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Abstract We study the local exponential stabilization of the 3D Navier-Stokes equations
in a bounded domain, around a given steady-state flow, by means of a boundary
control. We look for a control so that the solution to the Navier-Stokes equation be
a strong solution. In the 3D case, such solutions may exist if the Dirichlet control
satisfies a compatibility condition with the initial condition. In order to determine
a feedback law satisfying such a compatibility condition, we consider an extended
system coupling the Navier-Stokes equations with an equation satisfied by the
control on the boundary of the domain. We determine a linear feedback law by
solving a linear quadratic control problem for the linearized extended system.
‘We show that this feedback law also stabilizes the nonlinear extended system.

Keywords: Navier-Stokes equation, Feedback stabilization, Riccati equa-
tion.

1. Introduction

Let O and B two regular bounded domains of class C* in R® such that
BcCcO 0N =0\BT,=00andl; = 9B. Wehave I'; NT, = 0 and
0Q = T'; UT,. We consider the motion of an incompressible fluid around the
bounded body B in {2 which is described by the couple (2, p.), the velocity
and the pressure, solution to the stationary Navier-Stokes equations

“Aze+ (2. V)ze + Vpe =0and V- 2z, = 0 in Q,
ze=0o0nTy, 2z, =1y onTl,.

According to [4], if v, € H 3 (Ty; R3) obeys Jr. Voo - = 0, such a stationary
solution exists in H2(2, R3) x H'(Q)/R. For an initial condition of the form
ze + 2o and a Dirichlet boundary control u on I'; such that [ u(t) - n = 0,
the pair (z + z, p + pe ) satisfies the instationary Navier-Stokes equations, and
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(z,p) obeys:

Oz —Az+(2-V)ze+ (2. V)z+(2-V)z+Vp=0in@, (1)
V-z=0inQ, z=uon; z=0o0nX%,, 2(0) = z. (2)

In this setting @ =  x (0,00), &; = I}y x (0,00), Lo = Te x (0,00)
and n denotes the unit normal vector to T';, exterior to £2. We assume that
Z. 18 an unstable solution of (1)-(2) corresponding to zp = 2.. Our goal is
to find a Dirichlet boundary control w on I'; which stabilizes the instationary
Navier-Stokes system (1)-(2) for initial data zo small enough in an appropriate
functional space. To achieve this goal, the three dimensional case is hightly
demanding in terms of velocity regularity: we need that 2 € L2(0, oo; H3 ()
to obtain a stabilization result. Therefore, we look for a control u regular
enough to fit the expected smoothness of z and in particular, the initial com-
patibility condition u(0) = zp|r, should be satisfied. A way to obtain such
compatibility condition is to characterize the trace u as the first component of
(u,0) € L2 ([0, 00); L*(Ts; R?)) x L ([0, 00)), where (u, o) is the solution
to the time dependent equation:

du =Nputon+g only,
u(0) =zgr,, and [ u(t) - n=0.

Here Ay is a Laplace Beltrami operator and g € L?(%;; R?) is such that ()
obeys Jr. g(t) - n = 0. Thus the state (z, u) now satisfy an extended system of
two coupled equations with a distributed control g on I';:

Oz —Az+(2-V)ze+(2ze-V)z+(2-V)z+Vp=0in@Q, (3
V.z=0inQ, z=wuonk;, z=0o0n%, 2(0)=z, @)

Ou— Npu—on =gin %y, /u(t)~n:0, u(0) = zo|r,. (5)
I‘.

k3

In a first step, we consider the linear problem derived from this last coupled
system by dropping the nonlinear term (z - V)z. We introduce the velocity
space VO(Q) = {y € L2 R?) | V-y = 0inQ, y-n = Oon 9N}, and
the orthogonal projector P from L%(Q; R3) into V,2(Q2). Next we rewrite the
extended system as an evolution equation (see section 2.2) involving a linear
unbounded operator .4 which is studied in section 4. Then we state a linear
quadratic optimal control problem (see section 2.3) which provides a distributed
feedback controller for the extended system (see section 5). Finally, we apply
the feedback controller to the initial nonlinear system (see section 6) and we
show a local stabilization result.
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2. Extended system and optimal control problem
2.1 Functional framework

Let us define the spaces of free divergence functions

ViQ) ={ye H¥ (R} [V -y=0inQ, [4oy - n=0} s>0,
ViQ) ={ye HS(GR}) | V-y=0inQ, y-n=00n00}, s>0,

and the corresponding trace spaces with a free mean normal component
V) =y e HOGRY | [ yn =0}, V) =VT), s20.
Ty

We denote by V5 () the interpolation space [V2()NHg (4 R?), V) ()]1—s/2
for 0 < s < 2and V75(Q) = V§(Q)' its dual counterpart with respect to the
pivot space V,2(Q2). It is well known that

VE(Q) =ViHR), 0<s<i,
1

Ve (@) = {y e V(@) | fopx) ol < +oo),
Vi) ={yeViQ) |y=00080}, ;<s<2

where p(z) is the distance from z to 9. Notice that, according to the above
definition, we have V§(Q) = V() N H} (£ R?) for 1 < s < 2. Finally, for
0 < T < o0, and X; and X2 two Banach spaces, we introduce the function
space

W(0,T; X1, Xa2) = L*(0,T; X1) N HY(0,T; X>).

2.2 Abstract formulation of the extended system

In this section, we state an abstract weak formulation for the system

Oz —Az+ (2 V)ze+ (ze - V)z+ k(2 -V)z+Vp=0in@, (6)
V-z=0inQ, z=uonY;, z=00n5%,, 2(0) =2 € VYQ), (7
du—Apu—on=gin%;, u(0)=ug€ V_%(I‘,-). (8)

Equation (6) corresponds to the Oseen equation if x = 0, and to the Navier-
Stokes equation if x = 1. Equation (6), the left hand side of (8) and (7) are
satisfied in the sense of distributions. We observe that ¢ plays the role of the
Lagrange multiplier associated with the constraint fri U - n.

By using transformations developed in [6] we are going to give an equivalent
formulation of (6)-(7)-(8). First we define the unbounded operator (D(A4), A) =
(VE (), A(x, 8)) where A(x,8) = PA — P(Vz,) — P(2 - V). We choose
Ao > 0 such that {(Ao — A)yly) = 3llylly(e) for all y € V' (R2), and we
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introduce the Dirichlet operator D € L(VO(T;), V9(9)) associated with A\g —
A: Du = w where u € V%(Q) satisfies

Aow— Az, Nw =0, V-w=0inQ, w=uonl; and w=0onT,.
Thus, for z € L12/5(Q; R3) we define b(z, 2) € L?*(0, T; D(A*)’) by

(b(z, z)|v) = /Q(Vv) z-z, Yve& DAY

Finally, we define the unbounded operator (D(A;), 4) = (VZ(T;), P,Ay) in
VO(T,), where P, € L(L3(T;, R3), VO(T;)) denotes the orthogonal projector
from L2(T;; R?) into VO(Ty).
DEFINITION 1 Weshallsaythat (z,u) € L*(0,T; V(Q))x L?(0,T; V"%(Fi))
if i = 0, or (z,u) € L2(0,T; VO(Q) N L¥¥/5(Q, R3)) x L2(0, T; V=2 (I%)) if
Kk = 1, is a weak solution to (6)-(7)-(8) if and only if it obeys the system.
(P2) = APz+ (Ao — A)PDu + sb(z,2) € L*(0,T; D(A*)),(9)
w = Apu+ge L0, T;D(4)), (10)
Px(0) = Pz €VY(Q), u(0)=uo €V 3Ty, an
(I-P)z = (I-P)Du € L*0,T;VYQ), w-n=z-n (12)
THEOREM 2 Let (2,p,u,0) be an element of W(0,T; V1(Q),V1(Q)) x
L2(0, T; LA(Q)/RYxW (0, T; V3 (Ty), V"2 (I3))x L2(0, T). Then (2, p,u, o)
satisfies (6)-(7)-(8) if and only if (z, u) satisfy (9)-(10)-(11)-(12).
According to [6], the right hand side of (12) is equivalent to (I — P)zy =
(I — P)Dug. Then (12) ensures that the couple (z, z} is entirely determined

by its projected part (Pz, Pzg) and the boundary values (u, up). In the fol-
lowing we only consider the new “extended’ state Y = (Pz,u) and the initial

condition Yy = (Pzo,ug). We define H® = V9(Q) x V™3(T;) and an ade-
quate unbounded operator (D(A), A) in H° - A is defined by (19), (20) and
studied in section 4. We introduce the bilinear operator B

b(yr + (I — P)Dus,ya2 + (I — P)Duy )

0 (13)

B(Y1,Ys) = (

THEOREM 3 Let(z,p,u,0) € W(0,T; VX{Q),V=HQ))x L0, T; L?(Q)/R)
xW(0,T; V2 (Ty), V™2 (T:)) x L2(0, T). Then (z,p,u, o) satisfies (6)-(7)-(8)
if and only if (12) holds true and the state Y = (Pz,u) satisfies
Y =AY 4 kBEY)+ () ) € POTIDAY), Y(0)= Yo R
(14)
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23 The extended system and the linear quadratic control
problem

The feedback control law is obtained by studying the control problem

(D%, WE{Z(9) | g € L2(0,00,VO(T:)) },

2= [ [ valeg [ 16

and (2, u9) € W(0,00; VI(Q) x V3(Ty), V1Q) x V=3(T,)) satisfies (6)-
(M-(8). If we introduce CY = V(y + (I — P)Du) € Z with Z = L?({};R?)
- C is studied in section 4 lemma 9 - we can rewrite (Q)27 ,,  in the form:

(Pg)  inf{T(g) | g € L*(0,00; VO(T:))},

_1r= o 1 [ 2
@) =5 [ vz [ o
and Y, satisfies (14) for k = 0.

where

where

3. Main result

THEOREM 4 Let Ils and Tl3 be the operator defined in (35). Consider the
following coupled system,

Oz —Az+ (2 V)zg+ (2 V)z+(2-V)2+Vp=0inQ, (15)

Voz2=0inQ, z=u inYy 2z=0 ink,, (16)
Ou— Dpu+Il3u —on = -ILPzin X, an
2(0) =20 € VI(Q), u(0) =ug € VOT,). (18)

There exists cg > 0 and pg > 0 such that, if 6 € (0, po) and

(z0,u0) € Ws = {(20,u0) € V3(Q) x VO(T4) | 20 — Dug € ViZ (),

lluollvocr,) + HPZOHV%(Q) < ¢cpb},

then, (15)-(16)-(17)-(18) admit a unique solution in the set

Ds = {(apu0) € WO, +o0iVE(R). VH®) x L(0, 001 HH@)/R)
X W (0, +o0; VHT,), VTHTY)) x L3(0, 00) |

+ lull 120, 400y () T ol z2(0,00) < 6,

”ZHL2(0,+oo;v%(sz))

Il <5(1+9) |,

L2(0, 400, HE () =
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Moreover, (z,u) obeys

21, 4 g + Iu®llvorry < Clluollvoy + 1 P20ll, 4 o)™, ¢ 0.

1
VI VI

4. The operator .4
The goals of this section are:
= {0 give a definition of the unbounded operator (D(A), A) in H°.

® to characterize the function spaces for which the mapping
Y — (Y — AY,Y(0)) is an isomorphism, in order to have optimal
regularity results for the extended system (14) when k = 0.

» to characterize the functional spaces for which the mapping
Q — (—Q — A*Q,Q(T)) is an isomorphism, in order to study the
backward adjoint equation which appears in the characterization of the
solution to (Pg?) - see part 4.

THEOREM b5 .
We define the unbounded operator (D(A), A) in H® = V.9(Q) x V™3 (T;) by
DA) = {(yw) € VAQ) x V3(T) | (y - PDw) € (D)}, (19)

Az, 0 Xo — A(z,0))PD

The domain D(A) is dense in H®, and A generates an analytic semigroup in
HO. Moreover, Jor 0 < 0 < 1, the identifications below hold

D((ho—A)Y) = [DA), "], 1)
{(y,w) € V2(Q) x V¥~3(1y) | (y — PDu) € VP (Q)}.

Il

The unbounded operator (D(A*), A*) in H? = V.O(Q) x v (T;) is defined by

DAY = V(@) x VI(T),
A A*(z,0) 0
= D — A" (2,0)  BA, )
1t is the adjoint of (D(A), A) with respect to the pivot space V.O(Q) x VO(T;).

The domain D(A*) is dense in HO and A* generates an analytic semigroup in
HY. Finally, for 0 < 0 < 1, the identifications below hold

D((Ao — A*)?) = [D(A*), H0)1—g = VP (Q) x VETX(Ty).  (22)
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Moreover, for 0 < 8 < 1, we define the function spaces

H? = [D(A), H')1, HI® = [D(A"), H2}1 -0,
H—Z@ (HQQ) H 26 (HQG)

Then, as a consequence of the analyticity of the semigroups (eAt)tZO and
(e"");>p respectively in H° and in H?, we can state a general isomorphism
Theorem (see [1], Chap.3, Thm 2.2, p.166):

THEOREM 6 Forevery 0 < 6 < 1, the mappings below are isomorphisms:
W(O, T, H29, H2(19—1)) _ LQ(O, T, HQ(B—I)) x [H29, HQ(@—I)] 1,
Y (Y — AY,Y(0)), ’
WO, T;H2, 12Dy — 1200, T; 1207y x (120, 120
Q = (-Q = AQ, Q(T)).

Next we determine the spaces [H??, H?(=1]; of initial conditions.
2

?

N~

LEMMA 7 Forall 0 < 0 < 1 the following characterization holds:

[HZQ HQ(@ 1)] HQ@——].. (23)

M

Finally, a direct application of Theorem 6 with (23) ensures the existence of a
unique solution Y to the extended linear system (14) when k = 0.

THEOREM 8 Let g € L%(0,T;VO(T;)) and Yy € HO. There exists a unique
solution Y € L2(0, T; HO) to the extended system

=AY + ( 2 ) € L0, T;D(AYY), Y(0)=Y, e H". (24)
Moreover, Y belongs to W (0, T; H*, H™1). More generally, if we assume that
Yo € H®,0< 60 < 1, thenY belongs to W (0, T; H?+1, 1%~ 1),

‘We now treat the backward adjoint equation which appears in the characteriza-
tion of the solution to (PgY).

LEMMA 9 Let us define C € L(H!, Z) with Z = L*(Q, R%) by
C:Y - V(y+ (I —P)Du). Then

C.llz ~ |-l and  C*Ce LKL, HITH, 0<o<1. (29
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Then Theorem 6 with (25) leads to the following theorem.

THEOREM 10 Let Y € L2(0,T;HY). There exists a unique solution @ €
L2(0,T;HY) to the backward equation

—Q' = A*Q+CCY, Q(T)=0. (26)

Moreover, Q belongs to W (0, T; HL, H'). More generally, if we assume that
Y € L0, T;H?), L < 6 < 1, then Q belongs to W (0, T; H2, 12" ™),

5. Resolution of the optimal control problem
5.1 The finite time horizon case

Let 0 < T < oo be a finite time horizon. To deal with the optimal control
problem (P%) we first study the following problem:

(P inf{Tr(g) | g € L*(0, T; VO(T:))}, @7

T
=3 [ 1eviz 3 [ [ 1o,

and Y, € W(0,T;H,H ") is the solution to

where

Y’:AY+<2), Y(0)=¢eH. (28)

We introduce the projection operator A : (f,g) € H? + (0,g). The prob-
lem (Pg) admits a unique solution (0, g¢ 7) where (0, g¢ 7) = —AQ¢ T and
(Ye 1, Q¢ ) is the unique solution to the system

(87 { Y =AY - AQ, Y(0) = ¢ € HY,
-Q =A*Q+cCCcy, Q(T)=0.

Finally, we denote by II(T") € £(H", HY), the mapping
I(T) : £ = Qe 7(0).

5.2 The infinite time horizon case

Since, for every £ and 0 < T < oo, the solution to (P{) has been charac-
terized, we are in position to study the optimal control problem (Pg°) and the
regularity of its solution in function of the regularity of {. The problem (Pg°)
is defined by

(Pg°) inf{J(g) | g € L*(0,00; VO(T's))}, (29)
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where the following functional satisfies (28):

_ 1= 2 l < 2 . -1
T =g [ IexlE+5 [ [ 1o Yo e w0077,

Using a null controllability result stated in [3] we can show that there exists
a control g € L?(0,00; VO(T;)) such that 7(g) < +oo. This gives us the
existence of a unique solution g; to (’PgO ).

THEOREM 11 The problem (Pg°) admits a unique solution g¢ where

g{ = —¢§ and (Yv&Qé) = ((yfaué)v(@&qpﬁ)) S W(()?OO;HlaH—_l) X
W (0, 00; HL, H 1) is the unique solution to the system:
() Y =AY —AQ, Y(0) = ¢ e HO,
Q' = A*Q +C*CY, Q(o0) = 0.

Moreover; there exists I € E(H*,Hg), IT* = II such that

1
Qe =Yg,  T(g¢) = 5ILEIE)20 30 (30)

The control g¢ has been calculated as the limit of g¢ 7 when T — oo, where
ge,T is the unique solution to (Pg ).

We now focus on the properties of 1I. First, from the limit II(T") — II as
T — oo we can show that II satisfies an algebraic Riccati equation. Next,
Theorems 8 and 10 for () lead to sharp regularity result for II.

THEOREM 12 TI satisfies a Riccati equation: ¥(&,¢) € H* x HY,

(LA 101 31 + (AL ) p—1 501 + (CEICE) 2 — (ATLE|ATIC)yo(r,) = 0,

(3D
and the regularizing property 11 € L(H??, H?), 0<6< 1
Next we set Arp = (AII — A), so that the optimal trajectory Y satisfy
Y+ AnY =0, Y(0)=¢eH (32)

From a classical result due to Datko in {5, Chap 4, Thm 4.1], we show the
exponential stability of e™1*Y;. Let o > 0, the positivity of g allows
us to define its fractional power A% and we respectively identify D(Af) and
D(Af) with D((Ap — A)®) and D((Ag — A*)*). Thus (21) and (22) ensures
a characterization D(Af) and D(Aff).

THEOREM 13 The unbounded operator (D{—An), —An) generates an an-
alytic exponentially stable semigroup in H° and the characterizations below
hold

DAY =H?, DAY =H?, 0<o<1
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Next we define new norms in the spaces H® and '™ which are essential to
study the stabilization of the Navier-Stokes equation (see section 6).

DEFINITION 14 We define II® € L{H® H7%) by II®) = Ap*2 Il Ap=.

THEOREM 15 The operator TI{Y) has the regularizing property:

1) e (H#+e H¥-o) 0<o< (33)

DEFINITION 16 We define the two mappings Ny, and Ri4q by

Na(€) = (M€e)yapa)?, €€ H,
1
Rital§) = (AnéT®E), iasp-a)?, &eHT
THEOREM 17 N, and R4 define norms respectively on H* and H' <,

Na() ~ - lines Ragal) ~ - e 34

We shall point out that the expression of R14.,(€) is explicitly given by
1 a 1 a »
(AREIIDE) 1o pa-o = SICARZENZ+2 AT AR E ElfYorr,), V€ € M,

which follows from (31) in which we have replaced £ and ¢ by A§§ .
We finish this section by giving the PDE formulation of the closed loop system
(32).

THEOREM 18 The operator 11 can be rewritten as follows,
I € L(V(Q)),
Hl H; 0 1
n=(1 o) e L@, viTy), (35)
T e L(vir), vEDY),

where Iy and I3 are positive, definite and self-adjoint operators. ThenY =
(Pz,u) € W(0, 00; H*, H 1) satisfies (32) ifand only if the element (2, p, u, 7 )
of W(0, 003 V1(Q2), V=1 (2)) X LA(0, 005 LA(Q)/R)x W (0, 003 V3 ('), V=3 (1)
x L?(0, 00) satisfies

Oz~ Dz4+ (2 V)ze+(2e-V)2+Vp=0, V-z=0inQ,

ou—Dpu+Tlzu—on =Pz, z=uinkL;, z=0inZ,,

2(0) = 2 € VO(Q), u(0)=ug eV E(T,), 2-n=u n
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6. Stabilization of the Navier-Stokes equations

We now come back to the stabilization of the Navier-Stokes system. We now
consider the nonlinear system (15)-(16)-(17)-(18) which we can rewrite in the
abstract formulation

Y+ AnY = B(Y,Y), Y(0)=7Y,e€ H3. (36)
Finally, Theorem 4 is a direct consequence of the following result.

THEOREM 19 There exists co > 0 and pg > 0 such that, if 6 € (0, uo) and
YoeVs={Y ¢ 'H%{ HYHH% < cpb} then, (36) admit a unique solution in
the set S5 = {Y € W(0,00; H2, H™2)| | Y| <5}

Moreover, there exists n > 0 such that

1Y (@

3 1
W(0,00;HZ,H™ 2)

b S ClIYoll, ye. (37)

Proof. Here, we give a brief sketch of the proof of the stability result. We
1

multiply the left hand side of (36) by II2)Y (¢). According to (34) with o = 1

we obtain
1d
2dt

Then we invoke a classical estimation - see [2, Chap.6, 6.9 and 6.10] - to

1
obtain [(B(Y (2), Y ()IDY ()] < CIY @] 4 IV (O], 3 TPV @) 4
According to (33) witha = 6 = % it yields

Y (1) + RE(Y(9) = (BOY (), Y ()Y ().

(B (). Y ()T (1)} < CIY (9], 3 IV I 5.
Thus (34) gives us Cy > 0 such that
%A@(Y(t)) +2(1— CoNy (Y (O)RY(Y (1) < 0. (38)

It is obvious to see that if NV, 1 (Yp) is small enough, we can choose N1 (Yp) <
2
4—éo, so that the mapping t — N 1 (Y'(t)) be a nonincreasing function with

values less than 4%’6' This gives the existence of 4, and (37) follows from (38).
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