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Basic Theory of Electromagnetic Scattering

This chapter is devoted to present the fundamentals of the electromagnetic
scattering theory which are relevant in the analysis of the null-field method.
We begin with a brief discussion on the physical background of Maxwell’s
equations and establish vector spherical wave expansions for the incident field.
We then derive new systems of vector functions for internal field approxi-
mations by analyzing wave propagation in isotropic, anisotropic and chiral
media, and present the T -matrix formulation for electromagnetic scattering.
We decided to leave out some technical details in the presentation. Therefore,
the integral and orthogonality relations, the addition theorems and the basic
properties of the scalar and vector spherical wave functions are reviewed in
Appendices A and B.

1.1 Maxwell’s Equations and Constitutive Relations

In this section, we formulate the Maxwell equations that govern the behav-
ior of the electromagnetic fields. We present the fundamental laws of elec-
tromagnetism, derive the boundary conditions and describe the properties
of isotropic, anisotropic and chiral media by constitutive relations. Our pre-
sentation follows the treatment of Kong [122] and Mishchenko et al. [169].
Other excellent textbooks on classical electrodynamics and optics have been
given by Stratton [215], Tsang et al. [228], Jackson [110], van de Hulst [105],
Kerker [115], Bohren and Huffman [17], and Born and Wolf [19].

The behavior of the macroscopic field at interior points in material media
is governed by Maxwell’s equations:

∇× E = −∂B

∂t
(Faraday’s induction law) , (1.1)

∇× H = J +
∂D

∂t
(Maxwell–Ampere law) , (1.2)

∇ · D = ρ (Gauss’ electric field law) , (1.3)
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∇ · B = 0 (Gauss’ magnetic field law) , (1.4)

where t is time, E the electric field, H the magnetic field, B the magnetic
induction, D the electric displacement and ρ and J the electric charge density
and current density, respectively. The first three equations in Maxwell’s theory
are independent, because the Gauss magnetic field law can be obtained from
Faraday’s law by taking the divergence and by setting the integration constant
with respect to time equal to zero. Analogously, taking the divergence of
Maxwell–Ampere law and using the Gauss electric field law we obtain the
continuity equation:

∇ · J +
∂ρ

∂t
= 0 , (1.5)

which expresses the conservation of electric charge. The Gauss magnetic field
law and the continuity equation should be treated as auxiliary or dependent
equations in the entire system of equations (1.1)–(1.5). The charge and current
densities are associated with the so-called “free” charges, and for a source-
free medium, J = 0 and ρ = 0. In this case, the Gauss electric field law can
be obtained from Maxwell–Ampere law and only the first two equations in
Maxwell’s theory are independent.

In our analysis we will assume that all fields and sources are time harmonic.
With ω being the angular frequency and j =

√
−1, we write

E(r, t) = Re
{
E(r)e−jωt

}

and similarly for other field quantities. The vector field E(r) in the frequency
domain is a complex quantity, while E(r, t) in the time domain is real. As a re-
sult of the Fourier component Ansatz, the Maxwell equations in the frequency
domain become

∇× E = jωB ,

∇× H = J − jωD ,

∇ · D = ρ ,

∇ · B = 0 .

Taking into account the continuity equation in the frequency domain ∇ · J
−jωρ = 0, we may express the Maxwell–Ampere law and the Gauss electric
field law as

∇× H = −jωDt ,

∇ · Dt = 0 ,

where

Dt = D +
j
ω

J

is the total electric displacement.
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Across the interface separating two different media the fields may be dis-
continuous and a boundary condition is associated with each of Maxwell’s
equations. To derive the boundary conditions, we consider a regular domain
D enclosed by a surface S with outward normal unit vector n, and use the
curl theorem

∫

D

∇× a dV =
∫

S

n × a dS ,

to obtain
∫

S

n × E dS = jω
∫

D

B dV ,

∫

S

n × H dS =
∫

D

J dV − jω
∫

D

D dV ,

and the Gauss theorem
∫

D

∇ · adV =
∫

S

n · a dS ,

to derive
∫

S

n · D dS =
∫

D

ρdV ,

∫

S

n · B dS = 0 .

Note that the curl theorem follows from Gauss theorem applied to the vector
field c × a, where c is a constant vector, and the identity ∇ · (c × a) =
−c ·(∇× a). We then consider a surface boundary joining two different media
1 and 2, denote by n1 the surface normal pointing toward medium 2, and
assume that the surface of discontinuity is contained in D. We choose the
domain of analysis in the form of a thin slab with thickness h and area ∆S,
and let the volume approach zero by letting h go to zero and then letting
∆S go to zero (Fig. 1.1). Terms involving vector or dot product by n will
be dropped except when n is in the direction of n1 or −n1. Assuming that
D and B are finite in the region of integration, and that the boundary may
support a surface current J s such that J s = limh→0 hJ , and a surface charge

∆

n1

Medium 1

Medium 2

S

h

Fig. 1.1. The surface of discontinuity and a thin slab of thickness h and area ∆S
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density ρs such that ρs = limh→0 hρ, we see that the tangential component of
E is continuous:

n1 × (E2 − E1) = 0 ,

the tangential component of H is discontinuous:

n1 × (H2 − H1) = J s ,

the normal component of B is continuous:

n1 · (B2 − B1) = 0 ,

and the normal component of D is discontinuous:

n1 · (D2 − D1) = ρs .

Energy conservation follows from Maxwell’s equations. The vector identity

∇ · (a × b) = b · (∇× a) − a · (∇× b)

yields the Poynting theorem in the time domain:

∇ · (E × H) + H · ∂B

∂t
+ E · ∂D

∂t
= −E · J ,

and the Poynting vector defined as

S = E × H

is interpreted as the power flow density. Integrating over a finite domain D
with boundary S, and using the Gauss theorem, yields

−
∫

D

E · J dV =
∫

S

S · n dS +
∫

D

(
H · ∂B

∂t
+ E · ∂D

∂t

)
dV ,

where as before, n is the outward normal unit vector to the surface S. The
above equation states that the power supplied by the sources within a volume
is equal to the sum of the increase in electromagnetic energy and the Poynt-
ing’s power flowing out through the volume boundary. Poynting’s theorem
can also be derived in the frequency domain:

∇ · (E × H∗) = jω (B · H∗ − E · D∗) − E · J∗ ,

where the asterisk denotes a complex-conjugate value. The complex Poynting
vector is defined as S = E × H∗ and the term −

∫
D

E · J∗ dV is interpreted
as the complex power supplied by the source.

In practice, the angular frequency ω is such high that a measuring instru-
ment is not capable of following the rapid oscillations of the power flow but
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rather responds to a time average power flow. Considering the time-harmonic
vector fields a and b,

a(r, t) =
1
2
[
a(r)e−jωt + a∗(r)ejωt

]
,

b(r, t) =
1
2
[
b(r)e−jωt + b∗(r)ejωt

]
,

we express the dot product of the vectors as

c(r, t) = a(r, t) · b(r, t)

=
1
2
Re
{
a(r) · b∗(r) + a(r) · b(r)e−2jωt

}
.

Defining the time average of c as

〈c(r)〉 = lim
T→∞

1
T

∫ T

0

c(r, t) dt ,

where T is a time interval, we derive

〈c(r)〉 =
1
2
Re {a(r) · b∗(r)} ,

while for the cross product of the vectors

c(r, t) = a(r, t) × b(r, t) ,

we similarly obtain

〈c(r)〉 =
1
2
Re {a(r) × b∗(r)} .

Thus, the time average of the dot or cross product of two time-harmonic
complex quantities is equal to half of the real part of the respective product
of one quantity and the complex conjugate of the other. In this regard, the
time-averaged Poynting vector is given by

〈S〉 =
1
2
Re {E × H∗} .

The three independent vector equations (1.1)–(1.3) are equivalent to seven
scalar differential equations, while the number of unknown scalar functions
is 16. Obviously, the three independent equations are not sufficient to form
a complete systems of equations to solve for the unknown functions, and for
this reason, the equations given by (1.1)–(1.4) are known as the indefinite
form of the Maxwell equations. Note that for a free-source medium, we have
six scalar differential equations with 12 unknown scalar functions. To make
the Maxwell equations definite we need more information and this additional
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information is given by the constitutive relations. The constitutive relations
provide a description of media and give functional dependence among vector
fields. For isotropic media, the constitutive relations read as

D = εE ,

B = µH ,

J = σE (Ohm’s law) , (1.6)

where ε is the electric permittivity, µ is the magnetic permeability and σ is
the electric conductivity. The above equations provide nine scalar relations
that make the number of unknowns and the number of equations compatible,
while for a source-free medium, the first two constitutive relations guarantee
this compatibility. When the constitutive relations between the vector fields
are specified, Maxwell equations become definite. In free space ε0 = 8.85 ×
10−12 F m−1 and µ0 = 4π × 10−7 Hm−1, while in a material medium, the
permittivity and permeability are determined by the electrical and magnetic
properties of the medium. A dielectric material can be characterized by a
free-space part and a part depending on the polarization vector P such that

D = ε0E + P .

The polarization P symbolizes the average electric dipole moment per unit
volume and is given by

P = ε0χeE ,

where χe is the electric susceptibility. A magnetic material can also be char-
acterized by a free-space part and a part depending on the magnetization
vector M ,

B = µ0H+µ0M ,

where M symbolizes the average magnetic dipole moment per unit volume,

M = χmH ,

and χm is the magnetic susceptibility. A medium is diamagnetic if µ < µ0 and
paramagnetic if µ > µ0, while for a nonmagnetic medium we have µ = µ0.
The permittivity and permeability of isotropic media can be written as

ε = ε0εr = ε0 (1 + χe) ,

µ = µ0µr = µ0 (1 + χm) ,

where εr and µr stand for the corresponding relative quantities. The consti-
tutive relation for the total electric displacement is

Dt = εtE ,
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where the complex permittivity εt is given by

εt = ε0εrt = ε0

(
1 + χe +

jσ
ωε0

)

with εrt being the complex relative permittivity. Both the conductivity
and the susceptibility contribute to the imaginary part of the permittivity,
Im{εt} = ε0Im{χe} + Re{σ/ω}, and a complex value for εt means that the
medium is absorbing. Usually, Im{χe} is associated with the “bound” charge
current density and Re{σ/ω} with the “free” charge current density, and ab-
sorption is determined by the sum of these two quantities. Note that for a
free-source medium, σ = 0 and εrt = εr = 1 + χe. The simplest solution to
Maxwell’s equations in source-free media is the vector plane wave solution.
The behavior of a vector plane wave in an isotropic medium is characterized
by the dispersion relation

k = ω
√

εµ ,

which relates the wave number k to the properties of the medium and to the
angular frequency ω of the wave. The dimensionless quantity

m = c
√

εµ

is the refractive index of the medium, where c = 1/
√

ε0µ0 is the speed of light
in vacuum, and if k0 = ω

√
ε0µ0 is the wave number in free space, we see that

m =
k

k0
.

The constitutive relations for anisotropic media are

D = εE ,

B = µH , (1.7)

where ε and µ are the permittivity and permeability tensors, respectively. In
our analysis we will consider electrically anisotropic media for which the per-
mittivity is a tensor and the permeability is a scalar. Except for amorphous
materials and crystals with cubic symmetry, the permittivity is always a ten-
sor, and in general, the permittivity tensor of a crystal is symmetric. Since
there exists a coordinate transformation that transforms a symmetric matrix
into a diagonal matrix, we can take this coordinate system as reference frame
and we have

ε =

⎡

⎢
⎣

εx 0 0
0 εy 0
0 0 εz

⎤

⎥
⎦ . (1.8)

This reference frame is called the principal coordinate system and the three
coordinate axes are known as the principal axes of the crystal. If εx �= εy �= εz,
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the medium is biaxial, and if ε = εx = εy and ε �= εz, the medium is uniaxial.
Orthorhombic, monoclinic and triclinic crystals are biaxial, while tetragonal,
hexagonal and rhombohedral crystals are uniaxial. For uniaxial crystals, the
principal axis that exhibits the anisotropy is called the optic axis. The crystal
is positive uniaxial if εz > ε and negative uniaxial if εz < ε.

In our analysis, we will investigate the electromagnetic response of isotropic,
chiral media exposed to arbitrary external excitations. The lack of geometric
symmetry between a particle and its mirror image is referred to as chirality
or optical activity. A chiral medium is characterized by either a left- or a
right-handedness in its microstructure, and as a result, left- and right-hand
circularly polarized fields propagate through it with differing phase veloc-
ities. For a source-free, isotropic, chiral medium, the constitutive relations
read as

D = εE + βε∇× E ,

B = µH + βµ∇× H ,

where the real number β is known as the chirality parameter. The Maxwell
equations can be written compactly in matrix form as

∇×
[

E
H

]
= K

[
E
H

]
, ∇ ·

[
E
H

]
= 0 , (1.9)

where

K =
1

1 − β2k2

[
βk2 jωµ

−jωε βk2

]

and k = ω
√

εµ.
Without loss of generality and so as to simplify our notations we make the

following transformations:

E → 1√
ε0

E,H → 1
√

µ0
H ,

D → √
ε0D,B → √

µ0B .

As a result, the Maxwell equations for a free-source medium become more
“symmetric”:

∇× E = jk0B ,

∇× H = −jk0D ,

∇ · D = 0 ,

∇ · B = 0 , (1.10)

the constitutive relations are given by (1.6) and (1.7) with ε and µ being
the relative permittivity and permeability, respectively, the wave number is
k = k0

√
εµ, and the K matrix in (1.9) takes the form

K =
1

1 − β2k2

[
βk2 jk0µ

−jk0ε βk2

]
. (1.11)
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1.2 Incident Field

In this section, we characterize the polarization state of vector plane waves
and derive vector spherical wave expansions for the incident field. The first
topic is relevant in the analysis of the scattered field, while the second one
plays an important role in the derivation of the transition matrix.

1.2.1 Polarization

In addition to intensity and frequency, a monochromatic (time harmonic)
electromagnetic wave is characterized by its state of polarization. This concept
is useful when we discuss the polarization of the scattered field since the
polarization state of a beam is changed on interaction with a particle.

We consider a right-handed Cartesian coordinate system OXY Z with a
fixed spatial orientation. This reference frame will be referred to as the global
coordinate system or the laboratory coordinate system. The direction of prop-
agation of the vector plane wave is specified by the unit vector ek, or equiva-
lently, by the zenith and azimuth angles β and α, respectively (Fig. 1.2). The
polarization state of the incident wave will be described in terms of the vertical
polarization unit vector eα = ez×ek/|ez×ek| and the horizontal polarization
vector eβ = eα × ek. Note that other names for vertical polarization are TM
polarization, parallel polarization and p polarization, while other names for
horizontal polarization are TE polarization, perpendicular polarization and s
polarization.

eβ

e

ek

x

y
O

z

ke

β

α

epol

α

α

pol

Fig. 1.2. Wave vector in the global coordinate system
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In the frequency domain, a vector plane wave propagating in a medium
with constant wave number ks = k0

√
εsµs is given by

Ee(r) = Ee0ejke·r , Ee0 · ek = 0 , (1.12)

where k0 is the wave number in free space, ke is the wave vector, ke = ksek,
Ee0 is the complex amplitude vector,

Ee0 = Ee0,βeβ + Ee0,αeα ,

and Ee0,β and Ee0,α are the complex amplitudes in the β- and α-direction,
respectively. An equivalent representation for Ee0 is

Ee0 = |Ee0| epol , (1.13)

where epol is the complex polarization unit vector, |epol| = 1, and

epol =
1

|Ee0|
(Ee0,βeβ + Ee0,αeα) .

Inserting (1.13) into (1.12), gives the representation

Ee(r) = |Ee0| epolejke·r , epol · ek = 0 ,

and obviously, |Ee(r)| = |Ee0|.
There are three ways of describing the polarization state of vector plane

waves.

1. Setting

Ee0,β = aβejδβ ,

Ee0,α = aαejδα , (1.14)

where aβ and aα are the real non-negative amplitudes, and δβ and δα are the
real phases, we characterize the polarization state of a vector plane wave by
aβ , aα and the phase difference ∆δ = δβ − δα.

2. Taking into account the representation of a vector plane wave in the time
domain

Ee(r, t) = Re
{
Ee(r)e−jωt

}
= Re

{
Ee0ej(ke·r−ωt)

}
,

where Ee(r, t) is the real electric vector, we deduce that (cf. (1.14))

Ee,β(r, t) = aβ cos (δβ + ke · r − ωt) ,

Ee,α(r, t) = aα cos (δα + ke · r − ωt) ,

where

Ee(r, t) = Ee,β(r, t)eβ + Ee,α(r, t)eα .
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At any fixed point in space the endpoint of the real electric vector describes
an ellipse which is also known as the vibration ellipse [17]. The vibration
ellipse can be traced out in two opposite senses: clockwise and anticlock-
wise. If the real electric vector rotates clockwise, as viewed by an observer
looking in the direction of propagation, the polarization of the ellipse is
right-handed and the polarization is left-handed if the electric vector rotates
anticlockwise. The two opposite senses of rotation lead to a classification of
vibration ellipses according to their handedness. In addition to its handed-
ness, a vibration ellipse is characterized by E0 =

√
a2 + b2, where a and

b are the semi-major and semi-minor axes of the ellipse, the orientation
angle ψ and the ellipticity angle χ (Fig. 1.3). The orientation angle ψ is
the angle between the α-axis and the major axis, and ψ ∈ [0, π). The ellipticity
angle χ is usually expressed as tan χ = ±b/a, where the plus sign corresponds
to right-handed elliptical polarization, and χ ∈ [−π/4, π/4].

We now proceed to relate the complex amplitudes Ee0,β and Ee0,α to
the ellipsometric parameters E0, ψ and χ. Representing the semi-axes of the
vibration ellipse as

b = ±E0 sin χ ,

a = E0 cos χ , (1.15)

where the plus sign corresponds to right-handed polarization, and taking into
account the parametric representation of the ellipse in the principal coordinate
system Oα′β′

E′
e,β(r, t) = ±b sin (ke · r − ωt) ,

E′
e,α(r, t) = a cos (ke · r − ωt) ,

O

α

α�

ββ�

ab ψ

χ

Fig. 1.3. Vibration ellipse
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we obtain

E′
e,β(r, t) = E0 sinχ sin (ke · r − ωt) = E0 sin χ cos

(
ke · r − ωt − π

2

)
,

E′
e,α(r, t) = E0 cos χ cos (ke · r − ωt) .

In the frequency domain, the complex amplitude vector E′
e0 defined as

E′
e(r, t) = Re

{
E′

e0e
j(ke·r−ωt)

}
,

where

E′
e(r, t) = E′

e,β(r, t)e′
β + E′

e,α(r, t)e′
α ,

has the components

E′
e0,β = −jE0 sinχ ,

E′
e0,α = E0 cos χ .

Using the transformation rule for rotation of a two-dimensional coordinate
system we obtain the desired relations

Ee0,β = E0 (cos χ sinψ − j sinχ cos ψ) ,

Ee0,α = E0 (cos χ cos ψ + j sinχ sin ψ) ,

and

epol = (cos χ sin ψ − j sin χ cos ψ) eβ

+(cos χ cos ψ + j sinχ sin ψ)eα . (1.16)

If b = 0, the ellipse degenerates into a straight line and the wave is linearly
polarized. In this specific case χ = 0 and

Ee0,β = E0 sin ψ = E0 cos
(π

2
− ψ
)

= E0 cos αpol ,

Ee0,α = E0 cos ψ = E0 sin
(π

2
− ψ
)

= E0 sinαpol ,

where αpol is the polarization angle and

αpol = π/2 − ψ , αpol ∈ (−π/2, π/2] . (1.17)

In view of (1.16) and (1.17) it is apparent that the polarization unit vector is
real and is given by

epol = cos αpoleβ + sin αpoleα . (1.18)
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If a = b, the ellipse is a circle and the wave is circularly polarized. We have
tan χ = ±1, which implies χ = ±π/4, and choosing ψ = π/2, we obtain

Ee0,β =
√

2
2

E0 ,

Ee0,α = ±j
√

2
2

E0 .

The polarization unit vectors of right- and left-circularly polarized waves then
become

eR =
√

2
2

(eβ + jeα) ,

eL =
√

2
2

(eβ − jeα) ,

and we see that these basis vectors are orthonormal in the sense that
eR · e∗

R = 1, eL · e∗
L = 1 and eR · e∗

L = 0.

3. The polarization characteristics of the incident field can also be described
by the coherency and Stokes vectors. Although the ellipsometric parameters
completely specify the polarization state of a monochromatic wave, they are
difficult to measure directly (with the exception of the intensity E2

0). In con-
trast, the Stokes parameters are measurable quantities and are of greater
usefulness in scattering problems. The coherency vector is defined as

Je =
1
2

√
εs

µs

⎡

⎢
⎢
⎢
⎣

Ee0,βE∗
e0,β

Ee0,βE∗
e0,α

Ee0,αE∗
e0,β

Ee0,αE∗
e0,α

⎤

⎥
⎥
⎥
⎦

, (1.19)

while the Stokes vector is given by

Ie =

⎡

⎢
⎢
⎢
⎣

Ie

Qe

Ue

Ve

⎤

⎥
⎥
⎥
⎦

= DJe =
1
2

√
εs

µs

⎡

⎢
⎢
⎢
⎢
⎣

|Ee0,β |2 + |Ee0,α|2

|Ee0,β |2 − |Ee0,α|2

−Ee0,αE∗
e0,β − Ee0,βE∗

e0,α

j
(
Ee0,αE∗

e0,β − Ee0,βE∗
e0,α

)

⎤

⎥
⎥
⎥
⎥
⎦

, (1.20)

where D is a transformation matrix and

D =

⎡

⎢
⎢
⎣

1 0 0 1
1 0 0 −1
0 −1 −1 0
0 −j j 0

⎤

⎥
⎥
⎦ . (1.21)



14 1 Basic Theory of Electromagnetic Scattering

The first Stokes parameter Ie,

Ie =
1
2

√
εs

µs
|Ee0|2

is the intensity of the wave, while the Stokes parameters Qe, Ue and Ve describe
the polarization state of the wave. The Stokes parameters are defined with
respect to a reference plane containing the direction of wave propagation, and
Qe and Ue depend on the choice of the reference frame. If the unit vectors eβ

and eα are rotated through an angle ϕ (Fig. 1.4), the transformation from the
Stokes vector Ie to the Stokes vector I ′

e (relative to the rotated unit vectors
e′

β and e′
α) is given by

I ′
e = L (ϕ) Ie , (1.22)

where the Stokes rotation matrix L is

L (ϕ) =

⎡

⎢
⎢
⎣

1 0 0 0
0 cos 2ϕ − sin 2ϕ 0
0 sin 2ϕ cos 2ϕ 0
0 0 0 1

⎤

⎥
⎥
⎦ . (1.23)

The Stokes parameters can be expressed in terms of aβ , aα and ∆δ as (omit-
ting the factor 1

2

√
εs/µs)

Ie = a2
β + a2

α ,

Qe = a2
β − a2

α ,

Ue = −2aβaα cos ∆δ ,

Ve = 2aβaα sin ∆δ ,

eβ

eα

ϕ

e�β

e�α

O

Fig. 1.4. Rotation of the polarization unit vectors through the angle ϕ
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and in terms of E0, ψ and χ, as

Ie = E2
0 ,

Qe = −E2
0 cos 2χ cos 2ψ ,

Ue = −E2
0 cos 2χ sin 2ψ ,

Ve = −E2
0 sin 2χ .

The above relations show that the Stokes parameters carry information about
the amplitudes and the phase difference, and are operationally defined in terms
of measurable quantities (intensities). For a linearly polarized plane wave,
χ = 0 and Ve = 0, while for a circularly polarized plane wave, χ = ±π/4
and Qe = Ue = 0. Thus, the Stokes vector of a linearly polarized wave of
unit amplitude is given by Ie = [1, cos 2αpol,− sin 2αpol, 0]T, while the Stokes
vector of a circularly polarized wave of unit amplitude is Ie = [1, 0, 0,∓1]T.

The Stokes parameters of a monochromatic plane wave are not indepen-
dent since

I2
e = Q2

e + U2
e + V 2

e , (1.24)

and we may conclude that only three parameters are required to characterize
the state of polarization. For quasi-monochromatic light, the amplitude of the
electric field fluctuate in time and the Stokes parameters are expressed in
terms of the time-averaged quantities 〈Ee0,pE

∗
e0,q〉, where p and q stand for β

and α. In this case, the equality in (1.24) is replaced by the inequality

I2
e ≥ Q2

e + U2
e + V 2

e ,

and the quantity

P =

√
Q2

e + U2
e + V 2

e

Ie

is known as the degree of polarization of the quasi-monochromatic beam. For
natural (unpolarized) light, P = 0, while for fully polarized light P = 1. The
Stokes vector defined by (1.20) is one possible representation of polarization.
Other representations are discussed by Hovenier and van der Mee [101], while a
detailed discussion of the polarimetric definitions can be found in [17,169,171].

1.2.2 Vector Spherical Wave Expansion

The derivation of the transition matrix in the framework of the null-field
method requires the expansion of the incident field in terms of (localized)
vector spherical wave functions. This expansion must be provided in the parti-
cle coordinate system, where in general, the particle coordinate system Oxyz
is obtained by rotating the global coordinate system OXY Z through the
Euler angles αp, βp and γp (Fig. 1.5). In our analysis, vector plane waves and
Gaussian beams are considered as external excitations.
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y

2

Y

Z, z

O

1
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y1, y2

x

X x

x

z, z

Fig. 1.5. Euler angles αp, βp and γp specifying the orientation of the particle
coordinate system Oxyz with respect to the global coordinate system OXY Z. The
transformation OXY Z → Oxyz is achieved by means of three successive rotations:
(1) rotation about the Z-axis through αp, OXY Z → Ox1y1z1, (2) rotation about
the y1-axis through βp, Ox1y1z1 → Ox2y2z2 and (3) rotation about the z2-axis
through γp, Ox2y2z2 → Oxyz

Vector Plane Wave

We consider a vector plane wave of unit amplitude propagating in the direction
(βg, αg) with respect to the global coordinate system. Passing from spherical
coordinates to Cartesian coordinates and using the transformation rules under
coordinate rotations we may compute the spherical angles β and α of the
wave vector in the particle coordinate system. Thus, in the particle coordinate
system we have the representation

Ee(r) = epolejke·r , epol · ek = 0 ,

where as before, ke = ksek.
The vector spherical waves expansion of the incident field reads as

Ee(r) =
∞∑

n=1

n∑

m=−n

amnM1
mn (ksr) + bmnN1

mn (ksr) , (1.25)

where the expansion coefficients are given by [9, 228]

amn = 4jnepol · m∗
mn(β, α)

= − 4jn
√

2n(n + 1)
epol ·

[
jmπ|m|

n (β)eβ + τ |m|
n (β)eα

]
e−jmα ,
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bmn = −4jn+1epol · n∗
mn(β, α)

= − 4jn+1

√
2n(n + 1)

epol ·
[
τ |m|
n (β)eβ − jmπ|m|

n (β)eα

]
e−jmα . (1.26)

To give a justification of the above expansion we consider the integral repre-
sentation

epol(β, α)ejke(β,α)·r =
∫ 2π

0

∫ π

0

epol(β, α)ejk(β′,α′)·r

×δ(α′ − α)δ(cos β′ − cos β) sin β′ dβ′ dα′ , (1.27)

and expand the tangential field

f (β, α, β′, α′) = epol(β, α)δ(α′ − α)δ(cos β′ − cos β) (1.28)

in vector spherical harmonics

f (β, α, β′, α′) =
1

4πjn

∞∑

n=1

n∑

m=−n

amnmmn (β′, α′)+jbmnnmn (β′, α′) . (1.29)

Using the orthogonality relations of vector spherical harmonics we see that
the expansion coefficients amn and bmn are given by

amn = 4jn
∫ 2π

0

∫ π

0

f (β, α, β′, α′) · m∗
mn (β′, α′) sinβ′ dβ′ dα′

= 4jnepol(β, α) · m∗
mn(β, α) ,

bmn = −4jn+1

∫ 2π

0

∫ π

0

f (β, α, β′, α′) · n∗
mn (β′, α′) sinβ′ dβ′ dα′

= −4jn+1epol(β, α) · n∗
mn(β, α) .

Substituting (1.28) and (1.29) into (1.27) and taking into account the integral
representations for the regular vector spherical wave functions (cf. (B.26) and
(B.27)) yields (1.25).

The polarization unit vector of a linearly polarized vector plane wave is
given by (1.18). If the vector plane wave propagates along the z-axis we have
β = α = 0 and for β = 0, the spherical vector harmonics are zero unless m =
±1. Using the special values of the angular functions π1

n and τ1
n when β = 0,

π1
n (0) = τ1

n (0) =
1

2
√

2

√
n(n + 1)(2n + 1) ,

we obtain

a±1n = −jn
√

2n + 1 (±j cos αpol + sin αpol) ,

b±1n = −jn+1
√

2n + 1 (cos αpol ∓ j sin αpol) .
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Thus, for a vector plane wave polarized along the x-axis we have

a1n = −a−1n = jn−1
√

2n + 1 ,

b1n = b−1n = jn−1
√

2n + 1 ,

while for a vector plane wave polarized along the y-axis we have

a1n = a−1n = jn−2
√

2n + 1 ,

b1n = −b−1n = jn−2
√

2n + 1 .

Gaussian Beam

Many optical particle sizing instruments and particle characterization meth-
ods are based on scattering by particles illuminated with laser beams.
A laser beam has a Gaussian intensity distribution and the often used
appellation Gaussian beam appears justified. A mathematical description of
a Gaussian beam relies on Davis approximations [45]. An nth Davis beam
corresponds to the first n terms in the series expansion of the exact solution
to the Maxwell equations in power of the beam parameter s,

s =
w0

l
,

where w0 is the waist radius and l is the diffraction length, l = ksw
2
0. According

to Barton and Alexander [9], the first-order approximation is accurate to
s < 0.07, while the fifth-order is accurate to s < 0.02, if the maximum percent
error of the solution is less than 1.2%. Each nth Davis beam appears under
three versions which are: the mathematical conservative version, the L-version
and the symmetrized version [145]. None of these beams are exact solutions
to the Maxwell equations, so that each nth Davis beam can be considered as
a “pseudo-electromagnetic” field.

In the T -matrix method a Gaussian beam is expanded in terms of vector
spherical wave functions by replacing the pseudo-electromagnetic field of an
nth Davis beam by an equivalent electromagnetic field, so that both fields
have the same values on a spherical surface [81, 83, 85]. As a consequence
of the equivalence method, the expansion coefficients (or the beam shape
coefficients) are computed by integrating the incident field over the spher-
ical surface. Because these fields are rapidly varying, the evaluation of the
coefficients by numerical integration requires dense grids in both the θ- and
ϕ-direction and the computer run time is excessively long.

For weakly focused Gaussian beams, the generalized localized approxima-
tion to the beam shape coefficients represents a pleasing alternative (see, for
instance, [84, 87]). The form of the analytical approximation was found in
part by analogy to the propagation of geometrical light rays and in part by
numerical experiments. This is not a rigorous method but its use simplifies
and significantly speeds up the numerical computations. A justification of
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the localized approximations for both on- and off-axis beams has been given
by Lock and Gouesbet [145] and Gouesbet and Lock [82]. We note that the
focused beam generated by the localized approximation is a good approxima-
tion to a Gaussian beam for s ≤ 0.1.

We consider the geometry depicted in Fig. 1.6 and assume that the middle
of the beam waist is located at the point Ob. The particle coordinate system
Oxyz and the beam coordinate system Obxbybzb have identical spatial orien-
tation, and the position vector of the particle center O in the system Obxbybzb

is denoted by r0. The Gaussian beam is of unit amplitude, propagates along
the zb-axis and is linearly polarized along the xb-axis. In the particle coor-
dinate system, the expansion of the Gaussian beam in vector spherical wave
functions is given by

Ee(r) =
∞∑

n=1

n∑

m=−n

ãmnM1
mn (ksr) + b̃mnN1

mn (ksr) ,

and the generalized localized approximation to the Davis first-order beam is

ãmn = KmnΨ0ejksz0

[
ej(m−1)ϕ0Jm−1 (u) − ej(m+1)ϕ0Jm+1 (u)

]
,

b̃mn = KmnΨ0ejksz0

[
ej(m−1)ϕ0Jm−1 (u) + ej(m+1)ϕ0Jm+1 (u)

]
,

x b

b
y bO

O

zb

r0

ϕ0

z0

ρ0

y

x

z

2w0

Fig. 1.6. The particle coordinate system Oxyz and the beam coordinate system
Oxbybzb have the same spatial orientation
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where (ρ0, ϕ0, z0) are the cylindrical coordinates of r0,

Ψ0 = jQ exp
(
−jQ

ρ2
0 + ρ2

n

w2
0

)
, Q =

1
j − 2z0/l

, ρn =
1
ks

(
n +

1
2

)
,

and

u = 2Q
ρ0ρn

w2
0

.

The normalization constant Kmn is given by

Kmn = 2jn
√

n(n + 1)
2n + 1

for m = 0, and by

Kmn = (−1)|m| jn+|m|
(
n + 1

2

)|m|−1

√
2n + 1

n(n + 1)
· (n + |m|)!
(n − |m|)!

for m �= 0. If both coordinate systems coincide (ρ0 = 0), all expansion coeffi-
cients are zero unless m = ±1 and

ã1n = −ã−1n = jn−1
√

2n + 1 exp
(
− ρ2

n

w2
0

)
,

b̃1n = b̃−1n = jn−1
√

2n + 1 exp
(
− ρ2

n

w2
0

)
.

The Gaussian beam becomes a plane wave if w0 tends to infinity and for this
specific case, the expressions of the expansion coefficients reduce to those of
a vector plane wave.

We next consider the general situation depicted in Fig. 1.7 and assume
that the auxiliary coordinate system ObXbYbZb and the global coordinate
system OXY Z have the same spatial orientation. The Gaussian beam propa-
gates in a direction characterized by the zenith and azimuth angles βg and αg,
respectively, while the polarization unit vector encloses the angle αpol with
the xb-axis of the beam coordinate system Obxbybzb. As before, the parti-
cle coordinate system is obtained by rotating the global coordinate system
through the Euler angles αp, βp and γp. The expansion of the Gaussian beam
in the particle coordinate system is obtained by using the addition theorem
for vector spherical wave functions under coordinate rotations (cf. (B.52) and
(B.53)), and the result is

Ee(r) =
∞∑

n=1

n∑

m=−n

amnM1
mn (ksr) + bmnN1

mn (ksr) ,



1.3 Internal Field 21

xb

yb

O b

zb

y

x

z

O

X

Y

Z

Yb

Xb

Zb

βp

βg

r0

Fig. 1.7. General orientations of the particle and beam coordinate systems

where

amn =
n∑

m′=−n

n∑

m′′=−n

Dn
m′m′′ (−αpol,−βg,−αg) Dn

m′′m (αp, βp, γp) ãm′n ,

bmn =
n∑

m′=−n

n∑

m′′=−n

Dn
m′m′′ (−αpol,−βg,−αg) Dn

m′′m (αp, βp, γp) b̃m′n ,

and the Wigner D-functions Dn
m′′m are given by (B.34).

Remark. Another representation of a Gaussian beam is the integral repre-
sentation over plane waves [48, 116]. This can be obtained by using Fourier
analysis and by replacing the pseudo-vector potential of a nth Davis beam
by an equivalent vector potential (satisfying the wave equation), so that both
vector fields have the same values in a plane z = const.

1.3 Internal Field

To solve the scattering problem in the framework of the null-field method it
is necessary to approximate the internal field by a suitable system of vector
functions. For isotropic particles, regular vector spherical wave functions of
the interior wave equation are used for internal field approximations. In this
section we derive new systems of vector functions for anisotropic and chiral
particles by representing the electromagnetic fields (propagating in anisotropic
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and chiral media) as integrals over plane waves. For each plane wave, we solve
the Maxwell equations and derive the dispersion relation following the treat-
ment of Kong [122]. The dispersion relation which relates the amplitude of
the wave vector k to the properties of the medium enable us to reduce the
three-dimensional integrals to two-dimensional integrals over the unit sphere.
The integral representations are then transformed into series representations
by expanding appropriate tangential vector functions in vector spherical har-
monics. The new basis functions are the vector quasi-spherical wave functions
(for anisotropic media) and the vector spherical wave functions of left- and
right-handed type (for chiral media).

1.3.1 Anisotropic Media

Maxwell equations describing electromagnetic wave propagation in a source-
free, electrically anisotropic medium are given by (1.10), while the constitutive
relations are given by (1.7) with the scalar permeability µ in place of the
permeability tensor µ. In the principal coordinate system, the first constitutive
relation can be written as

E = λD ,

where the impermittivity tensor λ is given by

λ =

⎡

⎣
λx 0 0
0 λy 0
0 0 λz

⎤

⎦ ,

and λx = 1/εx, λy = 1/εy and λz = 1/εz.
The electromagnetic fields can be expressed as integrals over plane waves

by considering the inverse Fourier transform (excepting the factor 1/(2π)3):

A(r) =
∫

A (k) ejk·r dV (k) ,

where A stands for E, D, H and B, and A stands for the Fourier transforms
E , D, H and B. Using the identities

∇× A(r) = j
∫

k ×A (k) ejk·r dV (k) ,

∇ · A(r) = j
∫

k · A (k) ejk·r dV (k) ,

we see that the Maxwell equations for the Fourier transforms take the forms

k × E = k0B , k ×H = −k0D ,

k · D = 0 , k · B = 0 ,
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and the plane wave solutions read as

Eβ =
k0

k
Bα , Eα = −k0

k
Bβ ,

Hβ = −k0

k
Dα , Hα =

k0

k
Dβ ,

Dk = 0 , Bk = 0 , (1.30)

where (k, β, α) and (ek,eβ ,eα) are the spherical coordinates and the spherical
unit vectors of the wave vector k, respectively, and in general, (Ak,Aβ ,Aα)
are the spherical coordinates of the vector A. The constitutive relations for
the transformed fields E = λD and H = (1/µ)B can be written in spherical
coordinates by using the transformation

⎡

⎣
Ax

Ay

Az

⎤

⎦ =

⎡

⎣
cos α sin β cos α cos β − sin α
sin α sinβ sin α cos β cos α

cos β − sin β 0

⎤

⎦

⎡

⎣
Ak

Aβ

Aα

⎤

⎦ ,

and the result is

Ek = λkβDβ + λkαDα ,

Eβ = λββDβ + λβαDα ,

Eα = λαβDβ + λααDα , (1.31)

and
Hk = 0 , Hβ =

1
µ
Bβ , Hα =

1
µ
Bα , (1.32)

where

λkβ =
(
λx cos2 α + λy sin2 α − λz

)
sin β cos β ,

λkα = (λy − λx) sinα cos α sinβ ,

λββ =
(
λx cos2 α + λy sin2 α

)
cos2 β + λz sin2 β ,

λβα = (λy − λx) sinα cos α cos β ,

and

λαβ = λβα ,

λαα = λx sin2 α + λy cos2 α .

Equations (1.30) and (1.32) are then used to express Eβ , Eα and Hβ , Hα in
terms of Dβ , Dα, and we obtain

Eβ = µ
k2
0

k2
Dβ , Eα = µ

k2
0

k2
Dα ,

Hβ = −k0

k
Dα , Hα =

k0

k
Dβ . (1.33)
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The last two equations in (1.31) and the first two equations in (1.33) yield a
homogeneous system of equations for Dβ and Dα

[
λββ − µ

k2
0

k2 λβα

λβα λαα − µ
k2
0

k2

] [
Dβ

Dα

]
= 0 . (1.34)

Requiring nontrivial solutions we set the determinant equal to zero and obtain
two values for the wave number k2,

k2
1,2 = k2

0

µ

λ1,2
,

where

λ1 =
1
2

[
(λββ + λαα) −

√
(λββ − λαα)2 + 4λ2

βα

]
,

and

λ2 =
1
2

[
(λββ + λαα) +

√
(λββ − λαα)2 + 4λ2

βα

]
.

The above relations are the dispersion relations for the extraordinary waves,
which are the permissible characteristic waves in anisotropic media. For an
extraordinary wave, the magnitude of the wave vector depends on the direc-
tion of propagation, while for an ordinary wave, k is independent of β and
α. Straightforward calculations show that for real values of λx, λy and λz,
λββλαα > λ2

βα and as a result λ1 > 0 and λ2 > 0. The two characteristic
waves, corresponding to the two values of k2, have the D vectors orthogonal
to each other, i.e., D(1) · D(2) = 0. In view of (1.34) it is apparent that the
components of the vectors D(1) and D(2) can be expressed in terms of two
independent scalar functions Dα and Dβ . For k1 = k0

√
µ/λ1 we set

D(1)
β = fDα , D(1)

α = Dα ,

while for k2 = k0

√
µ/λ2 we choose

D(2)
β = −Dβ , D(2)

α = fDβ ,

where

f = −λβα

∆λ

and

∆λ =
1
2

[
(λββ − λαα) +

√
(λββ − λαα)2 + 4λ2

βα

]
.

Next, we define the tangential fields

vα = feβ + eα ,

vβ = −eβ + feα ,
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and note that the vectors vα and vβ are orthogonal to each other, vα ·vβ = 0,
and vα = −ek × vβ and vβ = ek × vα. Taking into account that k1 (ek) =
k1 (ek) ek and k2 (ek) = k2 (ek) ek, we find the following integral representa-
tion for the electric displacement:

D(r) =
∫

Ω

[
Dα (ek) vα (ek) ejk1(ek)·r + Dβ (ek) vβ (ek) ejk2(ek)·r

]
dΩ (ek) ,

with Ω being the unit sphere. The result, the integral representation for the
electric field is

E(r) =
1

εxy

×
∫

Ω

[
Dα (ek) we

α (ek) ejk1(ek)·r −Dβ (ek) we
β (ek) ejk2(ek)·r

]
dΩ (ek) ,

where

εxy =
1
2

(εx + εy) ,

and

we
α = εxy [(λkβf + λkα) ek + λ1vα] ,

we
β = εxy [(λkβ − λkαf) ek − λ2vβ ] ,

while for the magnetic field, we have

H(r) = − 1
√

εxyµ

∫

Ω

[
Dα (ek) wh

α (ek) ejk1(ek)·r

+ Dβ (ek) wh
β (ek) ejk2(ek)·r

]
dΩ (ek) ,

where

wh
α = −

√
εxyλ1vβ ,

wh
β =
√

εxyλ2vα .

For uniaxial anisotropic media we set λ = λx = λy, derive the relations

λkβ = (λ − λz) sinβ cos β , λkα = 0 ,

λββ = λ cos2 β + λz sin2 β , λβα = 0 ,

λαβ = 0 , λαα = λ ,

and use the identities λ1 = λαα and λ2 = λββ , to obtain

k2
1 = k2

0εµ , (1.35)

k2
2 = k2

0

εµ

cos2 β + ε
εz

sin2 β
, (1.36)
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where λ = 1/ε and λz = 1/εz. Equation (1.35) is the dispersion relation for
ordinary waves, while (1.36) is the dispersion relation for extraordinary waves.
For f = 0 it follows that D(1)

β = 0 and D(2)
α = 0, and further that D(1)

α = Dα

and D(2)
β = −Dβ . The electric displacement is then given by

D(r) =
∫ 2π

0

∫ π

0

[
Dα(β, α)eαejk1(β,α)·r −Dβ(β, α)eβejk2(β,α)·r

]
sinβ dβ dα ,

(1.37)
where k1(β, α) = k1ek(β, α), k2(β, α) = k2(β)ek(β, α), and for notation sim-
plification, the dependence of the spherical unit vectors eα and eβ on the
spherical angles β and α is omitted. For εxy = ε, the integral representations
for the electric and magnetic fields become

E(r) =
1
ε

∫ 2π

0

∫ π

0

{
Dα(β, α)eαejk1(β,α)·r (1.38)

− ε [λkβ(β)ek + λββ(β)eβ ]Dβ(β, α)ejk2(β,α)·r
}

sinβ dβ dα ,

and

H(r) = − 1
√

εµ

∫ 2π

0

∫ π

0

[
Dα(β, α)eβejk1(β,α)·r

+
√

ελββ(β)Dβ(β, α)eαejk2(β,α)·r
]

sinβ dβ dα , (1.39)

respectively. For isotropic media, the only nonzero λ functions are λββ and
λαα, and we have λββ = λαα = λ. The two waves degenerate into one (ordi-
nary) wave, i.e., k1 = k2 = k, and the dispersion relation is

k2 = k2
0εµ .

Next we proceed to derive series representations for the electric and mag-
netic fields propagating in uniaxial anisotropic media. On the unit sphere, the
tangential vector function Dα(β, α)eα −Dβ(β, α)eβ can be expanded in terms
of the vector spherical harmonics mmn and nmn as follows:

Dα(β, α)eα −Dβ(β, α)eβ = −ε
∞∑

n=1

n∑

m=−n

1
4πjn+1

[−jcmnmmn(β, α)

+ dmnnmn(β, α)] . (1.40)

Because the system of vector spherical harmonics is orthogonal and complete
in L2(Ω), the series representation (1.40) is valid for any tangential vector
field. Taking into account the expressions of the vector spherical harmonics
(cf. (B.8) and (B.9)) we deduce that the expansions of Dβ and Dα are given by
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−Dβ(β, α) = −ε
∞∑

n=1

n∑

m=−n

1
4πjn+1

1
√

2n(n + 1)

[
mπ|m|

n (β)cmn

+ τ |m|
n (β)dmn

]
ejmα

and

Dα(β, α) = −ε
∞∑

n=1

n∑

m=−n

1
4πjn+1

1
√

2n(n + 1)

[
jτ |m|

n (β)cmn

+ jmπ|m|
n (β)dmn

]
ejmα ,

respectively. Inserting the above expansions into (1.38) and (1.39), yields the
series representations

E(r) =
∞∑

n=1

n∑

m=−n

cmnXe
mn(r) + dmnY e

mn(r) , (1.41)

H(r) = −j
√

ε

µ

∞∑

n=1

n∑

m=−n

cmnXh
mn(r) + dmnY h

mn(r) , (1.42)

where the new vector functions are defined as

Xe
mn(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ 2π

0

∫ π

0

{
jτ |m|

n (β)ejk1(β,α)·reα

+ ε [λkβ(β)ek + λββ(β)eβ ] mπ|m|
n (β)ejk2(β,α)·r

}

×ejmα sinβ dβ dα , (1.43)

Y e
mn(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ 2π

0

∫ π

0

{
jmπ|m|

n (β)ejk1(β,α)·reα (1.44)

+ ε [λkβ(β)ek + λββ(β)eβ ] τ |m|
n (β)ejk2(β,α)·r

}
ejmα sin β dβ dα ,

Xh
mn(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ 2π

0

∫ π

0

[
τ |m|
n (β)ejk1(β,α)·reβ (1.45)

+ j
√

ελββ(β)mπ|m|
n (β)ejk2(β,α)·reα

]
ejmα sin β dβ dα ,

and

Y h
mn(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ 2π

0

∫ π

0

[
mπ|m|

n (β)ejk1(β,α)·reβ

+ j
√

ελββ(β)τ |m|
n (β)ejk2(β,α)·reα

]
ejmα sin β dβ dα . (1.46)
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In (1.38)–(1.39), the electromagnetic fields are expressed in terms of the
unknown scalar functions Dα and Dβ , while in (1.41) and (1.42), the electro-
magnetic fields are expressed in terms of the unknown expansion coefficients
cmn and dmn. These unknowns will be determined from the boundary condi-
tions for each specific scattering problem. The vector functions Xe,h

mn and Y e,h
mn

can be regarded as a generalization of the regular vector spherical wave func-
tions M1

mn and N1
mn. For isotropic media, we have ελββ = 1, λkβ = 0 and

k1 = k2 = k, and we see that both systems of vector functions are equivalent:

Xe
mn(r) = Y h

mn(r) = M1
mn(kr) ,

Y e
mn(r) = Xh

mn(r) = N1
mn(kr) . (1.47)

As a result, we obtain the familiar expansions of the electromagnetic fields in
terms of vector spherical wave functions of the interior wave equation:

E(r) =
∞∑

n=1

n∑

m=−n

cmnM1
mn (kr) + dmnN1

mn(kr) ,

H(r) = −j
√

ε

µ

∞∑

n=1

n∑

m=−n

cmnN1
mn (kr) + dmnM1

mn(kr) .

Although the derivation of Xe,h
mn and Y e,h

mn differs from that of Kiselev et al.
[119], the resulting systems of vector functions are identical except for a mul-
tiplicative constant. Accordingly to Kiselev et al. [119], this system of vector
functions will be referred to as the system of vector quasi-spherical wave func-
tions. In (1.43)–(1.46) the integration over α can be analytically performed
by using the relations

ek = sin β cos αex + sinβ sin αey + cos βez ,

eβ = cos β cos αex + cos β sin αey − sin βez ,

eα = − sin αex + cos αey ,

and the standard integrals

Im (x, ϕ) =
∫ 2π

0

ejx cos(α−ϕ)ejmα dα = 2πjmejmϕJm (x) ,

Ic
m (x, ϕ) =

∫ 2π

0

cos αejx cos(α−ϕ)ejmα dα = π
[
jm+1ej(m+1)ϕJm+1 (x)

+ jm−1ej(m−1)ϕJm−1 (x)
]

,

Is
m (x, ϕ) =

∫ 2π

0

sin αejx cos(α−ϕ)ejmα dα = −jπ
[
jm+1ej(m+1)ϕJm+1 (x)

− jm−1ej(m−1)ϕJm−1 (x)
]

,
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where (ex,ey,ez) are the Cartesian unit vectors and Jm is the cylindrical
Bessel functions of order m. The expressions of the Cartesian components of
the vector function Xe

mn read as

Xe
mn,x(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ π

0

{
−jτ |m|

n (β)Is
m(x1, ϕ)ejy1(r,θ,β)

+ε [λββ(β) cos β + λkβ(β) sin β] mπ|m|
n (β)

× Ic
m(x2, ϕ)ejy2(r,θ,β)

}
sinβ dβ (1.48)

Xe
mn,y(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ π

0

{
jτ |m|

n (β)Ic
m(x1, ϕ)ejy1(r,θ,β)

+ε [λββ(β) cos β + λkβ(β) sin β] mπ|m|
n (β)

× Is
m(x2, ϕ)ejy2(r,θ,β)

}
sinβ dβ , (1.49)

Xe
mn,z(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ π

0

ε [λkβ(β) cos β − λββ(β) sin β]

×mπ|m|
n (β)Im(x2, ϕ)ejy2(r,θ,β) sin β dβ , (1.50)

where x1(r, θ, β) = k1r sin β sin θ, x2(r, θ, β) = k2(β)r sin β sin θ, y1(r, θ, β) =
k1r cos β cos θ and y2(r, θ, β) = k2(β)r cos β cos θ, while the expressions of the
Cartesian components of the vector functions Y e

mn are given by (1.48)–(1.50)
with mπ

|m|
n and τ

|m|
n interchanged. Similarly, the Cartesian components of the

vector function Xh
mn are

Xh
mn,x(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ π

0

[
τ |m|
n (β) cos βIc

m(x1, ϕ)ejy1(r,θ,β)

− j
√

ελββ(β)mπ|m|
n (β)Is

m(x2, ϕ)ejy2(r,θ,β)

]
sinβ dβ , (1.51)

Xh
mn,y(r) = − 1

4πjn+1

1
√

2n(n + 1)

∫ π

0

[
τ |m|
n (β) cos βIs

m(x1, ϕ)ejy1(r,θ,β)

+ j
√

ελββ(β)mπ|m|
n (β)Ic

m(x2, ϕ)ejy2(r,θ,β)

]
sin β dβ , (1.52)

Xh
mn,z(r) =

1
4πjn+1

1
√

2n(n + 1)

∫ π

0

τ |m|
n (β)Im(x1, ϕ)ejy1(r,θ,β) sin2 β dβ ,

(1.53)
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and as before, the components of the vector functions Y h
mn are given by

(1.51)–(1.53) with mπ
|m|
n and τ

|m|
n interchanged.

In the above analysis, Xe,h
mn and Y e,h

mn are expressed in the principal coor-
dinate system, but in general, it is necessary to transform these vector func-
tions from the principal coordinate system to the particle coordinate system
through a rotation. The vector quasi-spherical wave functions can also be
defined for biaxial media (εx �= εy �= εz) by considering the expansion of
the tangential vector function Dα(β, α)vα + Dβ(β, α)vβ in terms of vector
spherical harmonics.

1.3.2 Chiral Media

For a source-free, isotropic, chiral medium, the Maxwell equations are given
by (1.10), with the K matrix defined by (1.11). Following Bohren [16], the
electromagnetic field is transformed to

[
E
H

]
= A

[
L
R

]
,

where A is a transformation matrix and

A =

[
1 −j

√
µ
ε

−j
√

ε
µ 1

]

.

The transformed fields L and R are the left- and right-handed circularly po-
larized waves, or simply the waves of left- and right-handed types. Explicitly,
the electromagnetic field transformation is

E = L − j
√

µ

ε
R ,

H = −j
√

ε

µ
L + R

and note that this linear transformation diagonalizes the matrix K,

Λ = A−1KA =

[
k

1−βk 0
0 − k

1+βk

]

.

Defining the wave numbers

kL =
k

1 − βk
,

kR =
k

1 + βk
,
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we see that the waves of left- and right-handed types satisfy the equations

∇× L = kLL , ∇ · L = 0 (1.54)

and
∇× R = −kRR , ∇ · R = 0, (1.55)

respectively.
For chiral media, we use the same technique as for anisotropic media and

express the left- and right-handed circularly polarized waves as integrals over
plane waves. For the Fourier transform corresponding to waves of left-handed
type,

L(r) =
∫

L (k) ejk·r dV (k) ,

the differential equations (1.54) yield

Lβ = −j
kL

k
Lα ,

Lα = j
kL

k
Lβ ,

and Lk = 0. The above set of equations form a system of homogeneous equa-
tions and setting the determinant equal to zero, gives the dispersion relation
for the waves of left-handed type

k2 = k2
L .

Choosing Lβ as an independent scalar function, we express L as

L(r) =
∫ 2π

0

∫ π

0

(eβ + jeα)Lβ(β, α)ejkL(β,α)·r sinβ dβ dα , (1.56)

where kL(β, α) = kLek(β, α). The tangential field (eβ + jeα)Lβ is orthogonal
to the vector spherical harmonics of right-handed type with respect to the
scalar product in L2

tan(Ω) (cf. (B.16) and (B.17)), and as result, (eβ +jeα)Lβ

possesses an expansion in terms of vector spherical harmonics of left-handed
type (cf. (B.14))

(eβ + jeα)Lβ(β, α) =
∞∑

n=1

n∑

m=−n

1
2
√

2πjn
cmnlmn(β, α) (1.57)

=
∞∑

n=1

n∑

m=−n

1
4πjn

cmn [mmn(β, α) + jnmn(β, α)] .
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Inserting (1.57) into (1.56), yields

L(r) = −
∞∑

n=1

n∑

m=−n

1
4πjn+1

cmn

∫ 2π

0

∫ π

0

[−jmmn(β, α)

+ nmn(β, α)] ejkL(β,α)·r sinβ dβ dα ,

whence, using the integral representation for the vector spherical wave func-
tions (cf. (B.26) and (B.27)), gives

L(r) =
∞∑

n=1

n∑

m=−n

cmnLmn (kLr)

=
∞∑

n=1

n∑

m=−n

cmn

[
M1

mn (kLr) + N1
mn (kLr)

]
,

where the vector spherical wave functions of left-handed type Lmn are de-
fined as

Lmn = M1
mn + N1

mn . (1.58)

For the waves of right-handed type we proceed analogously. We obtain the
integral representation

R(r) =
∫ 2π

0

∫ π

0

(eβ − jeα)Rβ(β, α)ejkR(β,α)·r sinβ dβ dα

with Rβ being an independent scalar function, and the expansion

R(r) =
∞∑

n=1

n∑

m=−n

dmnRmn (kRr)

=
∞∑

n=1

n∑

m=−n

dmn

[
M1

mn (kRr) − N1
mn (kRr)

]

with the vector spherical wave functions of right-handed type Rmn being
defined as

Rmn = M1
mn − N1

mn . (1.59)

In conclusion, the electric and magnetic fields propagating in isotropic, chiral
media possess the expansions [16,17,135]

E(r) =
∞∑

n=1

n∑

m=−n

cmnLmn (kLr) − j
√

µ

ε
dmnRmn (kRr) ,

H(r) =
∞∑

n=1

n∑

m=−n

−j
√

ε

µ
cmnLmn (kLr) + dmnRmn (kRr) .



1.4 Scattered Field 33

An exhaustive treatment of electromagnetic wave propagation in isotropic,
chiral media has been given by Lakhtakia et al. [136]. This analysis deals with
the conservation of energy and momentum, properties of the infinite-medium
Green’s function and the mathematical expression of Huygens’s principle.

1.4 Scattered Field

In this section we consider the basic properties of the scattered field as they
are determined by energy conservation and by the propagation properties of
the fields in source-free regions. The results are presented for electromag-
netic scattering by dielectric particles, which is modeled by the transmission
boundary-value problem. To formulate the transmission boundary-value prob-
lem we consider a bounded domain Di (of class C2) with boundary S and
exterior Ds, and denote by n the unit normal vector to S directed into Ds

(Fig. 1.8). The relative permittivity and relative permeability of the domain
Dt are εt and µt, where t = s, i, and the wave number in the domain Dt is
kt = k0

√
εtµt, where k0 is the wave number in free space. The unbounded

domain Ds is assumed to be lossless, i.e., εs > 0 and µs > 0, and the external
excitation is considered to be a vector plane wave

Ee(r) = Ee0ejke·r , He(r) =
√

εs

µs
ek × Ee0ejke·r ,

where Ee0 is the complex amplitude vector and ek is the unit vector in the
direction of the wave vector ke. The transmission boundary-value problem
has the following formulation.

Given Ee,He as an entire solution to the Maxwell equations representing
the external excitation, find the vector fields Es,Hs ∈ C1(Ds) ∩ C(Ds) and
Ei,H i ∈ C1(Di) ∩ C(Di) satisfying the Maxwell equations

∇× Et = jk0µtHt, ∇× Ht = −jk0εtEt, (1.60)

i s

n

εs, µs,

ε i, µi,

ke

k i

k s

Ee

Es

O D D

S

Fig. 1.8. The domain Di with boundary S and exterior Ds
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in Dt, t = s, i, and the two transmission conditions

n × Ei − n × Es = n × Ee ,

n × H i − n × Hs = n × He , (1.61)

on S. In addition, the scattered field Es,Hs must satisfy the Silver–Müller
radiation condition

r

r
×√

µsHs +
√

εsEs = o
(

1
r

)
, as r → ∞ , (1.62)

uniformly for all directions r/r.
It should be emphasized that for the assumed smoothness conditions, the

transmission boundary-value problem possesses an unique solution [177].
Our presentation is focused on the analysis of the scattered field in the

far-field region. We begin with a basic representation theorem for electro-
magnetic scattering and then introduce the primary quantities which define
the single-scattering law: the far-field patterns and the amplitude matrix. Be-
cause the measurement of the amplitude matrix is a complicated experimental
problem, we characterize the scattering process by other measurable quanti-
ties as for instance the optical cross-sections and the phase and extinction
matrices.

In our analysis, we will frequently use the Green second vector theorem
∫

D

[a · (∇×∇× b) − b · (∇×∇× a)] dV

=
∫

S

n · [b × (∇× a) − a × (∇× b)] dS ,

where D is a bounded domain with boundary S and n is the outward unit
normal vector to S.

1.4.1 Stratton–Chu Formulas

Representation theorems for electromagnetic fields have been given by Strat-
ton and Chu [216]. If Es, Hs is a radiating solution to Maxwell’s equations
in Ds, then we have the Stratton–Chu formulas
(

Es(r)
0

)
= ∇×

∫

S

es (r′) g (ks, r, r′) dS(r′) (1.63)

+
j

k0εs
∇×∇×

∫

S

hs (r′) g (ks, r, r′) dS(r′) ,

(
r ∈ Ds

r ∈ Di

)
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and
(

Hs(r)
0

)
= ∇×

∫

S

hs (r′) g (ks, r, r′) dS(r′)

− j
k0µs

∇×∇×
∫

S

es (r′) g (ks, r, r′) dS(r′) ,

(
r ∈ Ds

r ∈ Di

)
,

where g is the Green function and the surface fields es and hs are the tangential
components of the electric and magnetic fields on the particle surface, i.e.,
es = n × Es and hs = n × Hs, respectively. In the above equations we use a
compact way of writing two formulas (for r ∈ Ds and for r ∈ Di) as a single
equation.

A similar result holds for vector functions satisfying the Maxwell equations
in bounded domains. With Ei, H i being a solution to Maxwell’s equations in
Di we have
(
−Ei(r)

0

)
= ∇×

∫

S

ei (r′) g (ki, r, r′) dS(r′)

+
j

k0εi
∇×∇×

∫

S

hi (r′) g (ki, r, r′) dS(r′) ,

(
r ∈ Di

r ∈ Ds

)

and
(
−H i(r)

0

)
= ∇×

∫

S

hi (r′) g (ki, r, r′) dS(r′)

− j
k0µi

∇×∇×
∫

S

ei (r′) g (ki, r, r′) dS(r′) ,

(
r ∈ Di

r ∈ Ds

)
,

where ei = n × Ei and hi = n × H i.
A rigorous proof of these representation theorems on the assumptions Es,

Hs ∈ C1(Ds) ∩C(Ds) and Ei, H i ∈ C1(Di) ∩C(Di) can be found in Colton
and Kress [39]. An alternative proof can be given if we accept the validity
of Green’s second vector theorem for generalized functions such as the three-
dimensional Dirac delta function δ(r − r′). To prove the representation the-
orem for vector fields satisfying the Maxwell equations in bounded domains
we use the Green second vector theorem for a divergence free vector field a
(∇ · a = 0). Using the vector identities ∇ × ∇ × b = −∆b + ∇∇ · b and
a · (∇∇ · b) = ∇ · (a∇ · b) for ∇ · a = 0, and the Gauss divergence theorem
we see that
∫

D

[a · ∆b + b · (∇×∇× a)] dV =
∫

S

{n · a (∇ · b) + n · [a × (∇× b)

+ (∇× a) × b]}dS . (1.64)

In the above equations, the simplified notations ∇∇ · a and a∇ · b should
be understood as ∇(∇ · a) and a(∇ · b), respectively. Next, we choose an
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arbitrary constant unit vector u and apply Green’s second vector theorem
(1.64) to a(r′) = Ei(r′) and b(r′) = g(ki, r

′, r)u, for r ∈ Di. Recalling that

∆′g (ki, r
′, r) + k2

i g (ki, r
′, r) = −δ (r′ − r) , (1.65)

and ∇′ ×∇′ × Ei = k2
i Ei, we see that the left-hand side of (1.64) is

∫

Di

{Ei (r′) · ∆′g (ki, r
′, r) u + g (ki, r

′, r) u · [∇′ ×∇′ × Ei (r′)]}

×dV (r′)

= −
∫

Di

u · Ei (r′) δ (r′ − r) dV (r′) = −u · Ei(r) .

Taking into account that for r′ �= r,

∇′ ×∇′ × g (ki, r
′, r) u = k2

i g (ki, r
′, r) u + ∇′∇′ · g (ki, r

′, r) u ,

we rewrite the right-hand side of (1.64) as
∫

S

{n · Ei [∇′ · g (ki, ·r) u] + n · [Ei × (∇′ × g (ki, ·r) u)

+ (∇′ × Ei) × g (ki, ·r) u]} dS

=
∫

S

{n · Ei [∇′ · g (ki, ·r) u] + n · [Ei × (∇′ × g (ki, ·r) u)]

+
1
k2
i

n · [(∇′ × Ei) × (∇′ ×∇′ × g (ki, ·r) u)

− (∇′ × Ei) ×∇′∇′ · g (ki, ·r) u]} dS .

From Stokes theorem we have
∫

S

n · {∇′ × [H i∇′ · g (ki, ·r) u]} dS = 0 ,

whence, using the vector identity ∇×(αb) = ∇α×b+α∇×b and the Maxwell
equations, we obtain

∫

S

n · Ei [∇′ · g (ki, ·, r) u] dS

=
1
k2
i

∫

S

n · [(∇′ × Ei) ×∇′∇′ · g (ki, ·, r) u] dS .

Finally, using the vector identity a ·(b×c) = (a×b) ·c, the symmetry relation
∇′g(ki, r

′, r) = −∇g(ki, r
′, r), the Maxwell equations and the identities
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[∇′ × g (ki, r
′, r) u] · [n (r′) × Ei (r′)]

= {∇ × g (ki, r
′, r) [n (r′) × Ei (r′)]} · u

and

[∇′ ×∇′ × g (ki, r
′, r) u] · [n (r′) × H i (r′)]

= {∇ ×∇× g (ki, r
′, r) [n (r′) × H i (r′)]} · u ,

we arrive at

−u · Ei(r) = u ·
{
∇×

∫

S

n (r′) × Ei (r′) g (ki, r, r′) dS(r′)

+
j

k0εi
∇×∇×

∫

S

n (r′) × H i (r′) g (ki, r, r′) dS(r′)
}

.

Since u is arbitrary, we have established the Stratton–Chu formula for r ∈ Di.
If r ∈ Ds, we have

∫

Di

u · Ei (r′) δ (r′ − r) dV (r′) = 0 ,

and the proof follows in a similar manner. For radiating solutions to the
Maxwell equations, we see that the proof is established if we can show that

∫

SR

{n · [Es × (∇′ × g (ks, ·, r) u)

+
1
k2
s

(∇′ × Es) × (∇′ ×∇′ × g (ks, ·, r) u)
]}

dS → 0 ,

as R → ∞, where SR is a spherical surface situated in the far-field region.
To prove this assertion we use the Silver–Müller radiation condition and the
general assumption Im{ks} ≥ 0.

Alternative representations for Stratton–Chu formulas involve the free
space dyadic Green function G instead of the fundamental solution g [228].
A dyad D serves as a linear mapping from one vector to another vector,
and in general, D can be introduced as the dyadic product of two vectors:
D = a ⊗ b. The dot product of a dyad with a vector is another vector:
D · c = (a⊗ b) · c = a(b · c) and c ·D = c · (a⊗ b) = (c ·a)b, while the cross
product of a dyad with a vector is another dyad: D×c = (a⊗b)×c = a⊗(b×c)
and c×D = c× (a⊗ b) = (c×a)⊗ b. The free space dyadic Green function
is defined as

G (k, r, r′) =
(

I +
1
k2

∇⊗∇
)

g (k, r, r′) ,
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where I is the identity dyad (D · I = I ·D = D). Multiplying the differential
equation (1.65) by I and using the identities

∇×∇×
(
Ig
)

= ∇⊗∇g − I � g ,

∇×∇× (∇⊗∇g) = 0 ,

gives the differential equation for the free space dyadic Green function

∇×∇× G (k, r, r′) = k2G (k, r, r′) + δ (r − r′) I . (1.66)

The Stratton–Chu formula for vector fields satisfying the Maxwell equations
in bounded domains read as

(
−Ei(r)

0

)
=
∫

S

ei (r′) ·
[
∇′ × G (ki, r, r′)

]
dS(r′)

+jk0µi

∫

S

hi (r′) · G (ki, r, r′) dS(r′) ,

(
r ∈ Di

r ∈ Ds

)

and this integral representation follows from the second vector-dyadic Green
theorem [220]:

∫

D

[
a ·
(
∇×∇× D

)
− (∇×∇× a) · D

]
dV

= −
∫

S

n ·
[
a ×
(
∇× D

)
+ (∇× a) × D

]
dS ,

applied to a(r′) = Ei(r′) and D(r′) = G(ki, r
′, r), the differential equation

for the free space dyadic Green function, and the identity a·(b×D) = (a×b)·
D. For radiating solutions to the Maxwell equations, we use the asymptotic
behavior of the free space dyadic Green function in the far-field region

r

r
×
[
∇× G (ks, r, r′)

]
+ jksG (ks, r, r′) = o

(
1
r

)
, as r → ∞ ,

to show that the integral over the spherical surface vanishes at infinity.

Remark. The Stratton–Chu formulas are surface-integral representations for
the electromagnetic fields and are valid for homogeneous particles. For inho-
mogeneous particles, a volume-integral representation for the electric field can
be derived. For this purpose, we consider the nonmagnetic domains Ds and
Di (µs = µi = 1), rewrite the Maxwell equations as

∇× Et = jk0Ht , ∇× Ht = −jk0εtEt in Dt , t = s, i ,

and assume that the domain Di is isotropic, linear and inhomogeneous, i.e.,
εi = εi(r). The Maxwell curl equation for the magnetic field H i can be
written as
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∇× H i = −jk0εsEi − jk0εs

(
εi

εs
− 1
)

Ei

= −jk0εsEi −
j
k0

k2
s

(
m2

r − 1
)
Ei ,

where mr = mr(r) is the relative refractive index and ks = k0
√

εs. Defining
the total electric and magnetic fields everywhere in space by

E =
{

Es + Ee

Ei

in Ds ,
in Di ,

and

H =
{

Hs + He

H i

in Ds ,
in Di ,

respectively, and the forcing function J by

J = k2
s

(
m2

rt − 1
)
E ,

where

mrt =
{

1
mr

in Ds ,
in Di ,

we see that the total electric and magnetic fields satisfy the Maxwell curl
equations,

∇× E = jk0H , ∇× H = −jk0εsE − j
k0

J in Ds ∪ Di .

By taking the curl of the first equation we obtain an inhomogeneous differen-
tial equation for total electric field

∇×∇× E − k2
s E = J in Ds ∪ Di . (1.67)

Making use of the differential equation for the free space dyadic Green function
(1.66) and the identity

∇×
[
G (ks, r, r′) · J (r′)

]
=
[
∇× G (ks, r, r′)

]
· J (r′) ,

we derive

∇×∇×
[
G (ks, r, r′) · J (r′)

]

−k2
s G (ks, r, r′) · J (r′) = I · J (r′) δ (r − r′) .

Integrating this equation over all r′ and using the identity δ(r−r′) = δ(r′−r),
gives [131]

(
∇×∇× I − k2

s I
)
·
∫

R3
G (ks, r, r′) · J (r′) dV (r′) = J(r) . (1.68)
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Because (1.67) and (1.68) have the same right-hand side we deduce that

E(r) =
∫

R3
G (ks, r, r′) · J (r′) dV (r′) , r ∈ Ds ∪ Di

and, since J = 0 in Ds, we obtain

E(r) =
∫

Di

G (ks, r, r′) · J (r′) dV (r′) , r ∈ Ds ∪ Di .

This vector field is the particular solution to the differential equation (1.67)
that depends on the forcing function. For r ∈ Ds, the particular solution
satisfies the Silver–Müller radiation condition and gives the scattered field.
The solution to the homogeneous equation or the complementary solution
satisfies the equation

∇×∇× Ee − k2
s Ee = 0 in Ds ∪ Di .

and describes the field that would exist in the absence of the scattering object,
i.e., the incident field. Thus, the complete solution to (1.67) can be written as

E(r) = Ee(r) +
∫

Di

G (ks, r, r′) · J (r′) dV (r′)

= Ee(r) + k2
s

∫

Di

G (ks, r, r′) ·
[
m2

r (r′) − 1
]
E (r′) dV (r′) ,

r ∈ Ds ∪ Di .

We note that for a nontrivial magnetic permeability of the particle, a volume-
surface integral equation has been derived by Volakis [245], and a “pure”
volume-integral equation has been given by Volakis et al. [246].

1.4.2 Far-Field Pattern and Amplitude Matrix

Application of Stratton–Chu representation theorem to the vector fields Es

and Ee in the domain Ds together with the boundary conditions es +ee = ei

and hs + he = hi, yield

Es(r) = ∇×
∫

S

ei (r′) g (ks, r, r′) dS(r′)

+
j

k0εs
∇×∇×

∫

S

hi (r′) g (ks, r, r′) dS(r′) , r ∈ Ds ,

where Es,Hs and Ei,H i solve the transmission boundary-value problem.
The above equation is known as the Huygens principle and it expresses the
field in the domain Ds in terms of the surface fields on the surface S (see, for
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example, [229]). Application of Stratton–Chu representation theorem in the
domain Di gives the (general) null-field equation or the extinction theorem:

Ee(r) + ∇×
∫

S

ei (r′) g (ks, r, r′) dS(r′)

+
j

k0εs
∇×∇×

∫

S

hi (r′) g (ks, r, r′) dS(r′) = 0 , r ∈ Di ,

which shows that the radiation of the surface fields into Di extinguishes the
incident wave [229]. In the null-field method, the extinction theorem is used
to derive a set of integral equations for the surface fields, while the Huygens
principle is employed to compute the scattered field.

Every radiating solution Es,Hs to the Maxwell equations has the asymp-
totic form

Es(r) =
ejksr

r

{
Es∞(er) + O

(
1
r

)}
, r → ∞ ,

Hs(r) =
ejksr

r

{
Hs∞(er) + O

(
1
r

)}
, r → ∞ ,

uniformly for all directions er = r/r. The vector fields Es∞ and Hs∞ defined
on the unit sphere are the electric and magnetic far-field patterns, respectively,
and satisfy the relations:

Hs∞ =
√

εs

µs
er × Es∞ ,

er · Es∞ = er · Hs∞ = 0 .

Because Es∞ also depends on the incident direction ek, Es∞ is known as the
scattering amplitude from the direction ek into the direction er [229]. Using
the Huygens principle and the asymptotic expressions

∇×
[

a (r′)
ejks|r−r′|
|r − r′|

]

= jks
ejksr

r

{
e−jkser·r′

er × a (r′) + O
(a

r

)}
,

∇×∇×
[

a (r′)
ejks|r−r′|
|r − r′|

]

= k2
s

ejksr

r

×
{

e−jkser·r′
er × [a (r′) × er] + O

(a

r

)}
,

as r → ∞, we obtain the following integral representations for the far-field
patterns [40]

Es∞(er) =
jks

4π

∫

S

{
er × es(r′)

+
√

µs

εs
er × [hs (r′) × er]

}
e−jkser·r′

dS (r′) , (1.69)
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Hs∞(er) =
jks

4π

∫

S

{
er × hs(r′)

−
√

εs

µs
er × [es (r′) × er]

}
e−jkser·r′

dS (r′) . (1.70)

The quantity σd = |Es∞|2 is called the differential scattering cross-section and
describes the angular distribution of the scattered light. The differential scat-
tering cross-section depends on the polarization state of the incident field and
on the incident and scattering directions. The quantities σdp = |Es∞,θ|2 and
σds = |Es∞,ϕ|2 are referred to as the differential scattering cross-sections for
parallel and perpendicular polarizations, respectively. The differential scat-
tering cross-section has the dimension of area, and a dimensionless quantity
is the normalized differential scattering cross-section σdn = σd/πa2

c , where ac

is a characteristic dimension of the particle.
To introduce the concepts of tensor scattering amplitude and amplitude

matrix it is necessary to choose an orthonormal unit system for polariza-
tion description. In Sect. 1.2 we chose a global coordinate system and used
the vertical and horizontal polarization unit vectors eα and eβ , to describe
the polarization state of the incident wave (Fig. 1.9a). For the scattered wave
we can proceed analogously by considering the vertical and horizontal po-
larization unit vectors eϕ and eθ. Essentially, (ek,eβ ,eα) are the spherical
unit vectors of ke, while (er,eθ,eϕ) are the spherical unit vectors of ks in

eβ

eα

ek

X

YO

Z

ke
β

α

eθ

eϕ

er

X

YO

Z

ks

Θ

Ψ

er

eθ

eϕ
θ

ks

ϕ
eβ

eα

e⊥

e
⎜⎜

Θ

ek

Fig. 1.9. Reference frames: (a) global coordinate system and (b) beam coordinate
system
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the global coordinate system. A second choice is the system based on the
scattering plane. In this case we consider the beam coordinate system with
the Z-axis directed along the incidence direction, and define the Stokes vectors
with respect to the scattering plane, that is, the plane through the direction of
incidence and scattering (Fig. 1.9b). For the scattered wave, the polarization
description is in terms of the vertical and horizontal polarization unit vectors
eϕ and eθ, while for the incident wave, the polarization description is in terms
of the unit vectors e⊥ = eϕ and e‖ = e⊥ × ek. The advantage of this sys-
tem is that the scattering amplitude can take simple forms for particles with
symmetry, and the disadvantage is that e⊥ and e‖ depend on the scatter-
ing direction. Furthermore, any change in the direction of light incidence also
changes the orientation of the particle with respect to the reference frame.
In our analysis we will use a fixed global coordinate system to specify both
the direction of propagation and the states of polarization of the incident and
scattered waves and the particle orientation (see also, [169,228]).

The tensor scattering amplitude or the scattering dyad is given by [169]

Es∞(er) = A (er,ek) · Ee0 , (1.71)

and since er · Es∞ = 0, it follows that:

er · A (er,ek) = 0 . (1.72)

Because the incident wave is a transverse wave, ek ·Ee0 = 0, the dot product
A(er,ek) ·ek is not defined by (1.71), and to complete the definition, we take

A (er,ek) · ek = 0 . (1.73)

Although the scattering dyad describes the scattering of a vector plane wave,
it can be used to describe the scattering of any incident field, because any
regular solution to the Maxwell equations can be expressed as an integral
over vector plane waves. As a consequence of (1.72) and (1.73), only four
components of the scattering dyad are independent and it is convenient to
introduce the 2× 2 amplitude matrix S to describe the transformation of the
transverse components of the incident wave into the transverse components
of the scattered wave in the far-field region. The amplitude matrix is given
by [17,169,228]

[
Es∞,θ(er)
Es∞,ϕ(er)

]
= S (er,ek)

[
Ee0,β

Ee0,α

]
, (1.74)

where Ee0,β and Ee0,α do not depend on the incident direction. Essentially,
the amplitude matrix is a generalization of the scattering amplitudes including
polarization effects. The amplitude matrix provides a complete description of
the far-field patterns and it depends on the incident and scattering directions
as well on the size, optical properties and orientation of the particle. The
elements of the amplitude matrix
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S =
[

Sθβ Sθα

Sϕβ Sϕα

]

are expressed in terms of the scattering dyad as follows:

Sθβ = eθ · A · eβ ,

Sθα = eθ · A · eα ,

Sϕβ = eϕ · A · eβ ,

Sϕα = eϕ · A · eα . (1.75)

1.4.3 Phase and Extinction Matrices

As in optics the electric and magnetics fields cannot directly be measured be-
cause of their high frequency oscillations, other measurable quantities describ-
ing the change of the polarization state upon scattering have to be defined.
The transformation of the polarization characteristic of the incident light into
that of the scattered light is given by the phase matrix. The coherency phase
matrix Zc relates the coherency vectors of the incident and scattered fields

J s (rer) =
1
r2

Zc (er,ek) Je ,

where the coherency vector of the incident field Je is given by (1.19) and the
coherency vector of the scattered field J s is defined as

J s (rer) =
1

2r2

√
εs

µs

⎡

⎢
⎢
⎢
⎣

Es∞,θ (er) E∗
s∞,θ (er)

Es∞,θ (er) E∗
s∞,ϕ (er)

Es∞,ϕ (er) E∗
s∞,θ (er)

Es∞,ϕ (er) E∗
s∞,ϕ (er)

⎤

⎥
⎥
⎥
⎦

.

Explicitly, the coherency phase matrix is given by

Zc =

⎡

⎢
⎢
⎢
⎢
⎣

|Sθβ |2 SθβS∗
θα SθαS∗

θβ |Sθα|2

SθβS∗
ϕβ SθβS∗

ϕα SθαS∗
ϕβ SθαS∗

ϕα

SϕβS∗
θβ SϕβS∗

θα SϕαS∗
θβ SϕαS∗

θα

|Sϕβ |2 SϕβS∗
ϕα SϕαS∗

ϕβ |Sϕα|2

⎤

⎥
⎥
⎥
⎥
⎦

.

The phase matrix Z describes the transformation of the Stokes vector of the
incident field into that of the scattered field

Is (rer) =
1
r2

Z (er,ek) Ie (1.76)

and we have

Z (er,ek) = DZc (er,ek) D−1 ,
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where the transformation matrix D is given by (1.21), the Stokes vector of
the incident field Ie is given by (1.20) and the Stokes vector of the scattered
field Is is defined as

Is (rer) =
1
r2

⎡

⎢
⎢
⎢
⎣

Is (er)
Qs (er)
Us (er)
Vs (er)

⎤

⎥
⎥
⎥
⎦

= DJ s (rer)

=
1

2r2

√
εs

µs

⎡

⎢
⎢
⎢
⎢
⎢
⎣

|Es∞,θ (er)|2 + |Es∞,ϕ (er)|2

|Es∞,θ (er)|2 − |Es∞,ϕ (er)|2

−Es∞,ϕ (er) E∗
s∞,θ (er) − Es∞,θ (er) E∗

s∞,ϕ (er)

j
[
Es∞,ϕ (er) E∗

s∞,θ (er) − Es∞,θ (er) E∗
s∞,ϕ (er)

]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Explicit formulas for the elements of the phase matrix are:

Z11 =
1
2

(
|Sθβ |2 + |Sθα|2 + |Sϕβ |2 + |Sϕα|2

)
,

Z12 =
1
2

(
|Sθβ |2 − |Sθα|2 + |Sϕβ |2 − |Sϕα|2

)
,

Z13 = −Re
{
SθβS∗

θα + SϕαS∗
ϕβ

}
,

Z14 = −Im
{
SθβS∗

θα − SϕαS∗
ϕβ

}
,

Z21 =
1
2

(
|Sθβ |2 + |Sθα|2 − |Sϕβ |2 − |Sϕα|2

)
,

Z22 =
1
2

(
|Sθβ |2 − |Sθα|2 − |Sϕβ |2 + |Sϕα|2

)
,

Z23 = −Re
{
SθβS∗

θα − SϕαS∗
ϕβ

}
,

Z24 = −Im
{
SθβS∗

θα + SϕαS∗
ϕβ

}
,

Z31 = −Re
{
SθβS∗

ϕβ + SϕαS∗
θα

}
,

Z32 = −Re
{
SθβS∗

ϕβ − SϕαS∗
θα

}
,

Z33 = Re
{
SθβS∗

ϕα + SθαS∗
ϕβ

}
,

Z34 = Im
{
SθβS∗

ϕα + SϕβS∗
θα

}
,

Z41 = −Im
{
SϕβS∗

θβ + SϕαS∗
θα

}
,

Z42 = −Im
{
SϕβS∗

θβ − SϕαS∗
θα

}
,

Z43 = Im
{
SϕαS∗

θβ − SθαS∗
ϕβ

}
,

Z44 = Re
{
SϕαS∗

θβ − SθαS∗
ϕβ

}
. (1.77)
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The above phase matrix is also known as the pure phase matrix, because
its elements follow directly from the corresponding amplitude matrix that
transforms the two electric field components [100]. The phase matrix of a
particle in a fixed orientation may contain sixteen nonvanishing elements.
Because only phase differences occur in the expressions of Zij , i, j = 1, 2, 3, 4,
the phase matrix elements are essentially determined by no more than seven
real numbers: the four moduli |Spq| and the three differences in phase between
the Spq, where p = θ, ϕ and q = β, α. Consequently, only seven phase matrix
elements are independent and there are nine linear relations among the sixteen
elements. These linear dependent relations show that a pure phase matrix has
a certain internal structure. Several linear and quadratic inequalities for the
phase matrix elements have been reported by exploiting the internal structure
of the pure phase matrix, and the most important inequalities are Z11 ≥ 0
and |Zij | ≤ Z11 for i, j = 1, 2, 3, 4 [102–104]. In principle, all scalar and matrix
properties of pure phase matrices can be used for theoretical purposes or to
test whether an experimentally or numerically determined matrix can be a
pure phase matrix.

Equation (1.76) shows that electromagnetic scattering produces light with
polarization characteristics different from those of the incident light. If the
incident beam is unpolarized, Ie = [Ie, 0, 0, 0]T , the Stokes vector of the
scattered field has at least one nonvanishing component other than inten-
sity, Is = [Z11Ie, Z21Ie, Z31Ie, Z41Ie]T . When the incident beam is linearly
polarized, Ie = [Ie, Qe, Ue, 0]T , the scattered light may become elliptically
polarized since Vs may be nonzero. However, if the incident beam is fully po-
larized (Pe = 1), then the scattered light is also fully polarized (Ps = 1) [104].

As mentioned before, a scattering particle can change the state of polar-
ization of the incident beam after it passes the particle. This phenomenon is
called dichroism and is a consequence of the different values of attenuation
rates for different polarization components of the incident light. A complete
description of the extinction process requires the introduction of the so-called
extinction matrix. In order to derive the expression of the extinction matrix
we consider the case of the forward-scattering direction, er = ek, and define
the coherency vector of the total field E = Es + Ee by

J (rek) =
1
2

√
εs

µs

⎡

⎢
⎢
⎢
⎣

Eβ (rek) E∗
β (rek)

Eβ (rek) E∗
α (rek)

Eα (rek) E∗
β (rek)

Eα (rek) E∗
α (rek)

⎤

⎥
⎥
⎥
⎦

.

Using the decomposition

Ep(r)E∗
q (r) = Ee0,pE

∗
e0,q + Ee0,pejke·rE∗

s,q(r)

+Es,p(r)E∗
e0,qe

−jke·r + Es,p(r)E∗
s,q(r) ,

where p and q stand for β and α, we approximate the integral of the generic
term EpE

∗
q in the far-field region and over a small solid angle ∆Ω around the
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Fig. 1.10. Elementary surface ∆S in the far-field region

direction ek by
∫

∆Ω

Ep(r)E∗
q (r)r2 dΩ (er) ≈ Ep (rek) E∗

q (rek) ∆S ,

where ∆S = r2∆Ω (Fig. 1.10). On the other hand, using the far-field repre-
sentation for the scattered field

Es,p(r) =
ejksr

r

{
Es∞,p(er) + O

(
1
r

)}

and the asymptotic expression of the plane wave exp(jke · r) (cf. (B.7)) we
approximate the integrals of each term composing EpE

∗
q as follows:

∫

∆Ω

Ee0,pE
∗
e0,qr

2 dΩ (er) ≈ Ee0,pE
∗
e0,q∆S ,

∫

∆Ω

Ee0,pejke·rE∗
s,q(r)r2 dΩ (er) ≈ −2πj

ks
Ee0,pE

∗
s∞,q (ek) ,

∫

∆Ω

Es,p(r)E∗
e0,qe

−jke·rr2 dΩ (er) ≈
2πj
ks

Es∞,p (ek) E∗
e0,q ,

∫

∆Ω

Es,p(r)E∗
s,q(r)r2 dΩ (er) ≈ Es∞,p (ek) E∗

s∞,q (ek)
∆S

r2
.

Neglecting the term proportional to r−2, we see that

Ep (rek) E∗
q (rek) ∆S ≈ Ee0,pE

∗
e0,q∆S

−2πj
ks

[
Ee0,pE

∗
s∞,q (ek) − Es∞,p (ek) E∗

e0,q

]

and the above relation gives

J (rek) ∆S ≈ Je∆S − Kc (ek) Je ,
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where the coherency extinction matrix Kc is defined as

Kc =
2πj
ks

⎡

⎢
⎢
⎣

S∗
θβ − Sθβ S∗

θα −Sθα 0
S∗

ϕβ S∗
ϕα − Sθβ 0 −Sθα

−Sϕβ 0 S∗
θβ − Sϕα S∗

θα

0 −Sϕβ S∗
ϕβ S∗

ϕα − Sϕα

⎤

⎥
⎥
⎦ .

For the Stokes parameters we have

I (rek) ∆S ≈ Ie∆S − K (ek) Ie (1.78)

with the extinction matrix K being defined as

K (ek) = DKc (ek) D−1 .

The explicit formulas for the elements of the extinction matrix are

Kii =
2π

ks
Im {Sθβ + Sϕα} , i = 1, 2, 3, 4 ,

K12 = K21 =
2π

ks
Im {Sθβ − Sϕα} ,

K13 = K31 = −2π

ks
Im {Sθα + Sϕβ} ,

K14 = K41 =
2π

ks
Re {Sϕβ − Sθα} ,

K23 = −K32 =
2π

ks
Im {Sϕβ − Sθα} ,

K24 = −K42 = −2π

ks
Re {Sθα + Sϕβ} ,

K34 = −K43 =
2π

ks
Re {Sϕα − Sθβ} . (1.79)

The elements of the extinction matrix have the dimension of area and only
seven components are independent. Equation (1.78) is an interpretation of
the so-called optical theorem which will be discussed in the next section. This
relation shows that the particle changes not only the total electromagnetic
power received by a detector in the forward scattering direction, but also its
state of polarization.

1.4.4 Extinction, Scattering and Absorption Cross-Sections

Scattering and absorption of light changes the characteristics of the incident
beam after it passes the particle. Let us assume that the particle is placed in a
beam of electromagnetic radiation and a detector located in the far-field region
measures the radiation in the forward scattering direction (er = ek). Let W
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be the electromagnetic power received by the detector downstream from the
particle, and W0 the electromagnetic power received by the detector if the par-
ticle is removed. Evidently, W0 > W and we say that the presence of the
particle has resulted in extinction of the incident beam. For a nonabsorbing
medium, the electromagnetic power removed from the incident beam W0−W
is accounted for by absorption in the particle and scattering by the particle.

We now consider extinction from a computational point of view. In order to
simplify the notations we will use the conventional expressions of the Poynting
vectors and the electromagnetic powers in terms of the transformed fields
introduced in Sect. 1.1 (we will omit the multiplicative factor 1/

√
ε0µ0). The

time-averaged Poynting vector 〈S〉 can be written as [17]

〈S〉 =
1
2
Re {E × H∗} = 〈Sinc〉 + 〈Sscat〉 + 〈Sext〉 ,

where E = Es + Ee and H = Hs + He are the total electric and magnetic
fields,

〈Sinc〉 =
1
2
Re {Ee × H∗

e}

is the Poynting vector associated with the external excitation,

〈Sscat〉 =
1
2
Re {Es × H∗

s}

is the Poynting vector corresponding to the scattered field and

〈Sext〉 =
1
2
Re {Ee × H∗

s + Es × H∗
e}

is the Poynting vector caused by the interaction between the scattered and
incident fields.

Taking into account the boundary conditions n×Ei = n×E and n×H i =
n×H on S, we express the time-averaged power absorbed by the particle as

Wabs = −1
2

∫

S

n · Re {Ei × H∗
i } dS

= −1
2

∫

S

n · Re {E × H∗} dS .

With Sc being an auxiliary surface enclosing S (Fig. 1.11), we apply the Green
second vector theorem to the vector fields E and E∗ in the domain D bounded
by S and Sc. We obtain

∫

S

n · (E × H∗ + E∗ × H) dS =
∫

Sc

n · (E × H∗ + E∗ × H) dS ,

and further
∫

S

n · Re {E × H∗} dS =
∫

Sc

n · Re {E × H∗} dS .
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Fig. 1.11. Auxiliary surface Sc

The time-averaged power absorbed by the particle then becomes

Wabs = −1
2

∫

Sc

n · Re {E × H∗} dS = −
∫

Sc

n · 〈S〉 dS

= Winc − Wscat + Wext ,

where

Winc = −
∫

Sc

n · 〈Sinc〉 dS = −1
2

∫

Sc

n · Re {Ee × H∗
e} dS , (1.80)

Wscat =
∫

Sc

n · 〈Sscat〉 dS =
1
2

∫

Sc

n · Re {Es × H∗
s} dS , (1.81)

Wext = −
∫

Sc

n · 〈Sext〉 dS = −1
2

∫

Sc

n · Re {Ee × H∗
s + Es × H∗

e} dS .

(1.82)

The divergence theorem applied to the excitation field in the domain Dc

bounded by Sc gives
∫

Dc

∇ · (Ee × H∗
e) dV =

∫

Sc

n · (Ee × H∗
e) dS ,

whence, using

∇ · (Ee × H∗
e) = jk0

(
µs |He|2 − εs |Ee|2

)
,

and
Re {∇ · (Ee × H∗

e)} = 0 ,

yield
Winc = 0 .
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Thus, Wext is the sum of the electromagnetic scattering power and the elec-
tromagnetic absorption power

Wext = Wscat + Wabs .

For a plane wave incidence, the extinction and scattering cross-sections are
given by

Cext =
Wext

1
2

√
εs
µs

|Ee0|2
, (1.83)

Cscat =
Wscat

1
2

√
εs
µs

|Ee0|2
, (1.84)

the absorption cross-section is

Cabs = Cext − Cscat ≥ 0 ,

while the single-scattering albedo is

ω =
Cscat

Cext
≤ 1 .

Essentially, Cscat and Cabs represent the electromagnetic powers removed from
the incident wave as a result of scattering and absorption of the incident ra-
diation, while Cext gives the total electromagnetic power removed from the
incident wave by the combined effect of scattering and absorption. The op-
tical cross-sections have the dimension of area and depend on the direction
and polarization state of the incident wave as well on the size, optical proper-
ties and orientation of the particle. The efficiencies (or efficiency factors) for
extinction, scattering and absorption are defined as

Qext =
Cext

G
, Qscat =

Cscat

G
, Qabs =

Cabs

G
,

where G is the particle cross-sectional area projected onto a plane perpendicu-
lar to the incident beam. In view of the definition of the normalized differential
scattering cross-section, we set G = πa2

c , where ac is the area-equivalent-circle
radius. From the point of view of geometrical optics we expect that the ex-
tinction efficiency of all particles would be identically equal to unity. In fact,
there are many particles which can scatter and absorb more light than is
geometrically incident upon them [17].

The scattering cross-section is the integral of the differential scatter-
ing cross-section over the unit sphere. To prove this assertion, we express
Cscat as

Cscat =
1

|Ee0|2
√

µs

εs

∫

Sc

er · Re {Es × H∗
s} dS ,
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where Sc is a spherical surface situated at infinity and use the far-field repre-
sentation

er · (Es × H∗
s ) =

1
r2

√
εs

µs

[
|Es∞|2 + O

(
1
r

)]
, r → ∞

to obtain
Cscat =

1
|Ee0|2

∫

Ω

|Es∞|2 dΩ . (1.85)

The scattering cross-section can be expressed in terms of the elements of the
phase matrix and the Stokes parameters of the incident wave. Taking into
account the expressions of Ie and Is, and using (1.76) we obtain

Cscat =
1
Ie

∫

Ω

Is (er) dΩ (er)

=
1
Ie

∫

Ω

[Z11 (er,ek) Ie + Z12 (er,ek) Qe

+ Z13 (er,ek) Ue + Z14 (er,ek) Ve] dΩ (er) . (1.86)

The phase function is related to the differential scattering cross-section by the
relation

p (er,ek) =
4π

Cscat |Ee0|2
|Es∞ (er)|2

and in view of (1.85) we see that p is dimensionless and normalized, i.e.,

1
4π

∫

Ω

pdΩ = 1 .

The mean direction of propagation of the scattered field is defined as

g =
1

Cscat |Ee0|2
∫

Ω

|Es∞ (er)|2 er dΩ (er) (1.87)

and obviously

g =
1

CscatIe

∫

Ω

Is (er) er dΩ (er)

=
1

CscatIe

∫

Ω

[Z11 (er,ek) Ie + Z12 (er,ek) Qe

+ Z13 (er,ek) Ue + Z14 (er,ek) Ve] er dΩ (er) .

The asymmetry parameter 〈cos Θ〉 is the dot product between the vector g
and the incident direction ek [17, 169],
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〈cos Θ〉 = g · ek =
1

Cscat |Ee0|2
∫

Ω

|Es∞ (er)|2 er · ek dΩ (er)

=
1
4π

∫

Ω

p (er,ek) cos Θ dΩ (er) ,

where cos Θ = er · ek, and it is apparent that the asymmetry parameter is
the average cosine of the scattering angle Θ. If the particle scatters more
light toward the forward direction (Θ = 0), 〈cos Θ〉 is positive and 〈cos Θ〉 is
negative if the scattering is directed more toward the backscattering direction
(Θ = 180◦). If the scattering is symmetric about a scattering angle of 90◦,
〈cos Θ〉 vanishes.

1.4.5 Optical Theorem

The expression of extinction has been derived by integrating the Poynting vec-
tor over an auxiliary surface around the particle. This derivation emphasized
the conservation of energy aspect of extinction: extinction is the combined
effect of absorption and scattering. A second derivation emphasizes the inter-
ference aspect of extinction: extinction is a result of the interference between
the incident and forward scattered light [17]. Applying Green’s second vector
theorem to the vector fields Es and E∗

e in the domain D bounded by S and
Sc, we obtain
∫

S

n · (Es × H∗
e + E∗

e × Hs) dS =
∫

Sc

n · (Es × H∗
e + E∗

e × Hs) dS

and further
∫

S

n · Re {Es × H∗
e + E∗

e × Hs} dS =
∫

Sc

n · Re {Es × H∗
e + E∗

e × Hs} dS .

This result together with (1.82) and the identity Re{Ee×H∗
s} = Re{E∗

e×Hs}
give

Wext = −1
2

∫

S

n · Re {Es × H∗
e + E∗

e × Hs} dS ,

whence, using the explicit expressions for Ee and He, we derive

Wext =
1
2
Re
{∫

S

[E∗
e0 · hs (r′)

−
√

εs

µs
(ek × E∗

e0) · es (r′)
]

e−jke·r′
dS (r′)

}
.

In the integral representation for the electric far-field pattern (cf. (1.69)) we
set er = ek, take the dot product between Es∞(ek) and E∗

e0, and obtain
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E∗
e0 · Es∞ (ek) =

jks

4π

√
µs

εs

∫

S

{E∗
e0 · hs (r′)

−
√

εs

µs
(ek × E∗

e0) · es (r′)
}

e−jke·r′
dS (r′) .

The last two relations imply that

Wext =
1
2
Re
{√

εs

µs

4π

jks
E∗

e0 · Es∞ (ek)
}

and further that

Cext =
4π

ks |Ee0|2
Im {E∗

e0 · Es∞ (ek)} . (1.88)

The above relation is a representation of the optical theorem, and since the
extinction cross-section is in terms of the scattering amplitude in the forward
direction, the optical theorem is also known as the extinction theorem or
the forward scattering theorem. This fundamental relation can be used to
compute the extinction cross-section when the imaginary part of the scattering
amplitude in the forward direction is known accurately. In view of (1.88) and
(1.74), and taking into account the explicit expressions of the elements of the
extinction matrix we see that

Cext =
1
Ie

[K11 (ek) Ie + K12 (ek) Qe + K13 (ek) Ue + K14 (ek) Ve] . (1.89)

1.4.6 Reciprocity

The tensor scattering amplitude satisfies a useful symmetry property which
is referred to as reciprocity. As a consequence, reciprocity relations for the
amplitude, phase and extinction matrices can be derived. Reciprocity is a
manifestation of the symmetry of the scattering process with respect to an
inversion of time and holds for particles in arbitrary orientations [169]. In
order to derive this property we use the following result: if E1, H1 and E2,
H2 are the total fields generated by the incident fields Ee1, He1 and Ee2,
He2, respectively, we have
∫

S

n · (E2 × H1 − E1 × H2) dS =
∫

Sc

n · (E2 × H1 − E1 × H2) dS ,

where as before, Sc is an auxiliary surface enclosing S. Since E1 and E2 are
source free in the domain bounded by S and Sc, the above equation follows
immediately from Green second vector theorem. Further, applying Green’s
second vector theorem to the internal fields Ei1 and Ei2 in the domain Di,
and taking into account the boundary conditions n × Ei1,2 = n × E1,2 and
n × H i1,2 = n × H1,2 on S, yields



1.4 Scattered Field 55

∫

S

n · (E2 × H1 − E1 × H2) dS = 0 ,

whence ∫

Sc

n · (E2 × H1 − E1 × H2) dS = 0 , (1.90)

follows. We take the surface Sc as a large sphere of outward unit normal
vector er, consider the limit when the radius R becomes infinite, and write
the integrand in (1.90) as

E2 × H1 − E1 × H2

= Ee2 × He1 − Ee1 × He2 + Es2 × Hs1 − Es1 × Hs2

+Es2 × He1 − Ee1 × Hs2 + Ee2 × Hs1 − Es1 × He2 .

The Green second vector theorem applied to the incident fields Ee1 and Ee2 in
any bounded domain shows that the vector plane wave terms do not contribute
to the integral. Furthermore, using the far-field representation

Es2 × Hs1 − Es1 × Hs2

=
e2jksr

r2

{
Es∞2 × Hs∞1 − Es∞1 × Hs∞2 + O

(
1
r

)}
,

and taking into account the transversality of the far-field patterns

Es∞2 × Hs∞1 − Es∞1 × Hs∞2 = 0 ,

we see that the integral over the scattered wave terms also vanishes. Thus,
(1.90) implies that
∫

Sc

er ·(Es2 × He1 − Ee1 × Hs2) dS =
∫

Sc

er ·(Es1 × He2 − Ee2 × Hs1) dS .

(1.91)
For plane wave incidence,

Eeu(r) = Ee0u exp (jkeu · r) , keu = kseku , u = 1, 2 ,

the integrands in (1.91) contain the term exp(jksRek1,2 ·er). Since R is large,
the stationary point method can be used to compute the integrals accordingly
to the basic result

kR

2πj

∫ 2π

0

∫ π

0

g (θ, ϕ) ejkRf(θ,ϕ)dθ dϕ =
1

√
fθθfϕϕ − f2

θϕ

g (θst, ϕst) ejkRf(θst,ϕst) ,

(1.92)
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where (θst, ϕst) is the stationary point of f , fθθ = ∂2f/∂θ2, fϕϕ = ∂2f/∂ϕ2

and fθϕ = ∂2f/∂θ∂ϕ. The integrals in (1.91) are then given by
∫

Sc

er · (Es2 × He1 − Ee1 × Hs2) dS

= −4πj
R

ks

√
εs

µs
Es∞2 (−ek1) · Ee01e−jksR ,

∫

Sc

er · (Es1 × He2 − Ee2 × Hs1) dS

= −4πj
R

ks

√
εs

µs
Es∞1 (−ek2) · Ee02e−jksR ,

and we deduce the reciprocity relation for the far-field pattern (Fig. 1.12):

Es∞2 (−ek1) · Ee01 = Es∞1 (−ek2) · Ee02 .

The above relation gives

Ee01 · A (−ek1,ek2) · Ee02 = Ee02 · A (−ek2,ek1) · Ee01

and since a · D · b = b · DT · a, and Ee01 and Ee02 are arbitrary transverse
vectors, the following constraint on the tensor scattering amplitude:

A (−ek2,−ek1) = A
T

(ek1,ek2)

follows. This is the reciprocity relation for the tensor scattering amplitude
which relates scattering from the direction −ek1 into −ek2 to scattering from
ek2 to ek1. Taking into account the representation of the amplitude matrix
elements in terms of the tensor scattering amplitude and the fact that for

O

D i

S
ke1

Ee1

Es1

Ee2

ke2

Es2
(-ek1

(-ek2)

)

Fig. 1.12. Illustration of the reciprocity relation
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e′
k = −ek we have e′

β = eβ and e′
α = −eα, we obtain the reciprocity

relation for the amplitude matrix:

S (−ek2,−ek1) =

[
Sθβ (ek1,ek2) −Sϕβ (ek1,ek2)
−Sθα (ek1,ek2) Sϕα (ek1,ek2)

]

.

If we choose ek1 = −ek2 = −ek, we obtain

Sϕβ (−ek,ek) = −Sθα (−ek,ek) ,

which is a representation of the backscattering theorem [169].
From the reciprocity relation for the amplitude matrix we easily derive the

reciprocity relation for the phase and extinction matrices:

Z (−ek,−er) = QZT (er,ek) Q

and

K (−ek) = QKT (ek) Q ,

respectively, where Q = diag[1, 1,−1, 1].
The reciprocity relations can be used in practice for testing the results of

theoretical computations and laboratory measurements. It should be remarked
that reciprocity relations give also rise to symmetry relations for the dyadic
Green functions [229].

1.5 Transition Matrix

The transition matrix relates the expansion coefficients of the incident and
scattered fields. The existence of the transition matrix is “postulated” by the
T -Matrix Ansatz and is a consequence of the series expansions of the incident
and scattered fields and the linearity of the Maxwell equations. Historically,
the transition matrix has been introduced within the null-field method for-
malism (see [253, 256]), and for this reason, the null-field method has often
been referred to as the T -matrix method. However, the null-field method
is only one among many methods that can be used to compute the transi-
tion matrix. The transition matrix can also be derived in the framework of
the method of moments [88], the separation of variables method [208], the
discrete dipole approximation [151] and the point matching method [181].
Rother et al. [205] found a general relation between the surface Green func-
tion and the transition matrix for the exterior Maxwell problem, which in
principle, allows to compute the transition matrix with the finite-difference
technique.

In this section we review the general properties of the transition matrix
such as unitarity and symmetry and discuss analytical procedures for aver-
aging scattering characteristics over particle orientations. These procedures
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relying on the rotation transformation rule for vector spherical wave func-
tions are of general use because an explicit expression of the transition matrix
is not required. In order to simplify our analysis we consider a vector plane
wave of unit amplitude

Ee(r) = epolejke·r , He(r) =
√

εs

µs
ek × epolejke·r ,

where epol · ek = 0 and |epol| = 1.

1.5.1 Definition

Everywhere outside the (smallest) sphere circumscribing the particle it is ap-
propriate to expand the scattered field in terms of radiating vector spherical
wave functions

Es(r) =
∞∑

n=1

n∑

m=−n

fmnM3
mn (ksr) + gmnN3

mn (ksr) (1.93)

and the incident field in terms of regular vector spherical wave functions

Ee(r) =
∞∑

n=1

n∑

m=−n

amnM1
mn (ksr) + bmnN1

mn (ksr) . (1.94)

Within the vector spherical wave formalism, the scattering problem is solved
by determining fmn and gmn as functions of amn and bmn. Due to the lin-
earity relations of the Maxwell equations and the constitutive relations, the
relation between the scattered and incident field coefficients must be linear.
This relation is given by the so-called transition matrix T as follows [256]

[
fmn

gmn

]
= T

[
amn

bmn

]
=
[

T 11 T 12

T 21 T 22

] [
amn

bmn

]
. (1.95)

Essentially, the transition matrix depends on the physical and geometrical
characteristics of the particle and is independent on the propagation direction
and polarization states of the incident and scattered field.

If the transition matrix is known, the scattering characteristics (introduced
in Sect. 1.4) can be readily computed. Taking into account the asymptotic
behavior of the vector spherical wave functions we see that the far-field pattern
can be expressed in terms of the elements of the transition matrix by the
relation

Es∞ (er) =
1
ks

∑

n,m

(−j)n+1 [fmnmmn(er) + jgmnnmn(er)]

=
1
ks

∑

n,m

∑

n1,m1

(−j)n+1

×
[(

T 11
mn,m1n1

am1n1 + T 12
mn,m1n1

bm1n1

)
mmn(er)

+ j
(
T 21

mn,m1n1
am1n1 + T 22

mn,m1n1
bm1n1

)
nmn(er)

]
. (1.96)
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To derive the expressions of the tensor scattering amplitude and amplitude
matrix, we consider the scattering and incident directions er and ek, and
express the vector spherical harmonics as

xmn(er) = xmn,θ (er) eθ + xmn,ϕ (er) eϕ ,

xmn(ek) = xmn,β (ek) eβ + xmn,α (ek) eα ,

where xmn stands for mmn and nmn. Recalling the expressions of the incident
field coefficients for a plane wave excitation (cf. (1.26))

amn = 4jnepol · m∗
mn (ek) ,

bmn = −4jn+1epol · n∗
mn (ek) ,

and using the definition of the tensor scattering amplitude (cf. (1.71)), we
obtain

A (er,ek) =
4
ks

∑

n,m

∑

n1,m1

(−j)n+1 jn1
{[

T 11
mn,m1n1

mmn (er)

+ jT 21
mn,m1n1

nmn (er)
]
⊗ m∗

m1n1
(ek) +

[
−jT 12

mn,m1n1
mmn (er)

+ T 22
mn,m1n1

nmn (er)
]
⊗ n∗

m1n1
(ek)
}

.

In view of (1.75), the elements of the amplitude matrix are given by

Spq (er,ek) =
4
ks

∑

n,m

∑

n1,m1

(−j)n+1 jn1
{[

T 11
mn,m1n1

m∗
m1n1,q (ek)

− jT 12
mn,m1n1

n∗
m1n1,q (ek)

]
mmn,p (er)

+j
[
T 21

mn,m1n1
m∗

m1n1,q (ek) ,

− jT 22
mn,m1n1

n∗
m1n1,q (ek)

]
nmn,p (er)

}
(1.97)

for p = θ, ϕ and q = β, α. For a vector plane wave linearly polarized in the
β-direction, amn = 4jnm∗

mn,β and bmn = −4jn+1n∗
mn,β , and Sθβ = Es∞,θ and

Sϕβ = Es∞,ϕ. Analogously, for a vector plane wave linearly polarized in the
α-direction, amn = 4jnm∗

mn,α and bmn = −4jn+1n∗
mn,α, and Sθα = Es∞,θ

and Sϕα = Es∞,ϕ. In practical computer calculations, this technique, relying
on the computation of the far-field patterns for parallel and perpendicular
polarizations, can be used to determine the elements of the amplitude matrix.

For our further analysis, it is more convenient to express the above equa-
tions in matrix form. Defining the vectors

s =
[

fmn

gmn

]
, e =

[
amn

bmn

]
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and the “augmented” vector of spherical harmonics

v (er) =
[

(−j)n
mmn (er)

j (−j)n
nmn (er)

]

we see that

Es∞ (er) = − j
ks

vT (er) s = − j
ks

vT (er) Te = − j
ks

eTT Tv (er) , (1.98)

and, since e = 4epol · v∗(ek), we obtain

Spq (er,ek) = − 4j
ks

vT
p (er) Tv∗

q (ek) = − 4j
ks

v†
q (ek) T Tvp (er) . (1.99)

The superscript † means complex conjugate transpose, and

vp (·) =
[

(−j)n
mmn,p (·)

j (−j)n
nmn,p (·)

]
,

where p = θ, ϕ for the er-dependency and p = β, α for the ek-dependency.
The extinction and scattering cross-sections can be expressed in terms

of the expansion coefficients amn, bmn, fmn and gmn. Denoting by Sc the
circumscribing sphere of outward unit normal vector er and radius R, and
using the definition of the extinction cross-section (cf. (1.82) and (1.83) with
|Ee0| = 1), yields

Cext = −
√

µs

εs

∫

Sc

er · Re {Ee × H∗
s + Es × H∗

e} dS

= −Re

{

j
∑

n,m

∑

n1,m1

∫

Sc

{(
fmna∗

m1n1
+ gmnb∗m1n1

)

×
[(

er × M3
mn

)
· N1∗

m1n1
+
(
er × N3

mn

)
· M1∗

m1n1

]

+
(
fmnb∗m1n1

+ gmna∗
m1n1

)

×
[(

er × M3
mn

)
· M1∗

m1n1
+
(
er × N3

mn

)
· N1∗

m1n1

]}
dS
}

.

Taking into account the orthogonality relations of the vector spherical wave
functions on a spherical surface (cf. (B.18) and (B.19)) we obtain

Cext = −Re

{
jπR

ks

∞∑

n=1

n∑

m=−n

(fmna∗
mn + gmnb∗mn)

×
{

h(1)
n (ksR) [ksRjn(ksR)]′ − jn(ksR)

[
ksRh(1)

n (ksR)
]′}}

,

whence, using the Wronskian relation

h(1)
n (ksR) [ksRjn(ksR)]′ − jn(ksR)

[
ksRh(1)

n (ksR)
]′

= − j
ksR

,



1.5 Transition Matrix 61

we end up with

Cext = − π

k2
s

∞∑

n=1

n∑

m=−n

Re {fmna∗
mn + gmnb∗mn} . (1.100)

For the scattering cross-section, the expansion of the far-field pattern in terms
of vector spherical harmonics (cf. (1.96)) and the orthogonality relations of
the vector spherical harmonics (cf. (B.12) and (B.13)), yields

Cscat =
π

k2
s

∞∑

n=1

n∑

m=−n

|fmn|2 + |gmn|2 . (1.101)

Thus, the extinction cross-section is given by the expansion coefficients of the
incident and scattered field, while the scattering cross-section is determined
by the expansion coefficients of the scattered field.

1.5.2 Unitarity and Symmetry

It is of interest to investigate general constraints of the transition matrix such
as unitarity and symmetry. These properties can be established by applying
the principle of conservation of energy to nonabsorbing particles (εi > 0 and
µi > 0). We begin our analysis by defining the S matrix in terms of the T
matrix by the relation

S = I + 2T ,

where I is the identity matrix. In the literature, the S matrix is also known
as the scattering matrix but in our analysis we avoid this term because the
scattering matrix will have another significance.

First we consider the unitarity property. Application of the divergence
theorem to the total fields E = Es +Ee and H = Hs +He in the domain D
bounded by the surface S and a spherical surface Sc situated in the far-field
region, yields
∫

D

∇·(E × H∗) dV = −
∫

S

n ·(E × H∗) dS+
∫

Sc

er ·(E × H∗) dS . (1.102)

We consider the real part of the above equation and since the bounded domain
D is assumed to be lossless (εs > 0 and µs > 0) it follows that:

Re {∇ · (E × H∗)} = Re
{

jk0µs |H|2 − jk0εs |E|2
}

= 0 in D . (1.103)

On the other hand, taking into account the boundary conditions n × Ei =
n × E and n × H i = n × H on S, we have
∫

S

n · (E × H∗) dS =
∫

S

n · (Ei × H∗
i ) dS =

∫

Di

∇ · (Ei × H∗
i ) dV
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and since for nonabsorbing particles

Re {∇ · (Ei × H∗
i )} = Re

{
jk0µi |H i|2 − jk0εi |Ei|2

}
= 0 in Di ,

we obtain ∫

S

n · Re {E × H∗} dS = 0 . (1.104)

Combining (1.102), (1.103) and (1.104) we deduce that
∫

Sc

er · Re {E × H∗} dS = 0 . (1.105)

We next seek to find a series representation for the total electric field. For this
purpose, we use the decomposition

(
M1

mn

N1
mn

)

=
1
2

[(
M3

mn

N3
mn

)

+

(
M2

mn

N2
mn

)]

,

where the vector spherical wave functions M2
mn and N2

mn have the same
expressions as the vector spherical wave functions M3

mn and N3
mn, but with

the spherical Hankel functions of the second kind h
(2)
n in place of the spherical

Hankel functions of the first kind h
(1)
n . It should be remarked that for real

arguments x, h
(2)
n (x) = [h(1)

n (x)]∗. In the far-field region

M2
mn(kr) =

e−jkr

kr

{
jn+1mmn(θ, ϕ) + O

(
1
r

)}
,

N2
mn(kr) =

e−jkr

kr

{
jnnmn(θ, ϕ) + O

(
1
r

)}
,

as r → ∞, and we see that M2
mn and N2

mn behave as incoming transverse
vector spherical waves.

The expansion of the incident field then becomes

Ee =
∑

n,m

amnM1
mn + bmnN1

mn

=
1
2

∑

n,m

amnM3
mn + bmnN3

mn +
1
2

∑

n,m

amnM2
mn + bmnN2

mn ,

whence

E =
∑

n,m

(
fmn +

1
2
amn

)
M3

mn +
(

gmn +
1
2
bmn

)
N3

mn

+
1
2

∑

n,m

amnM2
mn + bmnN2

mn ,
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follows. Setting

cmn = 2fmn + amn ,

dmn = 2gmn + bmn ,

and using the T -matrix equation, yields
[

cmn

dmn

]
= S
[

amn

bmn

]
= (I + 2T )

[
amn

bmn

]
.

The coefficients amn and bmn are determined by the incoming field. Since in
the far-field region M2

mn and N2
mn become incoming vector spherical waves,

we see that the S matrix determines how an incoming vector spherical wave
is scattered into the same one.

In the far-field region, the total electric field

E =
1
2

∑

n,m

cmnM3
mn + dmnN3

mn +
1
2

∑

n,m

amnM2
mn + bmnN2

mn

can be expressed as a superposition of outgoing and incoming transverse
spherical waves

E(r) =
ejksr

r

{
E(1)

∞ (er) + O
(

1
r

)}
+

e−jksr

r

{
E(2)

∞ (er) + O
(

1
r

)}
,

r → ∞ (1.106)

with

E(1)
∞ (er) =

1
2ks

∑

n,m

(−j)n+1 [cmnmmn(er) + jdmnnmn(er)] ,

E(2)
∞ (er) =

1
2ks

∑

n,m

jn+1 [amnmmn(er) − jbmnnmn(er)] .

For the total magnetic field we proceed analogously and obtain

H(r) =
ejksr

r

{
H(1)

∞ (er) + O
(

1
r

)}
+

e−jksr

r

{
H(2)

∞ (er) + O
(

1
r

)}

r → ∞

with

H(1)
∞ =

√
εs

µs
er × E(1)

∞ ,

H(2)
∞ = −

√
εs

µs
er × E(2)

∞ .
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Thus

Re {er · (E × H∗)} =
1
r2

√
εs

µs

{∣
∣
∣E(1)

∞

∣
∣
∣
2

−
∣
∣
∣E(2)

∞

∣
∣
∣
2

+ O
(

1
r

)}
, r → ∞

and (1.105) yields
∫

Ω

(∣
∣
∣E(1)

∞

∣
∣
∣
2

−
∣
∣
∣E(2)

∞

∣
∣
∣
2
)

dΩ = 0 . (1.107)

The orthogonality relations of the vector spherical harmonics on the unit
sphere give

∫

Ω

∣
∣
∣E(1)

∞

∣
∣
∣
2

dΩ =
π

4k2
s

[a∗
mn, b∗mn]S†S

[
amn

bmn

]
,

∫

Ω

∣
∣
∣E(2)

∞

∣
∣
∣
2

dΩ =
π

4k2
s

[a∗
mn, b∗mn]

[
amn

bmn

]
(1.108)

and since the incident field is arbitrarily, (1.107) and (1.108) implies that
[217,228,256]

S†S = I . (1.109)

The above relation is the unitary condition for nonabsorbing particles. In
terms of the transition matrix, this condition is

T †T = −1
2
(
T + T †) ,

or explicitly

2∑

k=1

∞∑

n′=1

n′
∑

m′=−n′

T ki∗
m′n′,mnT kj

m′n′,m1n1
= −1

2
(
T ji∗

m1n1,mn + T ij
mn,m1n1

)
. (1.110)

For absorbing particles, the integral in (1.107) is negative. Consequently, the
equality in (1.110) transforms into an inequality which is equivalent to the
contractivity of the S matrix [169]. Taking the trace of (1.110), Mishchenko
et al. [169] derived an equality (inequality) between the T -matrix elements of
an axisymmetric particle provided that the z-axis of the particle coordinate
system is directed along the axis of symmetry.

To obtain the symmetry relation we proceed as in the derivation of the
reciprocity relation for the tensor scattering amplitude, i.e., we consider the
electromagnetic fields Eu, Hu generated by the incident fields Eeu, Heu, with
u = 1, 2. The starting point is the integral (cf. (1.90))

∫

Sc

er · (E2 × H1 − E1 × H2) dS = 0
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over a spherical surface Sc situated in the far-field region. Then, using the
asymptotic form (cf. (1.106))

Eu(r) =
ejksr

r

{
E(1)

u∞(er) + O
(

1
r

)}
+

e−jksr

r

{
E(2)

u∞(er) + O
(

1
r

)}
,

r → ∞

for u = 1, 2, we obtain
∫

Ω

(
er × E

(1)
2∞

)
·
(
er × E

(2)
1∞

)
dΩ =

∫

Ω

(
er × E

(1)
1∞

)
·
(
er × E

(2)
2∞

)
dΩ .

(1.111)
Taking into account the vector spherical harmonic expansions of the far-field
patterns E

(1)
u∞ and E

(2)
u∞, u = 1, 2, and the relations er × mmn = nmn and

er × nmn = −mmn, we see that

∫

Ω

(
er × E

(1)
2∞

)
·
(
er × E

(2)
1∞

)
dΩ =

π

4k2
s

[a1,m1n1 , b1,m1n1 ]

[
c2,−m1n1

d2,−m1n1

]

,

∫

Ω

(
er × E

(1)
1∞

)
·
(
er × E

(2)
2∞

)
dΩ =

π

4k2
s

[c1,mn, d1,mn]

[
a2,−mn

b2,−mn

]

,

where au,mn, bu,mn are the expansion coefficients of the far-field pattern E
(2)
u∞,

while cu,mn, du,mn are the expansion coefficients of the far-field pattern E
(1)
u∞.

Consequently, (1.111) can be written in matrix form as

[a1,m1n1 , b1,m1n1 ]

[
S11
−m1n1,−mn S12

−m1n1,−mn

S21
−m1n1,−mn S22

−m1n1,−mn

][
a2,−mn

b2,−mn

]

= [a1,m1n1 , b1,m1n1 ]

[
S11

mn,m1n1
S21

mn,m1n1

S12
mn,m1n1

S22
mn,m1n1

][
a2,−mn

b2,mn

]

and since the above equation holds true for any incident field, we find that

Sij
mn,m1n1

= Sji
−m1n1,−mn

and further that
T ij

mn,m1n1
= T ji

−m1n1,−mn (1.112)

for i, j = 1, 2. This relation reflects the symmetry property of the transition
matrix and is of basic importance in practical computer calculations. We
note that the symmetry relation (1.112) can be obtained directly from the
reciprocity relation for the tensor scattering amplitude

A (θ1, ϕ1; θ2, ϕ2) = A
T

(π − θ2, π + ϕ2;π − θ1, π + ϕ1)
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and the identities

mmn (π − θ, π + ϕ) = (−1)nmmn (θ, ϕ) ,

nmn (π − θ, π + ϕ) = (−1)n+1nmn (θ, ϕ) ,

and

m−mn (θ, ϕ) = m∗
mn (θ, ϕ) ,

n−mn (θ, ϕ) = n∗
mn (θ, ϕ) .

Additional properties of the transition matrix for particles with specific sym-
metries will be discussed in the next chapter. The “exact” infinite transition
matrix satisfies the unitarity and symmetry conditions (1.110) and (1.112),
respectively. However, in practical computer calculations, the truncated tran-
sition matrix may not satisfies these conditions and we can test the unitarity
and symmetry conditions to get a rough idea regarding the convergence to be
expected in the solution computation.

Remark. In the above analysis, the incident field is a vector plane wave
whose source is situated at infinity. Other incident fields than vector plane
waves can be considered, but we shall assume that the source of the inci-
dent field lies outside the circumscribing sphere Sc. In this case, the incident
field is regular everywhere inside the circumscribing sphere, and both expan-
sions (1.93) and (1.94) are valid on Sc. The T -matrix equation holds true
at finite distances from the particle (not only in the far-field region), and
therefore, the transition matrix is also known as the “nonasymptotic vector-
spherical-wave transition matrix”. The properties of the transition matrix
(unitarity and symmetry) can also be established by considering the energy
flow through a finite sphere Sc [238]. If we now let the source of the incident
field recede to infinity, we can let the surface Sc follow, i.e., we can consider
the case of an arbitrary large sphere and this brings us to the precedent
analysis.

1.5.3 Randomly Oriented Particles

In the following analysis we consider scattering by an ensemble of ran-
domly oriented, identical particles. Random particle orientation means that
the orientation distribution of the particles is uniform. As a consequence
of random particle orientation, the scattering medium is macroscopically
isotropic, i.e., the scattering characteristics are independent of the incident
and scattering directions ek and er, and depend only on the angle bet-
ween the unit vectors ek and er. For this type of scattering problem, it
is convenient to direct the Z-axis of the global coordinate system along
the incident direction and to choose the XZ-plane as the scattering plane
(Fig. 1.13).
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eβ

eα

ek

X

YO

Z

epolαpol

er

θ

Fig. 1.13. The Z-axis of the global coordinate system is along the incident direction
and the XZ-plane is the scattering plane

General Considerations

The phase matrix of a volume element containing randomly oriented particles
can be written as

Z (er,ek) = Z (θ, ϕ = 0, β = 0, α = 0) ,

where, in general, θ and ϕ are the polar angles of the scattering direction
er, and β and α are the polar angles of the incident direction ek. The phase
matrix Z(θ, 0, 0, 0) is known as the scattering matrix F and relates the Stokes
parameters of the incident and scattered fields defined with respect to the
scattering plane. Taking into account that for an incident direction (β, α),
the backscattering direction is (π − β, α + π), the complete definition of the
scattering matrix is [169]

F (θ) =

{
Z(θ, 0, 0, 0) ,

Z (π, π, 0, 0) ,

θ ∈ [0, π),
θ = π.

The scattering matrix of a volume element containing randomly oriented par-
ticles has the following structure:

F (θ) =

⎡

⎢
⎢
⎢
⎣

F11(θ) F12(θ) F13(θ) F14(θ)
F12(θ) F22(θ) F23(θ) F24(θ)
−F13(θ) −F23(θ) F33(θ) F34(θ)
F14(θ) F24(θ) −F34(θ) F44(θ)

⎤

⎥
⎥
⎥
⎦

. (1.113)

If each particle has a plane of symmetry or, equivalently, the particles and
their mirror-symmetric particles are present in equal numbers, the scattering
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medium is called macroscopically isotropic and mirror-symmetric. Note that
rotationally symmetric particles are obviously mirror-symmetric with respect
to the plane through the axis of symmetry. Because of symmetry, the scat-
tering matrix of a macroscopically isotropic and mirror-symmetric scattering
medium has the following block-diagonal structure [103,169]:

F (θ) =

⎡

⎢
⎢
⎢
⎣

F11(θ) F12(θ) 0 0
F12(θ) F22(θ) 0 0

0 0 F33(θ) F34(θ)
0 0 −F34(θ) F44(θ)

⎤

⎥
⎥
⎥
⎦

. (1.114)

The phase matrix can be related to the scattering matrix by using the rotation
transformation rule (1.22), and this procedure involves two rotations as shown
in Fig. 1.14. Taking into account that the scattering matrix relates the Stokes
vectors of the incident and scattered fields specified relative to the scattering
plane, I ′

s = (1/r2)F (Θ)I ′
e, and using the transformation rule of the Stokes

vectors under coordinate rotations I ′
e = L(σ1)Ie and Is = L(−σ2)I ′

s, we
obtain

Z (θ, ϕ, β, α) = L (−σ2) F (Θ) L (σ1) ,

where

cos Θ = ek · er = cos β cos θ + sin β sin θ cos (ϕ − α) ,

eβ

ek

O

Z

β

X

er

eθ

θ Θ

e’θ

e’β

σ1

σ2

Y

Fig. 1.14. Incident and scattering directions ek and er. The scattering matrix
relates the Stokes vectors of the incident and scattered fields specified relative to
the scattering plane
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cos σ1 = e′
α · eα = − sin β cos θ − cos β sin θ cos (ϕ − α)

sinΘ
,

cos σ2 = e′
ϕ · eϕ =

cos β sin θ − sin β cos θ cos (ϕ − α)
sin Θ

.

For an ensemble of randomly positioned particles, the waves scattered by
different particles are random in phase, and the Stokes parameters of these
incoherent waves add up. Therefore, the scattering matrix for the ensemble is
the sum of the scattering matrices of the individual particles:

F = N 〈F 〉 ,

where N is number of particles and 〈F 〉 denotes the ensemble-average scat-
tering matrix per particle. Similar relations hold for the extinction matrix
and optical cross-sections. Because the particles are identical, the ensemble-
average of a scattering quantity X is the orientation-averaged quantity

〈X〉 =
1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

X (αp, βp, γp) sinβp dβp dαp dγp ,

where αp, βp and γp are the particle orientation angles.
In the following analysis, the T matrix formulation is used to derive

efficient analytical techniques for computing 〈X〉. These methods work much
faster than the standard approaches based on the numerical averaging of
results computed for many discrete orientations of the particle. We begin with
the derivation of the rotation transformation rule for the transition matrix
and then compute the orientation-averaged transition matrix, optical cross-
sections and extinction matrix. An analytical procedure for computing the
orientation-averaged scattering matrix will conclude our analysis.

Rotation Transformation of the Transition Matrix

To derive the rotation transformation rule for the transition matrix we assume
that the orientation of the particle coordinate system Oxyz with respect to
the global coordinate system OXY Z is specified by the Euler angles αp, βp

and γp.
In the particle coordinate system, the expansions of the incident and scat-

tered field are given by

Ee (r, θ, ϕ) =
∞∑

n=1

n∑

m=−n

amnM1
mn (ksr, θ, ϕ) + bmnN1

mn (ksr, θ, ϕ) ,

Es (r, θ, ϕ) =
∞∑

n=1

n∑

m=−n

fmnM3
mn (ksr, θ, ϕ) + gmnN3

mn (ksr, θ, ϕ) ,
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while in the global coordinate system, these expansions take the form

Ee (r, Φ, Ψ) =
∞∑

n=1

n∑

m=−n

ãmnM1
mn (ksr, Φ, Ψ) + b̃mnN1

mn (ksr, Φ, Ψ) ,

Es (r, Φ, Ψ) =
∞∑

n=1

n∑

m=−n

f̃mnM3
mn (r, Φ, Ψ) + g̃mnN3

mn (ksr, Φ, Ψ) .

Assuming the T -matrix equations s = Te and s̃ = T̃ ẽ, our task is to express
the transition matrix in the global coordinate system T̃ in terms of the tran-
sition matrix in the particle coordinate system T . Defining the “augmented”
vectors of spherical wave functions in each coordinate system

w1,3 (ksr, θ, ϕ) =

[
M1,3

mn (ksr, θ, ϕ)
N1,3

mn (ksr, θ, ϕ)

]

and

w̃1,3 (ksr, Φ, Ψ) =

[
M1,3

mn (ksr, Φ, Ψ)
N1,3

mn (ksr, Φ, Ψ)

]

,

and using the rotation addition theorem for vector spherical wave functions,
we obtain

Ee = eTw1 = ẽTw̃1 = ẽTR (αp, βp, γp) w1 ,

Es = s̃Tw̃3 = sTw3 = sTR (−γp,−βp,−αp) w̃3 .

Consequently

e = RT (αp, βp, γp) ẽ ,

s̃ = RT (−γp,−βp,−αp) s ,

and therefore,

T̃ (αp, βp, γp) = RT (−γp,−βp,−αp) TRT (αp, βp, γp) . (1.115)

The explicit expression of the matrix elements is [169,228,233]

T̃ ij
mn,m1n1

(αp, βp, γp) =
n∑

m′=−n

n1∑

m′
1=−n1

Dn
m′m (−γp,−βp,−αp) T ij

m′n,m′
1n1

×Dn1
m1m′

1
(αp, βp, γp) (1.116)

for i, j = 1, 2.
Because the elements of the amplitude matrix can be expressed in terms of

the elements of the transition matrix, the above relation can be used to express
the elements of the amplitude matrix as functions of the particle orientation
angles αp, βp and γp. The properties of the Wigner D-functions can then be
used to compute the integrals over the particle orientation angles.
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Orientation-Averaged Transition Matrix

The elements of the orientation-averaged transition matrix with respect to
the global coordinate system are given by

〈
T̃ ij

mn,m1n1

〉
=

1
8π2

∫ 2π

0

∫ 2π

0

∫ π

0

T̃ ij
mn,m1n1

(αp, βp, γp) sinβp dβp dαp dγp

=
1

8π2

n∑

m′=−n

n1∑

m′
1=−n1

T ij
m′n,m′

1n1

∫ 2π

0

∫ 2π

0

∫ π

0

Dn
m′m (−γp,−βp,−αp)

×Dn1
m1m′

1
(αp, βp, γp) sinβp dβp dαp dγp . (1.117)

Using the definition of the Wigner D-functions (cf. (B.34)), the symmetry
relation of the Wigner d-functions dn

m′m(−βp) = dn
mm′(βp), and integrating

over αp and γp, yields

〈
T̃ ij

mn,m1n1

〉
=

1
2

n∑

m′=−n

n1∑

m′
1=−n1

∆m′m∆m1m′
1
δm′m′

1
δmm1

×T ij
m′n,m′

1n1

∫ π

0

dn
mm′ (βp) dn1

m1m′
1
(βp) sinβp dβp ,

where ∆mm′ is given by (B.36). Taking into account the identities: ∆m′m =
∆mm′ and (∆mm′)2 = 1, and using the orthogonality property of the d-
functions (cf. (B.43)), we obtain [168,169]

〈
T̃ ij

mn,m1n1

〉
= δmm1δnn1t

ij
n (1.118)

with

tijn =
1

2n + 1

n∑

m′=−n

T ij
m′n,m′n . (1.119)

The above relation provides a simple analytical expression for the orientation-
averaged transition matrix in terms of the transition matrix in the particle
coordinate system. The orientation-averaged 〈T ij〉 matrices are diagonal and
their elements do not depend on the azimuthal indices m and m1.

Orientation-Averaged Extinction and Scattering Cross-Sections

In view of the optical theorem, the orientation-averaged extinction cross-
section is (cf. (1.88) with |Ee0| = 1)

〈Cext〉 =
4π

ks
Im
{〈

e∗
pol · Es∞ (ez)

〉}
.
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Considering the expansion of the far-field pattern in the global coordinate sys-
tem (cf. (1.96)), taking the average and using the expression of the orientation-
averaged transition matrix (cf. (1.118) and (1.119)), gives

〈
e∗

pol · Es∞ (ez)
〉

=
1
ks

∑

n,m

(−j)n+1
[(

t11n ãmn + t12n b̃mn

)
e∗

pol · mmn (ez)

+ j
(
t21n ãmn + t22n b̃mn

)
e∗

pol · nmn (ez)
]

,

where the summation over the index m involves the values −1 and 1. In
the next chapter we will show that for axisymmetric particles, T ij

−mn,−mn =
−T ij

mn,mn and T ij
0n,0n = 0 for i �= j, while for particles with a plane of sym-

metry, T ij
mn,mn = 0 for i �= j. Thus, for macroscopically isotropic and mirror-

symmetric media, (1.119) gives t12n = t21n = 0. Further, using the expressions
of the incident field coefficients (cf. (1.26))

ãmn = 4jnepol · m∗
mn (ez) ,

b̃mn = −4jn+1epol · n∗
mn (ez) ,

(1.120)

and the special values of the vector spherical harmonics in the forward direc-
tion

mmn (ez) =
√

2n+1
4 (jmex − ey) ,

nmn (ez) =
√

2n+1
4 (ex + jmey) ,

(1.121)

we obtain [163]

〈Cext〉 = −2π

k2
s

Re

{ ∞∑

n=1

(2n + 1)
(
t11n + t22n

)
}

,

= −2π

k2
s

Re

{ ∞∑

n=1

n∑

m=−n

T 11
mn,mn + T 22

mn,mn

}

. (1.122)

The above relation shows that the orientation-averaged extinction cross-
section for macroscopically isotropic and mirror-symmetric media is deter-
mined by the diagonal elements of the transition matrix in the particle coor-
dinate system. The same result can be established if we consider an ensemble
of randomly oriented particles (with t12n �= 0 and t21n �= 0) illuminated by a
linearly polarized plane wave (with real polarization vector epol).

For an arbitrary excitation, the scattering cross-section can be expressed
in the global coordinate system as

Cscat =
π

k2
s

∞∑

n=1

n∑

m=−n

∣
∣
∣f̃mn

∣
∣
∣
2

+ |g̃mn|2 =
π

k2
s

s̃†s̃ ,
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whence, using the T -matrix equation s̃ = T̃ ẽ, we obtain

〈Cscat〉 =
π

k2
s

ẽ†
〈
T̃

†
(αp, βp, γp) T̃ (αp, βp, γp)

〉
ẽ .

Since

T̃ (αp, βp, γp) = RT (−γp,−βp,−αp) TRT (αp, βp, γp) ,

T̃
†
(αp, βp, γp) = R∗ (αp, βp, γp) T †R∗ (−γp,−βp,−αp) ,

and in view of (B.54) and (B.55),

R∗ (−γp,−βp,−αp) =
(
RT (−γp,−βp,−αp)

)−1
,

R∗ (αp, βp, γp) = RT (−γp,−βp,−αp) ,

we see that

T̃
†
(αp, βp, γp) T̃ (αp, βp, γp) = RT (−γp,−βp,−αp) T †TRT (αp, βp, γp) .

The above equation is similar to (1.115), and taking the average, we obtain
〈(

T †T
)ij
mn,m1n1

〉
= δmm1δnn1 t̃

ij
n ,

where

t̃ijn =
1

2n + 1

n∑

m′=−n

(
T †T

)ij
m′n,m′n

or explicitly,

t̃11n =
1

2n + 1

n∑

m′=−n

∞∑

n1=1

n1∑

m1=−n1

∣
∣T 11

m1n1,m′n

∣
∣2 +

∣
∣T 21

m1n1,m′n

∣
∣2 ,

t̃12n =
1

2n + 1

n∑

m′=−n

∞∑

n1=1

n1∑

m1=−n1

T 11∗
m1n1,m′nT 12

m1n1,m′n

+T 21∗
m1n1,m′nT 22

m1n1,m′n ,

t̃21n = t̃12∗n ,

t̃22n =
1

2n + 1

n∑

m′=−n

∞∑

n1=1

n1∑

m1=−n1

∣
∣T 12

m1n1,m′n

∣
∣2 +

∣
∣T 22

m1n1,m′n

∣
∣2 .
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The orientation-averaged scattering cross-section then becomes

〈Cscat〉 =
π

k2
s

∑

n,m

t̃11n |ãmn|2 + t̃12n ã∗
mnb̃mn

+t̃21n ãmnb̃∗mn + t̃22n

∣
∣
∣̃bmn

∣
∣
∣
2

, (1.123)

where as before, the summation over the index m involves the values −1 and
1. For macroscopically isotropic and mirror-symmetric media, t̃12n = t̃21n = 0,
and using (1.120) and (1.121), we obtain [120,162]

〈Cscat〉 =
2π

k2
s

∞∑

n=1

(2n + 1)
(
t̃11n + t̃22n

)

=
2π

k2
s

∞∑

n=1

n∑

m=−n

∞∑

n1=1

n1∑

m1=−n1

∣
∣T 11

m1n1,mn

∣
∣2 +

∣
∣T 12

m1n1,mn

∣
∣2

+
∣
∣T 21

m1n1,mn

∣
∣2 +

∣
∣T 22

m1n1,mn

∣
∣2 . (1.124)

Thus, the orientation-averaged scattering cross-section for macroscopically
isotropic and mirror-symmetric media is proportional to the sum of the
squares of the absolute values of the transition matrix in the particle coordi-
nate system. The same result holds true for an ensemble of randomly oriented
particles illuminated by a linearly polarized plane wave.

Despite the derivation of simple analytical formulas, the above analysis
shows that the orientation-averaged extinction and scattering cross-sections
for macroscopically isotropic and mirror-symmetric media do not depend on
the polarization state of the incident wave. The orientation-averaged extinc-
tion and scattering cross-sections are invariant with respect to rotations and
translations of the coordinate system and using these properties, Mishchenko
et al. [169] have derived several invariants of the transition matrix.

Orientation-Averaged Extinction Matrix

To compute the orientation-averaged extinction matrix it is necessary to eval-
uate the orientation-averaged quantities 〈Spq(ez,ez)〉. Taking into account the
expressions of the elements of the amplitude matrix (cf. (1.97)), the equation
of the orientation-averaged transition matrix (cf. (1.118) and (1.119)) and
the expressions of the vector spherical harmonics in the forward direction (cf.
(1.121)), we obtain

〈Sθβ (ez,ez)〉 = 〈Sϕα (ez,ez)〉 = − j
2ks

∞∑

n=1

(2n + 1)
(
t11n + t22n

)
,

〈Sθα (ez,ez)〉 = −〈Sϕβ (ez,ez)〉 = − 1
2ks

∞∑

n=1

(2n + 1)
(
t12n + t21n

)
.
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Inserting these expansions into the equations specifying the elements of the
extinction matrix (cf. (1.79)), we see that the nonzero matrix elements are

〈Kii〉 = −2π

k2
s

Re

{ ∞∑

n=1

(2n + 1)
(
t11n + t22n

)
}

, i = 1, 2, 3, 4 (1.125)

and

〈K14〉 = 〈K41〉 = 2π
k2
s
Re
{ ∞∑

n=1
(2n + 1)

(
t12n + t21n

)
}

,

〈K23〉 = −〈K32〉 = 2π
k2
s
Im
{ ∞∑

n=1
(2n + 1)

(
t12n + t21n

)
}

.
(1.126)

In terms of the elements of the extinction matrix, the orientation-averaged
extinction cross-section is (cf. (1.89))

〈Cext〉 =
1
Ie

[〈K11〉 Ie + 〈K14〉Ve] ,

while for macroscopically isotropic and mirror-symmetric media, the identities
t12n = t21n = 0, imply

〈K14〉 = 〈K41〉 = 〈K23〉 = 〈K32〉 = 0 .

In this specific case, the orientation-averaged extinction matrix becomes diag-
onal with diagonal elements being equal to the orientation-averaged extinction
cross-section per particle, 〈K〉 = 〈Cext〉I.

Orientation-Averaged Scattering Matrix

By definition, the orientation-averaged scattering matrix is the orientation-
averaged phase matrix with β = 0 and α = ϕ = 0. In the present analysis
we consider the calculation of the general orientation-averaged phase matrix
〈Z(er,ek;αp, βp, γp)〉 without taking into account the specific choice of the
incident and scattering directions. We give guidelines for computing the quan-
tities of interest, but we do not derive a final formula for the average phase
matrix.

According to the definition of the phase matrix we see that the orientation-
averaged quantities 〈Spq(er,ek)S∗

p1q1
(er,ek)〉, with p, p1 = θ, ϕ and q, q1 =

β, α, need to be computed. In view of (1.99), we have
〈
Spq (er,ek) S∗

p1q1
(er,ek)

〉

=
16
k2
s

〈(
v†

q1
(ek) T̃

T
(αp, βp, γp) vp1 (er)

)∗
vT

p (er) T̃ (αp, βp, γp) v∗
q (ek)

〉

=
16
k2
s

vT
q1

(ek)
〈
T̃

†
(αp, βp, γp) v∗

p1
(er) vT

p (er) T̃ (αp, βp, γp)
〉

v∗
q (ek) ,
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where, as before, T̃ stands for the transition matrix in the global coordinate
system. Defining the matrices

V pp1 (er) = v∗
p1

(er) vT
p (er)

and

App1 (er) =
〈
T̃

†
(αp, βp, γp) V pp1(er)T̃ (αp, βp, γp)

〉
,

we see that

〈
Spq (er,ek) S∗

p1q1
(er,ek)

〉
=

16
k2

s

vT
q1

(ek) App1 (er) v∗
q (ek) . (1.127)

Using the block-matrix decomposition

X =

[
X11 X12

X21 X22

]

,

where X stands for V pp1 and App1 , we express the submatrices of App1 as

A11
pp1

=
〈
T̃

11†
V 11

pp1
T̃

11
+ T̃

11†
V 12

pp1
T̃

21
+ T̃

21†
V 21

pp1
T̃

11
+ T̃

21†
V 22

pp1
T̃

21
〉

,

A12
pp1

=
〈
T̃

11†
V 11

pp1
T̃

12
+ T̃

11†
V 12

pp1
T̃

22
+ T̃

21†
V 21

pp1
T̃

12
+ T̃

21†
V 22

pp1
T̃

22
〉

,

A21
pp1

=
〈
T̃

12†
V 11

pp1
T̃

11
+ T̃

12†
V 12

pp1
T̃

21
+ T̃

22†
V 21

pp1
T̃

11
+ T̃

22†
V 22

pp1
T̃

21
〉

,

A22
pp1

=
〈
T̃

12†
V 11

pp1
T̃

12
+ T̃

12†
V 12

pp1
T̃

22
+ T̃

22†
V 21

pp1
T̃

12
+ T̃

22†
V 22

pp1
T̃

22
〉

.

(1.128)

It is apparent that each matrix product in the above equations is of the form

W pp1 (er) =
〈
T̃

kl†
(αp, βp, γp) V uv

pp1
(er) T̃

ij
(αp, βp, γp)

〉
, (1.129)

where the permissive values of the index pairs (i, j), (k, l) and (u, v) follow
from (1.128). The elements of the W pp1 matrix are given by

(Wpp1)m̃1ñ1,m1n1
(er) =

∑

ñ,m̃

∑

n,m

〈
T̃ ij

mn,m1n1
(αp, βp, γp) T̃ kl∗

m̃ñ,m̃1ñ1
(αp, βp, γp)

〉

×
(
V uv

pp1

)
m̃ñ,mn

(er) , (1.130)

and the rest of our analysis concerns with the computation of the term

T =
〈
T̃ ij

mn,m1n1
(αp, βp, γp) T̃ kl∗

m̃ñ,m̃1ñ1
(αp, βp, γp)

〉
. (1.131)
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It should be mentioned that for notation simplification we omit to indicate
the dependency of T on the matrix indices.

Using the rotation transformation rule for the transition matrix (cf.
(1.116)), we obtain

T =
1

8π2

n∑

m′=−n

n1∑

m′
1=−n1

ñ∑

m̃′=−ñ

ñ1∑

m̃′
1=−ñ1

[∫ 2π

0

∫ 2π

0

∫ π

0

Dn
m′m (−γp,−βp,−αp)

×Dn1
m1m′

1
(αp, βp, γp) Dñ∗

m̃′m̃
(−γp,−βp,−αp)

× Dñ1∗
m̃1m̃′

1

(αp, βp, γp) sinβp dβp dαp dγp

]
T ij

m′n,m′
1n1

T kl∗
m̃′ñ,m̃′

1ñ1
.

Taking into account the definition of the Wigner D-functions (cf. (B.34)) and
integrating over αp and γp, yields

T =
1
2

n∑

m′=−n

n1∑

m′
1=−n1

ñ∑

m̃′=−ñ

ñ1∑

m̃′
1=−ñ1

δ
m1−m,m̃1−m̃

δ
m′

1−m′,m̃′
1−m̃′∆

×
[∫ π

0

dn
m′m (−βp) dñ

m̃′m̃
(−βp) dn1

m1m′
1
(βp) dñ1

m̃1m̃′
1

(βp) sinβp dβp

]

×T ij
m′n,m′

1n1
T kl∗

m̃′ñ,m̃′
1ñ1

,

where dn
mm′ are the Wigner d-functions defined in Appendix B,

∆ = ∆m′m∆
m̃′m̃

∆m1m′
1
∆

m̃1m̃′
1
,

and ∆mm′ is given by (B.36). To compute the integral

I =
1
2
δ
m1−m,m̃1−m̃

δ
m′

1−m′,m̃′
1−m̃′

×
∫ π

0

dn
m′m (−βp) dñ

m̃′m̃
(−βp) dn1

m1m′
1
(βp) dñ1

m̃1m̃′
1

(βp) sinβp dβp ,

we use the symmetry relations (cf. (B.39) and (B.41))

dn
m′m(−βp) = dn

mm′(βp) = (−1)m+m′
dn
−m−m′(βp) ,

dñ

m̃′m̃
(−βp) = dñ

m̃m̃′(βp) = (−1)m̃+m̃′
dñ

−m̃−m̃′(βp) ,

the expansions of the d-functions products dn1
m1m′

1
dn
−m−m′ and dñ1

m̃1m̃′
1

dñ

−m̃−m̃′

given by (B.47), and the orthogonality property of the d-functions (cf. (B.43)).
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We obtain

I = (−1)m+m′+m̃+m̃′
(−1)n+n1+ñ+ñ1δ

m1−m,m̃1−m̃
δ
m′

1−m′,m̃′
1−m̃′

×
umax∑

u=umin

1
2u + 1

Cm1−mu
m1n1,−mnC

m′−m′
1u

−m′
1n1,m′nCm̃1−m̃u

m̃1ñ1,−m̃ñ
C

m̃′−m̃′
1u

−m̃′
1ñ1,m̃′ñ

,

where Cm+m1u
mn,m1n1

are the Clebsch–Gordan coefficients defined in Appendix B,
and

umin = max (|n − n1| , |ñ − ñ1| , |m1 − m| , |m̃1 − m̃| , |m′ − m′
1| , |m̃′ − m̃′

1|) ,

umax = min (n + n1, ñ + ñ1) .

Further, using the symmetry properties of the Clebsch–Gordan coefficients
(cf. (B.48) and (B.51)) we arrive at

I = (−1)n+n1+ñ+ñ1δ
m1−m,m̃1−m̃

δ
m′

1−m′,m̃′
1−m̃′

×
umax∑

u=umin

2u + 1
(2n1 + 1) (2ñ1 + 1)

Cm1n1
m1−mu,mnC

−m′
1n1

m′−m′
1u,−m′n

×Cm̃1ñ1

m̃1−m̃u,m̃ñ
C

−m̃′
1ñ1

m̃′−m̃′
1u,−m̃′ñ

and

T =
n∑

m′=−n

n1∑

m′
1=−n1

ñ∑

m̃′=−ñ

ñ1∑

m̃′
1=−ñ1

∆IT ij
m′n,m′

1n1
T kl∗

m̃′ñ,m̃′
1ñ1

. (1.132)

The orientation-averaged quantities 〈Spq(er,ek)S∗
p1q1

(er,ek)〉 can be com-
puted from the set of equations (1.127)–(1.132).

For an incident wave propagating along the Z-axis, the augmented vector
of spherical harmonics vq(ez) can be computed by using (1.121). Choosing the
XZ-plane as the scattering plane, i.e., setting ϕ = 0, we see that the matrices
V pp1(er) involve only the normalized angular functions π

|m|
n (θ) and τ

|m|
n (θ).

The resulting orientation-averaged scattering matrix can be computed at a
set of polar angles θ and polynomial interpolation can be used to evaluate the
orientation-averaged scattering matrix at any polar angle θ.

For macroscopically isotropic media, the orientation-averaged scattering
matrix has sixteen nonzero elements (cf. (1.113)) but only ten of them
are independent. For macroscopically isotropic and mirror-symmetric me-
dia, the orientation-averaged scattering matrix has a block-diagonal structure
(cf. (1.114)), so that only eight elements are nonzero and only six of them
are independent. In this case we determine the six quantities 〈|Sθβ(θ)|2〉,
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〈|Sθα(θ)|2〉, 〈|Sϕβ(θ)|2〉, 〈|Sϕα(θ)|2〉, 〈Sθβ(θ)S∗
ϕα(θ)〉 and 〈Sθα(θ)S∗

ϕβ(θ)〉, and
compute the eight nonzero elements by using the relations

〈F11(θ)〉 =
1
2

(〈
|Sθβ(θ)|2

〉
+
〈
|Sθα(θ)|2

〉
+
〈
|Sϕβ(θ)|2

〉
+
〈
|Sϕα(θ)|2

〉)
,

〈F12(θ)〉 =
1
2

(〈
|Sθβ(θ)|2

〉
−
〈
|Sθα(θ)|2

〉
+
〈
|Sϕβ(θ)|2

〉
−
〈
|Sϕα(θ)|2

〉)
,

〈F21(θ)〉 = 〈F12(θ)〉 ,

〈F22(θ)〉 =
1
2

(〈
|Sθβ(θ)|2

〉
−
〈
|Sθα(θ)|2

〉
−
〈
|Sϕβ(θ)|2

〉
+
〈
|Sϕα(θ)|2

〉)
,

〈F33(θ)〉 = Re
{〈

Sθβ(θ)S∗
ϕα(θ)

〉
+
〈
Sθα(θ)S∗

ϕβ(θ)
〉}

,

〈F34(θ)〉 = Im
{〈

Sθβ(θ)S∗
ϕα(θ)

〉
+
〈
Sθα(θ)S∗

ϕβ(θ)
〉∗}

,

〈F43(θ)〉 = −〈F34(θ)〉 ,

〈F44(θ)〉 = Re
{〈

Sθβ(θ)S∗
ϕα(θ)

〉∗ −
〈
Sθα(θ)S∗

ϕβ(θ)
〉}

.

Other scattering characteristics as for instance the orientation-averaged scat-
tering cross-section and the orientation-averaged mean direction of propaga-
tion of the scattered field can be expressed in terms of the elements of the
orientation-averaged scattering matrix. To derive these expressions we con-
sider the scattering plane characterized by the azimuth angle ϕ as shown in
Fig. 1.15. In the scattering plane, the Stokes vector of the scattered wave is
given by 〈Is(rer)〉 = (1/r2)〈F (θ)〉I ′

e, whence, using the transformation rule
of the Stokes vector under coordinate rotation I ′

e = L(ϕ)Ie, we obtain

〈Is (rer)〉 =
1
r2

〈F (θ)〉L (ϕ) Ie .

Further, taking into account the expression of the Stokes rotation matrix L
(cf. (1.23)) we derive

〈Is (er)〉 = 〈F11 (θ)〉 Ie + [〈F12(θ)〉 cos 2ϕ + 〈F13(θ)〉 sin 2ϕ]Qe

− [〈F12(θ)〉 sin 2ϕ − 〈F13(θ)〉 cos 2ϕ]Ue + 〈F14(θ)〉Ve .

Integrating over ϕ, we find that the orientation-averaged scattering cross-
section and the orientation-averaged mean direction of propagation of the
scattered field are given by

〈Cscat〉 =
1
Ie

∫

Ω

〈Is (er)〉 dΩ (er)

=
2π

Ie

∫ π

0

[〈F11(θ)〉 Ie + 〈F14(θ)〉Ve] sin θ dθ
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O

Z

X

er

eθ

Y

eϕ

eβ

eα

e’β

e’α

θ

ϕ

ek

Fig. 1.15. Incident and scattering directions ek and er. The incident direction is
along the Z-axis and the scattering matrix relates the Stokes vectors of the incident
and scattered fields specified relative to the scattering plane characterized by the
azimuth angle ϕ

and

〈g〉 =
1

〈Cscat〉 Ie

∫

Ω

〈Is (er)〉 er dΩ (er)

=
2π

〈Cscat〉 Ie

{∫ π

0

[〈F11(θ)〉 Ie + 〈F14(θ)〉Ve] sin θ cos θ dθ

}
ez ,

respectively. Because the incident wave propagates along the Z-axis, the
nonzero component of 〈g〉 is the orientation-averaged asymmetry parameter
〈cos Θ〉. In practical computer simulations, we use the decomposition

〈Cscat〉 =
1
Ie

(〈Cscat〉I Ie + 〈Cscat〉V Ve) ,

and compute the quantities 〈Cscat〉I and 〈Cscat〉V by using (1.124) and the
relation

〈Cscat〉V = 2π

∫ π

0

〈F14(θ)〉 sin θ dθ , (1.133)

respectively. These quantities do not depend on the polarization state of the
incident wave and can be used to compute the orientation-averaged scattering
cross-section for any incident polarization. For the asymmetry parameter we
proceed analogously; we use the decomposition
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〈cos Θ〉 =
〈Cscat〉I
〈Cscat〉

1
Ie

(〈cos Θ〉I Ie + 〈cos Θ〉V Ve) ,

and compute 〈cos Θ〉I and 〈cos Θ〉V by using the relations

〈cos Θ〉I =
2π

〈Cscat〉I

∫ π

0

〈F11(θ)〉 sin θ cos θ dθ (1.134)

and

〈cos Θ〉V =
2π

〈Cscat〉I

∫ π

0

〈F14(θ)〉 sin θ cos θ dθ , (1.135)

respectively. For macroscopically isotropic and mirror-symmetric media,

〈F14(θ)〉 = 0

and consequently, 〈Cscat〉 = 〈Cscat〉I and 〈cos Θ〉 = 〈cos Θ〉I.
Another important scattering characteristic is the angular distribution of

the scattered field. For an ensemble of randomly oriented particles illuminated
by a vector plane wave of unit amplitude and polarization vector epol =
epol,βeβ + epol,αeα, the differential scattering cross-sections in the scattering
plane ϕ are given by

〈σdp(θ)〉 =
〈
|Es∞,θ(θ)|2

〉
=
〈
|Sθβ(θ)|2

〉 ∣
∣E′

e0,β

∣
∣2

+
〈
|Sθα(θ)|2

〉 ∣
∣E′

e0,α

∣
∣2

+2Re
{
〈Sθβ(θ)S∗

θα(θ)〉E′
e0,βE′∗

e0,α

}
(1.136)

and

〈σds(θ)〉 =
〈
|Es∞,ϕ(θ)|2

〉
=
〈
|Sϕβ(θ)|2

〉 ∣
∣E′

e0,β

∣
∣2

+
〈
|Sϕα(θ)|2

〉 ∣
∣E′

e0,α

∣
∣2

+2Re
{〈

Sϕβ(θ)S∗
ϕα(θ)

〉
E′

e0,βE′∗
e0,α

}
, (1.137)

where

E′
e0,β = epol,β cos ϕ + epol,α sin ϕ ,

E′
e0,α = −epol,β sin ϕ + epol,α cos ϕ .

It should be noted that for macroscopically isotropic and mirror-symmetric
media,

〈Sθβ(θ)S∗
θα(θ)〉 = 0 ,

〈
Sϕβ(θ)S∗

ϕα(θ)
〉

= 0 ,

and the expressions of 〈σdp(θ)〉 and 〈σds(θ)〉 simplify considerably.
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In practice, the inequalities

〈F11〉 ≥ |〈Fij〉| , i, j = 1, 2, 3, 4 ,

(〈F11〉 + 〈F22〉)2 − 4 〈F12〉2 ≥ (〈F33〉 + 〈F44〉)2 + 4 〈F34〉2 ,

〈F11〉 − 〈F22〉 ≥ |〈F33〉 − 〈F44〉| ,

〈F11〉 − 〈F12〉 ≥ |〈F22〉 − 〈F12〉| ,

〈F11〉 + 〈F12〉 ≥ |〈F22〉 + 〈F12〉| , (1.138)

can be used to test the numerically obtained orientation-averaged scattering
matrix [104,169].

It should be emphasized that we do not expand the elements of the
orientation-averaged scattering matrix in generalized spherical functions (or
Wigner d-functions) and do not exploit the advantage of performing as much
work analytically as possible. Therefore, the above averaging procedure is
computationally not so fast as the scattering matrix expansion method given
by Mishchenko [162]. As noted by Mishchenko et al. [169], the analyticity of
the T -matrix formulation can be connected with the formalism of expand-
ing scattering matrices in generalized spherical functions to derive an efficient
procedure that does not involve any angular variable.

Khlebtsov [120] and Fucile et al. [71] developed a similar formalism that
exploit the rotation property of the transition matrix but avoids the expansion
of the scattering matrix in generalized spherical functions. Paramonov [182]
and Borghese et al. [23] extended the analytical orientation-averaging proce-
dure to arbitrary orientation distribution functions, while the standard aver-
aging approach employing numerical integrations over the orientation angles
has been used by Wiscombe and Mugnai [263, 264] and Barber and Hill [8].
A method to compute light scattering by arbitrarily oriented rotationally sym-
metric particles has been given by Skaropoulos and Russchenberg [212].


