22
’ 1’!7,1 mn| ‘Tmlnl,mn’ (1‘124‘)

Thus, the orientation-averaged scattering cross-section for macroscopically
isotropic and mirror-symmetric media is proportional to the sum of the
squares of the absolute values of the transition matrix in the particle coordi-
nate system. The same result holds true for an ensemble of randomly oriented
particles illuminated by a linearly polarized plane wave.

Despite the derivation of simple analytical formulas, the above analysis
shows that the orientation-averaged extinction and scattering cross-sections
for macroscopically isotropic and mirror-symmetric media do not depend on
the polarization state of the incident wave. The orientation-averaged extinc-
tion and scattering cross-sections are invariant with respect to rotations and
translations of the coordinate system and using these properties, Mishchenko
et al. [169] have derived several invariants of the transition matrix.

Orientation-Averaged Extinction Matrix

To compute the orientation-averaged extinction matrix it is necessary to eval-
uate the orientation-averaged quantities (Spq(e., €.)). Taking into account the
expressions of the elements of the amplitude matrix (cf. (1.97)), the equation
of the orientation-averaged transition matrix (cf. (1.118) and (1.119)) and
the expressions of the vector spherical harmonics in the forward direction (cf.
(1.121)), we obtain

> @n+1) (6 +12)

n=1

<59ﬁ (627 ez)> = <S<pa (eza ez = _Lk‘

(St (€2, €2)) = — (S (e, €2)) = —2%5 S @n 1) (82 + 2 .
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Inserting these expansions into the equations specifying the elements of the
extinction matrix (cf. (1.79)), we see that the nonzero matrix elements are

(Kii) = —ﬁRe {i (2n+1) (i + t22)} , i=1,2,3,4 (1.125)

n=1

and
(K1) = (K1) = {i @n+1) (122 + t21)}7

- (1.126)
In terms of the elements of the extinction matrix, the orientation-averaged
extinction cross-section is (cf. (1.89))

(Cox) = 7 (K)o + (K1) Vil

e

while for macroscopically isotropic and mirror-symmetric media, the identities

t12 = 421 = 0, imply

<K14> = <K41> = <K23> = <K32> =0.

In this specific case, the orientation-averaged extinction matrix becomes diag-
onal with diagonal elements being equal to the orientation-averaged extinction
cross-section per particle, (K) = (Cext)I.

Orientation-Averaged Scattering Matrix

By definition, the orientation-averaged scattering matrix is the orientation-
averaged phase matrix with § = 0 and a = ¢ = 0. In the present analysis
we consider the calculation of the general orientation-averaged phase matrix
(Z(er,e; ap, Bp,Yp)) without taking into account the specific choice of the
incident and scattering directions. We give guidelines for computing the quan-
tities of interest, but we do not derive a final formula for the average phase
matrix.

According to the definition of the phase matrix we see that the orientation-
averaged quantities (Spq(er,ex)Sy, ., (€r, er)), with p,p1 = 0,¢ and ¢,q1 =
3, a, need to be computed. In view of (1.99), we have

<Spq (er, ex) S;1q1 (er, ek)>

= % <(vgl (er) 7" (), Bps ) Vpy (er)>* vl () T (p, Bps o) V) (ek)>

16 ~ ~
— o (o) (T (. By ) 05, (en) 0 (e0) T (., By ) ) 05 (e1)
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where, as before, T stands for the transition matrix in the global coordinate
system. Defining the matrices

\ (er) = 'U; (er) 'U;T (er)

and

App, (er) = <T]L (O‘pvﬁp»'Yp) \ (er)T(O‘paﬂpa’Yp)> )

we see that

(Spq (er,ex) Sy 0 (er,er)) = ﬁvqu (ex) App, (er) vy (ex) - (1.127)

Using the block-matrix decomposition

Xll X12
X = X2 x22 |

where X stands for V,,, and A,,,, we express the submatrices of Ap,, as

1 Ay mll Al g 421 A1 oy A1l =20 o, =21
App17<T VT 7 VR T T VAT 4T VR T >

12 JAllToan A2 Al g0 4220 210 o) 5120 221t 50 222
App1_<T VT VR R T VA T 4T VR T >
21 ~12f 4 411 ~121 15 21 ~22t_ o1 /11 ~221 o5 /21
APPI - <T Vpp1T +T VpplT +T meT +T Vpp1T > ’
2 ~121 0 g 412 120 g0 =220 22F 0 oy 120 —22f oo 22
App1 - <T sznT +T VPPIT +T VPPIT +T Vpp1T > '

(1.128)

It is apparent that each matrix product in the above equations is of the form
~ kit ~ ij

prl (67‘) = <T (ap7 5})7 PYP) V;;gl (er) T (ap7 ﬁp’ 7p)> ’ (1'129)

where the permissive values of the index pairs (i,75), (k,I) and (u,v) follow
from (1.128). The elements of the W,,, matrix are given by

mn,miny

(WPPI)%lfﬁl,mlnl (er) = Z Z <T7izjn,m1n1 (ap, B, ¥p) T - (ap, ﬁpv'Yp)>

< (Vos) s mm (€7 (1.130)

and the rest of our analysis concerns with the computation of the term

T= <Trinjn7m1n1 (ap7ﬁpa'7p) TEx (O‘paﬁpa'yp>> . (1~131)

mn,mini
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It should be mentioned that for notation simplification we omit to indicate
the dependency of 7 on the matrix indices.

Using the rotation transformation rule for the transition matrix (cf.
(1.116)), we obtain

ERESED TSI SH S| A A

/_ —
=—nmi=—nig=_p mlzfnl

XDzzlm (ap7ﬁp,’)/p)D ( ’va 5pu_ap)

X Dyﬁnll”‘%/ (s Bp, Vp) singp d By day, d’yp} TR
1

mnm 1M1 m/nm nl'

Taking into account the definition of the Wigner D-functions (cf. (B.34)) and
integrating over a; and y,, yields

ZZZZ el

my—m,my — mml mm1 m
m/=— —
=—nmi=-n; m’zfnmlffnl

x [ [ o B (0) 2, (o) 2 (By)sing, a5

TZJ Tkl* ~

m/n,m/ 1M1 m/n,m/ 1n1 ’
where d7,, are the Wigner d-functions defined in Appendix B,

A=A A=Ay s A

M1y mlm,1 ’

and A, is given by (B.36). To compute the integral

T =

9 mi—m,mi—m mi—m’mj—m/

i (80) B (B 03, (o) 2 (B sinhy 05,
0
we use the symmetry relations (cf. (B.39) and (B.41))

( ﬂp) - dmm’(ﬂp) ( )m-l—m d’zm m/(ﬁp) ’

(= 6p)fd o (Bp) = (= DA (),

—m-—-m

the expansions of the d-functions products d;! SR — T d - dn ~,
mi ml —m—m

given by (B.47), and the orthogonality property of the d-functions (cf. (B.43)).
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We obtain

T — (_1)m+m’+77z+77z’(_1)n+n1+ﬁ+ﬁl5 _

mi—m,mi;—m mj—m',mj;—m’

Umax ~ ~ ~, ~
X E m1 mu Cm ml mi—mu m’ mlu
2u +1 m1n1, mn> —miny,m'n mini,—mn —miny,m’ n’
U=Umin

where C*Fm1t — are the Clebsch—Gordan coefficients defined in Appendix B,

mn,mini
and

Umin = max ([n —ni|,|n— 71|, |m1 —m|, |m1 —m|,|m' —mi]|,|m —m)|) ,

Umax = Min (n +ny, 0+ 01) .

Further, using the symmetry properties of the Clebsch—Gordan coefficients
(cf. (B.48) and (B.51)) we arrive at

_ (_qyntnitntm . .
I-= ( 1) 6m1—m,m17m my—m/,mj—m/'
Umax

X > 2U + 1 mini Cfmllnl
Z (2n1 + 1) (2ny + 1) M mwmnTmi—myu,—m/n

U=Umin

Xcml;{lfv ~~C~m Lll

—mu,mn m’— mlu —m n

and

ni

Z Z Z AITanlan:f’;m»ﬁl. (1.132)

m'=—nmi=—ni1 n=_4n mlfffﬁl
The orientation-averaged quantities (Sy,(e;,ex)S; ,, (€r,€ex)) can be com-
puted from the set of equations (1.127)—(1.132).

For an incident wave propagating along the Z-axis, the augmented vector
of spherical harmonics v,(e,) can be computed by using (1.121). Choosing the
X Z-plane as the scattering plane, i.e., setting ¢ = 0, we see that the matrices
V pp: (€r) involve only the normalized angular functions wlfn‘(e) and Tlml(G).
The resulting orientation-averaged scattering matrix can be computed at a
set of polar angles # and polynomial interpolation can be used to evaluate the
orientation-averaged scattering matrix at any polar angle 6.

For macroscopically isotropic media, the orientation-averaged scattering
matrix has sixteen nonzero elements (cf. (1.113)) but only ten of them
are independent. For macroscopically isotropic and mirror-symmetric me-
dia, the orientation-averaged scattering matrix has a block-diagonal structure
(cf. (1.114)), so that only eight elements are nonzero and only six of them
are independent. In this case we determine the six quantities (|Sp5(0)|?),
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(1S6a(0)12), (1Sp (D)%), (|Spa(0)?), (Ses(0)S5a(0)) and (Spa(0)S;4(0)), and

compute the eight nonzero elements by using the relations

Fa®) = 5 (15008 + (150a@F) + (15,50 ) + {|5:0)F)) |

(Fio®) = 5 ((15050)) ~ (100 @) + (1056)) ~ {|50a(®))) .
(Far(0)) = (Fia(0))

(Fn®) = 5 ((15050)) ~ (100 @) = (18050)) + {|S0a(®))) .
(Fya(0)) = Re {(S00(0)S30(0)) + (S0a(0)S35(0))}

(F34(0)) = Tm {(S05(0)S5 (0)) + (S0 (0)S5(0)) "}

(Fia(0)) = — (Faa(0)) .

(Fia(6)) = Re { (S03(0) S0 ()" = (S0a(0)S55(0)) } -

Other scattering characteristics as for instance the orientation-averaged scat-
tering cross-section and the orientation-averaged mean direction of propaga-
tion of the scattered field can be expressed in terms of the elements of the
orientation-averaged scattering matrix. To derive these expressions we con-
sider the scattering plane characterized by the azimuth angle ¢ as shown in
Fig.1.15. In the scattering plane, the Stokes vector of the scattered wave is
given by (Is(re,)) = (1/r?)(F(0))I., whence, using the transformation rule

of the Stokes vector under coordinate rotation I, = L(¢)I., we obtain

(I (ren)) = 5 (FO) L () L.

Further, taking into account the expression of the Stokes rotation matrix L
(cf. (1.23)) we derive

(Ls (er)) = (F11 (0)) Ie + [(F12(0)) cos 2¢ + (F13(0)) sin 2¢] Qe
— [{(F12(0)) sin 2¢ — (Fi13(0)) cos 2] Ue + (F14(0)) Ve -

Integrating over ¢, we find that the orientation-averaged scattering cross-
section and the orientation-averaged mean direction of propagation of the
scattered field are given by

<Cscat> = Ile/_o <Is (er)> ds? (eT)

=2 [ R 0) 1+ (Fia(0) Vi sinoas
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Z{k

y<

Fig. 1.15. Incident and scattering directions e, and e,. The incident direction is
along the Z-axis and the scattering matrix relates the Stokes vectors of the incident
and scattered fields specified relative to the scattering plane characterized by the
azimuth angle ¢

and

_
<Cscat> Ie

2

= T {/0” [(F11(0)) I + (F14(0)) Ve] Sin@cos@d@} e,

respectively. Because the incident wave propagates along the Z-axis, the
nonzero component of (g) is the orientation-averaged asymmetry parameter
(cos ©). In practical computer simulations, we use the decomposition

(@) = /Q (I, (e)) e, 42 (ey)

1
<Oscat> = T (<Oscat>1 Ie + <Cscat>v Ve) )

and compute the quantities (Cscat)1 and (Cscatr)v by using (1.124) and the
relation

(Cocat)y = 27 /O " (Fia(0)) sin0.d6, (1.133)

respectively. These quantities do not depend on the polarization state of the
incident wave and can be used to compute the orientation-averaged scattering
cross-section for any incident polarization. For the asymmetry parameter we
proceed analogously; we use the decomposition
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O@ca 1
(cos @) = <<C’ tt>>1 T ({(cos O) I + (cos O)y, Vo) ,
and compute (cos @)1 and (cos O)y by using the relations
(cos @), = %/ (F11(0)) sinf cos 0 0 (1.134)
scat/1 JO
and
(cos @)y = <027T>/ (F14(0)) sinf cos§db , (1.135)
scat/1 JO

respectively. For macroscopically isotropic and mirror-symmetric media,
(Fl4(0)) =0

and consequently, (Cscat) = (Cscat)1 and {(cos @) = (cos O)1.

Another important scattering characteristic is the angular distribution of
the scattered field. For an ensemble of randomly oriented particles illuminated
by a vector plane wave of unit amplitude and polarization vector epo =
€pol,3€3 + €pol,a€a, the differential scattering cross-sections in the scattering
plane ¢ are given by

(0ap(0)) = (|Bac.s O ) = (1S05(O)* ) | Elo |

<|50a >’E/0 a|2

+2Re {(S05(0)554(9)) Elo Bt 0 } (1.136)
and
(s(0)) = (| B O ) = (S0 (0)" )| Bl
<|S<pa >|E/Oa’
+9Re {(S,, (0)) Ely sE0 ) (1.137)
where

/ 3 <
EeO,B = €pol,3 COS Y + €pol,q SIN Y,

/ .
Eeo,0 = —€pol,3Sin g + €pol a COS Q.

It should be noted that for macroscopically isotropic and mirror-symmetric
media,

(Sop(0)S54(0)) =
(Sp8(0)S5,(0)) =

and the expressions of (oqp(6)) and (oqs(6)) simplify considerably.
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In practice, the inequalities

(Fu) = [(Fig)l 1,5 =1,2,3,4,

((Fi1) + (F22))* — 4(F12)® > ((Fis) + (Fua))” + 4 (Fas)” |
(Fu1) — (Fa2) = [(F33) — (Fua)]
(Fi1) = (Fi2) = [(F22) — (F12)| ,
(Fu1) + (Fi2) > [(Faa) + (Fi2)] (1.138)

can be used to test the numerically obtained orientation-averaged scattering
matrix [104,169].

It should be emphasized that we do not expand the elements of the
orientation-averaged scattering matrix in generalized spherical functions (or
Wigner d-functions) and do not exploit the advantage of performing as much
work analytically as possible. Therefore, the above averaging procedure is
computationally not so fast as the scattering matrix expansion method given
by Mishchenko [162]. As noted by Mishchenko et al. [169], the analyticity of
the T-matrix formulation can be connected with the formalism of expand-
ing scattering matrices in generalized spherical functions to derive an efficient
procedure that does not involve any angular variable.

Khlebtsov [120] and Fucile et al. [71] developed a similar formalism that
exploit the rotation property of the transition matrix but avoids the expansion
of the scattering matrix in generalized spherical functions. Paramonov [182]
and Borghese et al. [23] extended the analytical orientation-averaging proce-
dure to arbitrary orientation distribution functions, while the standard aver-
aging approach employing numerical integrations over the orientation angles
has been used by Wiscombe and Mugnai [263,264] and Barber and Hill [8].
A method to compute light scattering by arbitrarily oriented rotationally sym-
metric particles has been given by Skaropoulos and Russchenberg [212].



