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Abstract We study the local exponential stabilization of the 3D Navier-Stokes equations 
in a bounded domain, around a given steady-state flow, by means of a boundary 
control. We look for a control so that the solution to the Navier-Stokes equation be 
a strong solution. In the 3D case, such solutions may exist if the Dirichlet control 
satisfies a compatibility condition with the initial condition. In order to determine 
a feedback law satisfying such a compatibility condition, we consider an extended 
system coupling the Navier-Stokes equations with an equation satisfied by the 
control on the boundary of the domain. We determine a linear feedback law by 
solving a linear quadratic control problem for the linearized extended system. 
We show that this feedback law also stabilizes the nonlinear extended system. 

Keywords: Navier-Stokes equation, Feedback stabilization, Riccati equa
tion. 

1. Introduction 

Let O and B two regular bounded domains of class C°° in R^ such that 
6 c C, O = 0\B, Te = dO and Vi = dB. We have r» n Te = 0 and 
5 0 = Fj U Ffi. We consider the motion of an incompressible fluid around the 
bounded body B in Q which is described by the couple {ze,pe), the velocity 
and the pressure, solution to the stationary Navier-Stokes equations 

-A^e + {ze • V)ze + Vpe = 0 and V • Ze = 0 in O, 

Ze==OonFj , Ze=^VooOnTe. 

According to [4], if UQO G H^ {Tf, R^) obeys /p Voo-n = 0, such a stationary 
solution exists in H^{fl, R^) x H^{Q,)/'R. For an initial condition of the form 
Ze + zo and a Dirichlet boundary control u on Fj such that /p. u{t) • n = 0, 
the pair {z + Ze,p + pe) satisfies the instationary Navier-Stokes equations, and 
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{z,p) obeys: 

dtz - Az + {z- \7)ze + {ze • V)z + {z-V)z + Vp = 0 in Q, (1) 

V • z = OinQ, z — uonEi, z = 0 on Eg, z{0) = ZQ- (2) 

In this setting Q = Q. x (0,oo), T,i = Ti x (0, oo), Eg = Fe x (0, oo) 
and n denotes the unit normal vector to Fj, exterior to ft. We assume that 
Zg is an unstable solution of (l)-(2) corresponding to ZQ — Zg. Our goal is 
to find a Dirichlet boundary control u on Fj which stabilizes the instationary 
Navier-Stokes system (l)-{2) for initial data ZQ small enough in an appropriate 
functional space. To achieve this goal, the three dimensional case is hightly 
demanding in terms of velocity regularity: we need that z G L^(0, oo; H2 (f2)) 
to obtain a stabilization result. Therefore, we look for a control u regular 
enough to fit the expected smoothness of z and in particular, the initial com
patibility condition u{0) = zolpi should be satisfied. A way to obtain such 
compatibility condition is to characterize the trace u as the first component of 
(•u, a) G Lf^cii^, cx)); L^(Fi; R^)) x ^^^^([0,00)), where {u, a) is the solution 
to the time dependent equation: 

dtu =Ai,u + an + g onSj , 
u(0) = 2o|rj, and /p. u{t) • n = 0. 

Here A;, is a Laplace Beltrami operator and g e L'^{T,i; H?) is such that g{t) 
obeys J^. g{t) -n — 0. Thus the state (z, u) now satisfy an extended system of 
two coupled equations with a distributed control p on F,: 

dtz - A2: + (2 • V)ze + {ze • V)^ + {z • V)z + Vp = 0 in Q, (3) 

V • 2 = 0 in Q, z — uonTii, z = 0 on Se, 2̂ (0) = ZQ, (4) 

9 tu-Afe-u-o-n = 5 in Si, / •u(i) • n = 0, u{Qi) = ZQ\Y^- (5) 

In a first step, we consider the linear problem derived from this last coupled 
system by dropping the nonlinear term {z • V)z. We introduce the velocity 
space l/„°(f2) =^ {y e L^{i}; R^) | V • y = 0 in fi, y • n == 0 on dQ}, and 
the orthogonal projector P from L^(Q; R'^) into V^(f2). Next we rewrite the 
extended system as an evolution equation (see section 2.2) involving a linear 
unbounded operator A which is studied in section 4. Then we state a linear 
quadratic optimal control problem (see section 2.3) which provides a distributed 
feedback controller for the extended system (see section 5). Finally, we apply 
the feedback controller to the initial nonlinear system (see section 6) and we 
show a local stabilization result. 
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2. Extended system and optimal control problem 

2.1 Functional framework 
Let us define the spaces of free divergence functions 

1/̂ (12) = { y e / f * ( O ; R 3 ) | V - y = 0 inO, / a s , y n = 0}, s > 0, 
V^{n) ={2/Gi: /^(0;R3) I V - y = OinQ, y - n = Oonafi}, ^ > g, 

and the corresponding trace spaces with a free mean normal component 

V'{Ti) = {ye H'iT,- R 3 ) I / 2/ • n = 0}, V-\Ti) = V'{Ti)', s > 0. 

Wedenote by Fo^l^) the interpolation space [y2(fi)ni?cJ(n;R3), y„°(r2)]i_^/2 
for 0 < s < 2 and V~^{0,) = Vo'(n)' its dual counterpart with respect to the 
pivot space V^{Cl). It is well known that 

VJ{Q) ^{ye T/i(0) I JnP(xr'\y\^ < +oo} , 
^0^^) ={y€V^{Q)\y^Oonda}, i < s < 2, 

where p(x) is the distance from x to dQ. Notice that, according to the above 
definition, we have VQ^{Q.) = V^ifl) D H^{ft; B?) for 1 < s < 2. Finally, for 
0 < T < oo, and Xi and X2 two Banach spaces, we introduce the function 
space 

Wi0,T;Xi,X2) = L^{0,T;Xi)nHH0,T;X2). 

2.2 Abstract formulation of the extended system 
In this section, we state an abstract weak formulation for the system 

dtz - Az + {z- W)ze + {ze • V)z + K{Z • V ) ^ + Vp = 0 in Q, (6) 

V • z = 0 in Q, z = u on Ei, z = 0 on Eg, z(0) = zo G ^ ° ( ^ ) , (7) 

5iW - A5W - crn = 5'in Si, u{0) = UQ eV~'^{Ti). (8) 

Equation (6) corresponds to the Oseen equation if K = 0, and to the Navier-
Stokes equation if K = 1. Equation (6), the left hand side of (8) and (7) are 
satisfied in the sense of distributions. We observe that a plays the role of the 
Lagrange multiplier associated with the constraint /p, u • n. 
By using transformations developed in [6] we are going to give an equivalent 
formulation of (6)-(7)-(8). First we define the unbounded operator (I?(^), A) = 
{V§{Q,), A{x, d)) where A(x, d) ^ PA - P{Vze) - P{ze • V). We choose 
Ao > 0 such that ((AQ — A)y\y) > ^\\y\\v^(Q) for all y G VQ{fl), and we 
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introduce the Dirichlet operator D e C{V°{Ti), y°(fi)) associated with AQ — 
A: Du — w where u G V^^Q.) satisfies 

XQW — A{x, d)w = 0, V • t(J = 0 in O, w = uonVi and it; = 0 on Fe. 

Thus, for z e Li2/5(Q. j^3) ^^ j^gj^g (̂̂ ^̂  ̂ ^ ^ £̂ 2(0̂  T; P(A*)') by 

{b{z, z)\v) = f (Vv) z-z, \/ve V{A*). 

Finally, we define the unbounded operator {V{Ai,), A},) — (y^(Fj), Pf,A{,) in 
y°(Fi) , where P^ G C{L'^{Ti,B?), V^{Ti)) denotes the orthogonal projector 
from i 2 (Fi ; R 3 ) into y°(Fi) . 

DEFINITION 1 Weshallsaythat{z,u) e L'^{0,T;V^{n))xL'^{0,T;V~^{Ti)) 
ifK = 0, or{z,u) e L2(0,r;y0(O)nLi2/5(f^^R3)) ^ L'^{0,T;V-^Ti)) if 
K — 1, is a weak solution to (6)-(7)-(8) if and only if it obeys the system: 

(Pz)' = APz + {Xo-A)PDu + Kb{z,z) & L^{{),T-V{A*)'),{9) 

u 
I - A.„. > ^ r- T-2 Abu + geL'iQ.T-ViAb)'), (10) 

Pz(0) = P z o e y „ ° ( 0 ) , u{0)=uoeV~-2{Ti), (11) 

{I-P)z = {I-P)Du (^L^{Q,T]V°{n)), uo-n = zo-n. (12) 

T H E O R E M 2 Let {z,p,u,a) be an element ofW{<d,T;V^{Q),V^'^{V!)) x 
L2(o , r ;L2(o) /R)xT^(0 , r ;y5(Fi ) , - t^ - i (F , ) )xL2(o ,T) . Then{z,p,u,a) 
satisfies (6)-(7)-(8) if and only if{z, u) satisfy (9)-(10)-(ll)-(12). 

According to [6], the right hand side of (12) is equivalent to (/ ~ P)zo — 
(/ — P)Duo. Then (12) ensures that the couple {z,zo) is entirely determined 
by its projected part {Pz, PZQ) and the boundary values {U,UQ). In the fol
lowing we only consider the new 'extended' state Y = {Pz, u) and the initial 
condition FQ = {PZQ,UO). We define H° = V^{VL) X V-^{Ti) and an ade
quate unbounded operator {V{A),A) in TL^ - A is defined by (19), (20) and 
studied in section 4. We introduce the bilinear operator B 

B{Y,,Y2)= ( Kyi + {I~P)Du^,y2 + {I~P)Du2 \ ^^^^ 

T H E O R E M 3 Let{z,p,u,a) e W{0,T;V\a),V-'^{n))xL^{0,T-L^{^)/Il) 
XW{0, T; 1/5(Fi), F - i ( F i ) ) xL^{0,T). Then {z,p,u,a)satisfies(6)-(7)-(8) 
if and only if (12) holds true and the state Y = {Pz, u) satisfies 

Y'=r AY + KB{Y,Y) + [ ° ] GL^{id,T;V{A*)'), F(G) = FQ G W^ 

(14) 
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2.3 The extended system and the linear quadratic control 
problem 

The feedback control law is obtained by studying the control problem 

where 

mdi{zg,ug) e W{0,oo;V\D.) x V^Ti),V^^{^) x y - i ( r i ) ) satisfies (6)-
(7)-(8). If we introduce CY = V(y + (/ - P)Du) e Z with Z = ^^(O; R 9 ) 
- C is studied in section 4 lemma 9 - we can rewrite (Q)^^„o in the form: 

( P ^ ) infU(<7) 156X^(0, oo ;y°( r , ) )} , 

where 

and Yg satisfies (14) for K = 0. 

3. Main result 
THEOREM 4 Let W.2 cmd lis he the operator defined in (35). Consider the 
following coupled system, 

dtz - Az + {z- V)ze + {ze • V)z + [z • V)z + Vp = 0 in Q, (15) 

V • z = 0 inQ, z — u inT,, z = 0 in Se, (16) 

dfU — Ai,u + H3U — an— —II2PZ in E, (17) 

Z{0) = ZOGVHQ), uiO)=uoeV''{Ti). (18) 

There exists CQ > 0 and /UQ > 0 such that, if 5 G (0, (1Q) and 

{ZO.UQ) eWs = {{zo,uo) e V-2{^) X V\Ti) | ZQ - DUQ S V ( " ) > 

then, (15)-(16)-(17)-(18) admit a unique solution in the set 

Vs = \ {z,p,u,a)GWiO,+oo;V2{n),V-^{Q.))xL'^{0,oo]H^{n)/K) 

xW{0, +00; V\T^), V-\T,)) X L\0, 00) I 

Ibll , 1 <5(l + 5) } . 
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Moreover, (z, u) obeys 

ll^(^)lly^(n) + li"(*)ll^°(r.) ^ C'(||^.o||yO(r,) + ll^^oli^i (̂ )̂) e""*, t > 0. 

4. The operator A 

The goals of this section are: 

• to give a definition of the unbounded operator {V{A),A) in TiP. 

• to characterize the function spaces for which the mapping 
Y H-̂  ( y — AY, Y{0)) is an isomorphism, in order to have optimal 
regularity results for the extended system (14) when K = 0. 

• to characterize the functional spaces for which the mapping 
Q ^^ {—Q' — •^*Q-,Q{T)) is an isomorphism, in order to study the 
backward adjoint equation which appears in the characterization of the 
solution to (Py^) - see part 4. 

THEOREM 5 

We define the unbounded operator {'D{A), A) in H° = T^^(O) x V'~2[Ti) by 

V{A) = {iy,u)eV^{n)xVl{T,)\{y-PDu)eVo\n)], (19) 

^ ^ } A{x,d) iXo^A{x,d))PD\ ^20) 

The domain T>{A) is dense in H^, and A generates an analytic semigroup in 
HP. Moreover, for 0 < 0 < 1, the identifications below hold 

V{{\o-A)') = \V{A),H%-g, (21) 

= {{y,u) G V^\n) X V^'-'HT,) I {y - PDu) e V^'in)}. 

The unbounded operator {'D{A*),A*) in 7i° = V^{fl) x V^ (Tj) is defined by 

V{A*) = V^{n)xV'2{T,), 
A* _ ( A*{x,d) 0 

\D*{\~A*{x,d)) PbAb 

It is the adjoint of{'D{A), A) with respect to the pivot space V^{n.) x V^{Ti). 
The domain 'D{A*) is dense in W° and A* generates an analytic semigroup in 
TL^. Finally, for 0 < 0 < 1, the identifications below hold 

D((Ao ~ -4*)") = [V{A*),n%-e = Vi%^) x V"^+^\T{). (22) 
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Moreover, for 0 < 0 < 1, we define the function spaces 

Then, as a consequence of the analyticity of the semigroups (e'^*)t>o and 
(e'^**)t>o respectively in VP and in W°, we can state a general isomorphism 
Theorem (see [1], Chap.3, Thm 2.2, p. 166): 

THEOREM 6 For every 0 < 9 <1, the mappings below are isomorphisms: 

Y ^ {Y'-AY,Y{0)), 

Q y-^ {~Q'~A*Q,Q{T)). 

Next we determine the spaces [H"^^ ,H'^^^'~^^]i of initial conditions. 

LEMMA 7 For allO < 9 < 1 the following characterization holds: 

[W2^w2(e-i)]^^^2e-i^ (23) 
2 

Finally, a direct application of Theorem 6 with (23) ensures the existence of a 
unique solution Y to the extended linear system (14) when K = 0. 

THEOREM 8 Let g e L?{Q, T; V^{Ti)) and Yo G TiP. There exists a unique 
solution Y G -L'̂ (0, T; HP) to the extended system 

Y' = AY + ( ^ \ e L 2 ( 0 , T ; V{A*)'), y(0) ^Y^e H°. (24) 

Moreover, Y belongs to W{0, T; Ti} ,'H~^). More generally, if we assume that 
YQ e n'^'^, 0<e<l, then Y belongs to M/(0, T; W^^+i, 7^2f?-iy 

We now treat the backward adjoint equation which appears in the characteriza
tion of the solution to {V^^). 

LEMMA 9 Let us define C G C{Ti},Z) with Z = £^(0, R^) by 
C:Y -^ V(y + (/ - P)Du). Then 

| |C . |U~ IMI^i and C*C £ jC{n^+\nt~'^), 0<9<1. (25) 
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Then Theorem 6 with (25) leads to the following theorem. 

T H E O R E M 10 Let Y £ L^{Q,T;?i^). There exists a unique solution Q G 
i^(0, T; 7Y°) to the backward equation 

-Q' = A*Q + C*CY, Q{T) = 0. (26) 

Moreover, Q belongs to W{0, T; 'Hl,'H~^). More generally, if we assume that 

Y e L2(O, T ; ^26)^ l<e<l, then Q belongs to W{0, T; Tif, Til^^''^'^). 

5. Resolution of the optimal control problem 

5.1 The finite time horizon case 
Let 0 < T < oo be a finite time horizon. To deal with the optimal control 

problem (Py^) we first study the following problem: 

{Vj) iniiMg) I 9 G L2(O, T ; F° ( r , ) )} , (27) 

where 

and Yg e V7(0, T; H, W^^) is the solution to 

Y' = AY+( ^], Y(0) = ^en°. (28) 

We introduce the projection operator A : {f,g) G Ti^ i-̂  (0,5). The prob
lem (Vj) admits a unique solution (0,g^_T) where (0, g^,T) = —AQ^,T and 
(Y^^T, Qi,T) is the unique solution to the system 

.oTx / Y' =AY~AQ, y(0) = CGWO, 
^ ^ 1-Q' =^*Q + c*cy, Q(r) = o. 

Finally, we denote by U{T) G LiH^, H°), the mapping 

n ( r ) : ^ H. C?^_^(0). 

5.2 The infinite time horizon case 
Since, for every ^ and 0 < T < 00, the solution to (PT) has been charac

terized, we are in position to study the optimal control problem {V?°) and the 
regularity of its solution in function of the regularity of ^. The problem {V?°) 
is defined by 

(P|°) i n f{J (g ) | 9GL2(0 ,oo ; \ / 0 ( r , ) ) } , (29) 
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where the following functional satisfies (28): 

1 /*oo 1 /"oo c 

Using a null controllability result stated in [3] we can show that there exists 
a control g e 1/^(0, oo; V°{Ti)) such that J{g) < +oo. This gives us the 
existence of a unique solution p^ to {V?°)-

T H E O R E M 11 The problem (V?^) admits a unique solution g^ where 

iy(0, cx); W^, 7^7^) M the unique solution to the system: 

, {Y' ^AY^t.Q, y(0) = e e W ° , 
^•^^l - Q ' =A*Q^-C*CY, Q(oo) = 0. 

Moreover, there exists IT e £(7Y*, W°), 11* = 11 5MC/! f/za? 

Q^-ny^, (̂<7«) = ^(neiOHO,„o. (30) 

The control g^ has been calculated as the limit of 5^_r when T ^> 00, where 
gi^^T is the unique solution to {Vj). 
We now focus on the properties of H. First, from the limit n (T) —> II as 
T —> 00 we can show that 11 satisfies an algebraic Riccati equation. Next, 
Theorems 8 and 10 for [S) lead to sharp regularity result for 11. 

T H E O R E M 12 U. satisfies a Riccati equation: V(^,C) S H"̂  x Ti}, 

(ncMC>wi,H-i + {Mm)H-~^,ni + iC£.\CQz - (AnciAnc)yo(r,) = o, 
(31) 

and the regularizing property 11 € C{li?^,l-i1^), 0 < 0 < | . 

Next we set ^ n = (AH — ^ ) , so that the optimal trajectory Yj satisfy 

Y' + AnY = 0, r ( 0 ) = ^ e 7f°. (32) 

From a classical result due to Datko in [5, Chap 4, Thm 4.1], we show the 
exponential stability of e^'^n^Yb. Let a > 0, the positivity of Axi allows 
us to define its fractional power ^ g and we respectively identify 'D{AYI) and 
V{A'^) with D((Ao - -4)") and D((Ao - A*Y). Thus (21) and (22) ensures 
a characterization V{A^) and ViA'^). 

T H E O R E M 13 The unbounded operator {T>{—AYI), —-^n) generates an an
alytic exponentially stable semigroup in TiP and the characterizations below 
hold 

V{A\i) = Ti^^ V{A^) = nf, Q<e<l. 
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Next we define new norms in the spaces H°' and H^^" which are essential to 
study the stabilization of the Navier-Stokes equation (see section 6). 

DEFINITION 14 We define n^'^^ e C{n°','H-°') byl].^°'^ = Au*'^TiAn'^. 

T H E O R E M 15 The operator 11^'^^ has the regularizing property: 

n(") e£(?f2^+",nf-"), o<9<^. (33) 

DEFINITION 16 We define the two mappings J\fa and TZi+a by 

AA„(0 = ((n(")^|0„.^„^„.)^, CGW", 

T H E O R E M 17 JVa and TZi+a define norms respectively on H" and H}^", 

A A „ ( - ) - | | - | | K « , Ui+ai.) r^W-W-Hi+a. (34) 

We shall point out that the expression of TZi+a{,£,) is explicitly given by 

which follows from (31) in which we have replaced ^ and C, by -4^^. 
We finish this section by giving the PDE formulation of the closed loop system 
(32). 

T H E O R E M 18 The operatorii can be rewritten as follows, 

n= n n ' n2e/:(K?(o),H(ro), (35) 
^ ' n3e/:(y-5(r,),Fi(ro), 

where Hi and Us are positive, definite and self-adjoint operators. Then Y = 
{Pz,u) e W {0, oo; H^ ,H^^) satisfies (32) if and only if the element {z,p,u, a) 

ofW{0, oo; F^f^)- l ^"H^) )x i^ (0 . oo; L'\Q)/lVixW{0, oo; F ^ ( r , ) , \^~i(r i ) ) 
X L^(0, oo) satisfies 

dtZ - Az + {z- V)Ze + {Ze-V)z + S/p = <d, V • 2 = 0 /« Q, 

dtu — A{,w + IIsu — an = —JI2PZ, z = uinEi, z = 0 in Eg, 

z(0) = xo G '!^°(!^), w(0) = uo G y~5(Fi) , zo • n = wo • n. 
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6. Stabilization of the Navier-Stokes equations 
We now come back to the stabilization of the Navier-Stokes system. We now 

consider the nonlinear system (15)-(16)-(17)-(18) which we can rewrite in the 
abstract formulation 

Y' + A11Y = B{Y,Y), F(0)-yoewi (36) 

Finally, Theorem 4 is a direct consequence of the following result. 

T H E O R E M 19 There exists CQ > 0 and JJ.Q > 0 such that, if6^ (0, fj,o) and 

YQ G Vs = {Y G W2 I | |y II 1 < CQS} then, (36) admit a unique solution in 

thesetSs = {Y eWiQ,oo;Ui,n-^)\\\Y\\ 3 1 < 5}. 

Moreover, there exists rj > 0 such that 

| | F ( t ) | y ^^Cllyoil^.e""*. (37) 

Proof. Here, we give a brief sketch of the proof of the stability result. We 
multiply the left hand side of (36) by IT^s)y (t). According to (34) with a = \ 
we obtain 

J^AA?(r(t)) + 7^|(y(t)) = (B(F(t),F(t))|^(5)y(t)). 
I at 2 2 

Then we invoke a classical estimation - see [2, Chap.6, 6.9 and 6.10] - to 
obtain |(s(r(t),y(t))|n(i)r(t))|<c|iy(i)||^i||y(t)||^i||n(i)y(t)||^.. 

According to (33) with a = 9 = \\\. yields 

| (B(y( t ) ,y( t ) ) |n ( i )y( t )> | < c | | y ( t ) | | ^ : | | y ( t ) | | S . 

Thus (34) gives us CQ > 0 such that 

^^M^.{Y{t)) + 2(1 - CQMi{Y{t)))n\{Y{t) < 0. (38) 
at 2 2 2 

It is obvious to see that if AAi {YQ) is small enough, we can choose Mi (YQ) < 
2 2 

-^, so that the mapping t —> M\{Y{t)) be a nonincreasing function with 

values less than ^ . This gives the existence of 6, and (37) follows from (38). 
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