2

Preliminary Linear Algebra

This chapter includes a rapid review of basic concepts of Linear Algebra. After
defining fields and vector spaces, we are going to cover bases, dimension and
linear transformations. The theory of simultaneous equations and triangular
factorization are going to be discussed as well. The chapter ends with the
fundamental theorem of linear algebra.

2.1 Vector Spaces

2.1.1 Fields and linear spaces
Definition 2.1.1 A set F together with two operations

+:F x F— F Addition
< FxFw—F Multiplication

is called a field if

1. a) a+fB=B+a, Va,B € F (Commutative)
b) (a+B)+v=a+(B+7), Va,B,7 € F (Associative)
¢) 3 a distinguished element denoted by 0> Va € F, a+0 = a (Additive
identity)
d)VaeFI-aeF 3a+ (—a)=0 (Ezistence of an inverse)
2. a) a-B=0-a, Yo, € F (Commutative)
b) (a-B)-y=a-(B-7), Ya,B,7 € F (Associative)
c) 3 an element denoted by 1 5 Va € F, a-1 = a (Multiplicative
identity)
d)Va#0e€F3a~l€F da a7l =1 (Ezistence of an inverse)
3. a-(B+7) =(a-B)+ (a-7), Ya,B,7 € F (Distributive)
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Definition 2.1.2 Let F be a field. A set V with two operations

+:V xV — V Addition
2 Fx V=V Scalar multiplication

is called a vector space (linear space) over the field F if the following azioms
are satisfied:

1. ¢J u+v=u+v, Vu,veV
b) (u+v)+w=u+(v+w), Yu,v,weV
¢) 3 a distinguished element denoted by § > Yv €V, v+ 60 =v
d) VveV I unigue—veV dv+(-v)=10
2 a)a-(B-u)y=(a-B) u,Va,BE€F, YuecV
b) a-(u+v)=(a-u)+{(a-v), Va €F, Vu,v eV
c) (a+B)-u=(a-u)+ (B -u), Vo, 3 €F, YueV
d) 1-u=u, Yu €V, where 1 is the multiplicative identity of

Example 2.1.3 R* = {(al,az,...,an)T 1O, 00,...,0y € IR} is a vector

space over R with (a1, az,...,an)+(B1, 82, ..., Bn) = (1+81, 09+ B2, . .. ,an+

Bn); ¢+ (a1, aa,...,00) = (cay,caz,...,ca,); and 8 = (0,0,...,0)T.

Example 2.1.4 The set of all m by n complex matrices is a vector space over
C with usual addition and multiplication.

Proposition 2.1.5 In a vector space V,

i. @ is unique.

. 0-v=0,VveV.

i (=1)-v=—-v,VwevV.
w, —0=20.
v.a-v=0a=0o0rv=2_4.

Proof. Exercise. 0O

2.1.2 Subspaces

Definition 2.1.6 Let V' be a vector space over F, and let W C V. W is called
a subspace of V if W itself is a vector space over F.

Proposition 2.1.7 W is a subspace of V' if and only if it is closed under vec-
tor addition and scalar multiplication, that is

wi,wa €W, an,ae EF S ar-wy +ag-we € WL

Proof. (Only if: =) Obvious by definition.
(If: <) we have to show that € W and Vw € W, —w € W.

i. Let oy = 1, ag = ~1, and w; = ws. Then,

lL-wy+ (—1) - wy =wy + (~wy) =0 € W.
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ii. Take any w. Let @y = —1, a2 = 0, and w; = w. Then,
(=) w+(0)-we=-weW. O

Example 2.1.8 S C R?*3, consisting of the matrices of the form

[2 « € B« _:2,7] is a subspace of]R2><3,

Proposition 2.1.9 If Wy, W, are subspaces, then so is W1 N W.

Proof. Take wy,wa € W1 N Wy, ai,az € F.

i w,wp eWy =01 -w1+az-wr €W,
i, wy,wo € Wo =y - w1 + g -wy €Wy

Thus, ayw; + asws € Wi NWy., O

Remark 2.1.10 If Wy, Wy are subspaces, then Wy U Ws is not necessarily a
subspace.

Definition 2.1.11 Let V be a vector space over F, X C V. X is said to
be linearly dependent if there exists a distinct set of x1,x9,...,xx € X and
scalars oy, aa,...,ar € F not all zero 3 Ele a;x; = 0. Otherwise, for any
subset of size k,

k
T1,%2,..-,Tk € X, Zaixi=0=>a1:a2=~-~=ak=0.

i=]

In this case, X is said to be linearly independent.

We term an expression of the form Zleaia:i as linear combination.
In particular, if Ele a; = 1, we call it affine combination. Moreover, if
Zle oa; = lando; 20, Vi = 1,2,...,k, it becomes conver combination.
On the other hand, if a; > 0, Vi = 1,2,...,k; then Zle o;x; 18 said to be
canonical combination.

Example 2.1.12 In R", let E = {e;};_, where eI = (0,---0,1,0,---,0) is
the ith canonical unit vector that contains 1 in itsit* position and 0s elsewhere.
Then, E is an independent set since

a
0=are;+--+opep=| ! | =a,=0, Vi
Qn
Let X = {z;};; where zf = (0,---0,1,1,---,1) is the vector that con-

tains 0s sequentially up to position i, and it contains 1s starting from position
1 onwards. X is also linearly independent since
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(431
o) + a2 )
8=aix)+ -+ oayTn = . = o; =0, Vi.

o+t an

Let Y = {y;}., where yf = (0,---0,—1,1,0,---,0) is the vector that
contains -1 in ith position, 1 in (i + 1)* position, and 0s elsewhere. Y is not
linearly independent since y; + -+ + yn = 0.

Definition 2.1.13 Let X C V. The set

k
Span(X)z{v:Zaixi eV:x,z0,...,28 € X; a1,09,...,0r €T, keN}

=1

is called the span of X. If the above linear combination is of the affine combi-
nation form, we will have the affine hull of X ; if it is a convex combination,
we will have the convez hull of X ; and finally, if it is a canonical combination,
what we will have is the cone of X. See Figure 2.1.

Cone(x) ,

"

% Affine(p.q) Cone(p,q)
- Al

Affine hull o .

Convex hull 4 b B

* ~
.

X P

5 S ) R: by
S Spanip.q)=
Span(x) _# Convex(p.q)

Fig. 2.1. The subspaces defined by {z} and {p, ¢}.

Proposition 2.1.14 Span(X ) is a subspace of V.

Proof. Exercise. O

2.1.3 Bases

Definition 2.1.15 A set X is called a basis for V if it is linearly independent
and spans V.
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Remark 2.1.16 Since Span(X) C V, in order to show that it covers V, we
only need to prove that Vv € V, v € Span(X).

Example 2.1.17 InR", E = {e;};-, is a basis since E is linearly indepen-
dent and Vo = (a1, 02, ...,0,)T €R?, a =aie; + - + anen € Span(E).

X = {z;}]_, is also a basis for R™ since Yo = (on,0aa,...,an)T € R,
a =071+ (ag — 1)z + -+ + (@ — An-1)zn € Span(X).

Proposition 2.1.18 Suppose X = {z;};-; is a basis for V over F. Then,

a) Yv € V can be expressed as v = S @iz where a;’s are unigue.
b) Any linearly independent set with exactly n elements forms a basis.
c) All bases for V contain n vectors, where n is the dimension of V.

Remark 2.1.19 Any vector space V of dimension n and an n-dimensional
field F™ have an isomorphism.

Proof. Suppose X = {z;};_, is a basis for V over F. Then,

a) Suppose v has two different representations: v = Y i a;x; = > i Bii.
Then, § =v —v = Zf;l(ai - Bi)zi = a; = B;, Vi=1,2,...,n. Contra-
diction, since X is independent.

b) Let Y = {y;}.-, be linearly independent. Then, y; = 3 §;z; (M), where at
least one §; # 0. Without loss of generality, we may assume that §; # 0.
Consider X1 = {y1,%2,...,2n}. X1 is linearly independent since § =
Bryr + Yoy Bimi = Br(Y 6:ix)® + 30, Biwi = Brdrzy + Y o(Brdi +
Bi)zi = p161 = 0; B16i + B =0, Vi = 2,...,n = B =0 (& # 0); and
Bi =0, Vi =2,...,n. Any v € V can be expressed as v = Y .| %% =
ML+ Y g Vil
v =767y — X, 6 i)W = (T D + Lo (v — 1676w
Thus, Span(X;)=V.

Similarly,
X2 = {y1,y2,23,...,2,} is a basis.

Xn={y1,¥2,...,yn} =Y is a basis.
c¢) Obvious from part b). O

Remark 2.1.20 Since bases for V are not unique, the same vector may have
different representations with respect to different bases. The aim here is to
find the best (simplest) representation.

2.2 Linear transformations, matrices and change of basis

2.2.1 Matrix multiplication

Let us examine another operation on matrices, matrix multiplication, with
the help of a small example. Let A € R3*4, B € R**2, C e R3*2
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b11 b1z
€11 C12 a11 @12 @13 A14 boy bas
c21 ¢22 | =C = AB = | a1 a2 a3 a4 by bas
C31 €32 agy) @32 as3 a3q bay bas

ay1biy + a1abar + a13d31 + arabay ar1bia + a12b22 + a13dz2 + a14bs2
= | a21b11 + agabey + az3bsr + a2abar az1biz + a22baz + ax3bsz + azaby:
az1b11 + az2bar + assbsr + assbsr asibiz + azzbaz + aszbsz + azabaz

Let us list the properties of this operation:
Proposition 2.2.1 Let A, B,C, D be matrices and & be a vector.

1. (AB)z = A(Bxz).

2. (AB)C = A(BC).

3. A(B+C)=AB+ AC and (B+C)D = BD +CD.

4. AB = BA does not hold (usually AB # BA) in general.

5. Let I,, be a square n by n matriz that has 1s along the main diagonal and
0s everywhere else, called identity matriz. Then, Al = IA = A.

2.2.2 Linear transformation

Definition 2.2.2 Let A € R™*" z € R™. The map z — Az describing a
transformation R™ — R™ with property (matriz multiplication)

Vr,y € R™; Va,b € R, A(bx + cy) = b(Az) + c(Ay)

is called linear.

Remark 2.2.3 Every matriz A leads to a linear transformation A. Con-
versely, every linear transformation A can be represented by a matriz A. Sup-
pose the vector space V has a basis {vy,va,...,v,} and the vector space W
has a basis {wy,ws, ..., wy}. Then, every linear transformation A from V to
W is represented by an m by n matriz A. Its entries a;; are determined by
applying A to each vj, and expressing the result as o combination of the w’s:

m
.A’U] =Zaijwi,j= 1,2,...,n
=1

Example 2.2.4 Suppose A is the operation of integration of special polyno-
mials if we take 1,¢,8%,83,-- as a basis where v; and w; are given by ti~1.
Then,

; t 1
.A’Uj = /t]_ldt = = TWj41.
J J
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0000
1000
For ezample, if dim V =4 and dim W =5 then A= |01 0 0 |. Let us try
00210
0003
to integrate v(t) = 2t + 8t3 = Ovy + 2vg + Ovs + 8vy:
0000 0 0
1000 9 0
0300 =1 c#/@t+&%dh=ﬁ+2#=ug+2w5
" 0
0010 0
1 8
0001 2
Proposition 2.2.5 If the vector x yields coefficients of v when it is ezpressed
in terms of basis {v1,vq,...,Un}, then the vector y = Az gives the coefficients
of Av when it is expressed in terms of the basis {w1,wa, ..., wm}. Therefore,

the effect of A on any v is reconstructed by matriz multiplication.
m
.AU = Zyi“’i = Z A T5W;.
i=1 i,
Proof.
n n n
v= ijvj = Av= A(Z z;0;) = Z.TjAUj = ij Zaijwi. O
i=1 1 1 j i
Proposition 2.2.6 If the matrices A and B represent the linear transforma-

tions A and B with respect to bases {v;} in V, {w;} in W, and {2;} in Z, then
the product of these two matrices represents the composite transformation BA.

Proof. A:v— Av B: Av— BAv = BA:v— BAv. O

Example 2.2.7 Let us construct 3 X 5 matriz that represents the second
2
derivative ;%7, taking Py (polynomial of degree four) to Ps.

a3t 2P 2, t 1

1
80388 0100 0020 0
= B=[00200  4=0020|=4B= 0006 0
PO 0003 000012

Let v(t) = 2t + 83, then

0020 0 0
d*o(t
;§)= 0006 0

000012 0

O 00O O
Il
'S
oo
I
S
o0
o
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Proposition 2.2.8 Suppose {vi1,v2,...,vn} and {wy,ws,...,wn} are both

bases for the vector space V, and let v € V, v = Y v, = Y7 yjwy. If
" n

vj = Y1 Sijwi, then y; = Y1 si;T;.

Proof.
E zTjv; = E E x;8;;w; is equal to E YiWw; _S_ E 81T W;.
J J oo i iJ

Proposition 2.2.9 Let A : V +— V. Let A, be the matriz form of the
transformation with respect to basis {v1,vs,...,vn} and A, be the matriz
form of the transformation with respect to basis {wi,wa,...,wn}. Assume
that v; =Y, sijwj. Then,

A, =8714,5.

Proof. Let v € V, v = Y z;v;. Sz gives the coefficients with respect to w’s,
then A, Sz yields the coefficients of Av with respect to original w’s, and fi-
nally S—1A,, Sz gives the coefficients of .Av with respect to original v’s. O

Remark 2.2.10 Suppose that we are solving the system Az = b. The most
appropriate form of A is I, so that x = b. The next simplest form is when
A is diagonal, consequently x; = . In addition, upper-triangular, lower-
triangular and block-diagonal forms for A yield easy ways to solve for x. One
of the main aims in applied linear algebra is to find a suitable basis so that
the resultant coefficient matriz A, = S~1A,S has such a simple form.

2.3 Systems of Linear Equations

2.3.1 Gaussian elimination

Let us take a system of linear m equations with n unknowns Az = b. In
particular,

utv+w= 1 211 u 1
u+v=-2 & 410 v =|-2
—2u+2v+w= T -221 w 7

Let us apply some elementary row operations:

S1. Subtract 2 times the first equation from the second,
S2. Subtract —1 times the first equation from the third,
S3. Subtract —3 times the second equation from the third.

The result is an equivalent but simpler system, Uz = ¢ where U is upper-
triangular:

2 1 1 u 1

0-1-2 v|=]-4

0 0-4 w —4
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Definition 2.3.1 A matriz U (L) is upper(lower)-triangular if all the entries
below (above) the main diagonal are zero. A matriz D is called diagonal if all
the entries except the main diagonal are zero.

Remark 2.3.2 If the coefficient matriz of a linear system of equations is
either upper or lower triangular, then the solution can be characterized by
backward or forward substitution. If it is diagonal, the solution is obtained
immediately.

Let us name the matrix that accomplishes S1 (E2;), subtracting twice the
first row from the second to produce zero in entry (2,1) of the new coefficient
matrix, which is a modified I3 such that its (2,1)st entry is —2. Similarly,
the elimination steps S2 and S3 can be described by means of E3; and Eja,
respectively.

100 100 100
Eyy=1]-210|,FE3 =010, E32= (010
001 101 031

These are called elementary matrices. Consequently,
E33E31E9A = U and EgpEs1Eaib =,

100
where F32E31F2 = | —2 10| is lower triangular. If we undo the steps of
-531
Gaussian elimination through which we try to obtain an upper-triangular
system Uz = c to reach the solution for the system Ax = b, we have

A=ER'EF ESMU = LU,

where
100 100] 100 1 00
L=Ej'E;'E;;' = 1210 010 |010| =] 2 10
001| |-101] |[031 ~1-31

is again lower-triangular. Observe that the entries below the diagonal are ex-
actly the multipliers 2, —1, and —3 used in the elimination steps. We term L
as the matrix form of the Gaussian elimination. Moreover, we have Lc = b.
Hence, we have proven the following proposition that summarizes the Gaus-
sian elimination or triangular factorization.

Proposition 2.3.3 As long as pivots are nonzero, the square matriz A can
be written as the product LU of a lower triangular matriz L and an upper
triangular matriz U. The entries of L on the main diagonal are 1s; below the
main diagonal, there are the multipliers l;; indicating how many times of row j
s subtracted from row i during elimination. U is the coefficient matriz, which
appears after elimination and before back—substitution; its diagonal entries are
the pivots.
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In order to solve z = A1 = U~'¢c = U~*L~1b we never compute inverses
that would take n3-many steps. Instead, we first determine ¢ by forward-
substitution from Lc = b, then find z by backward-substitution from Uz = c.
This takes a total of n? operations. Here is our example,

1 00 c1 1 c1 1

2 10| jcf=1-2| = |a|=|-4} =
-1-31 C3 7 C3 —4

2 1 1 1 1 I -1

0-1-2 Ty | =|—-4| = |22 = 2

0 0-4 T3 —4 T3 1

Remark 2.3.4 Once factors U and L have been computed, the solution x'
for any new right hand side b’ can be found in the similar manner in only n?
operations. For instance

8 c 8 z} 2
=111 = || =|-5|= [z =13
3 g —4 @ 1

Remark 2.3.5 We can factor out a diagonal matriz D from U that contains
pivots, as illustrated below.

1 %2 %3 ... YWn ]

dy dy 1

dy 1 23 .., Yn

dg d2

ds
U= 1 -

dn :

1]

Consequently, we have A = LDU, where L is lower triangular with 1s on the
main diagonal, U s upper diagonal with 1s on the main diagonal and D is
the diagonal matriz of pivots. LDU factorization is uniquely determined.

Remark 2.3.6 What if we come across a zero pivot? We have two possibil-
ities:
Case (i) If there is a nonzero entry below the pivot element in the same col-

umn;
We interchange rows. For instance, if we are faced with

0= )

we will interchange row 1 and 2. The permutation matriz, Py; = (1) (1) ,

represents the exchange. A permutation matriz Py, is the modified identity
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matriz of the same order whose rows k and l are interchanged. Note that
Pu = Pl;1 (exercise!). In summary, we have

PA=LDU.

Case (i1) If the pivot column is entirely zero below the pivot entry:

The current matriz (so was A) is singular. Thus, the factorization is lost.
2.3.2 Gauss-Jordan method for inverses
Definition 2.3.7 The left (right) inverse B of A exists if BA=1 (AB=1).
Proposition 2.3.8 BA=1 and AC=1& B=C.
Proof. B(AC)=(BA)C & BI=ICsB=C. O
Proposition 2.3.9 If A and B are invertible, so is AB.

(AB)"'=B7'4L

Proof.

(AB)(B'A Y)Y = ABB™)A ' = AIA ' = AA" ' =T
(B'AWAB=B'(A'AB=B"'IB=B"'B=I1. O
Remark 2.3.10 Let A = LDU. A~! = U™'D7'L™! is never computed. If
we consider AA™! = I, one column at a time, we have Az; = e;,Vj. When

we carry out elimination in such n equations simultaneously, we will follow
the Gauss-Jordan method.

Example 2.3.11 In our ezample instance,

211100 2 1 1 100
[Alereses] = | 410/010] — [0-1-2[—210
-221[001 0 3 2{101
2 1 1] 100 100/ 5 §-3
= |0-1-2/-210| =[UlL7' > [010]-2 1 1} =[11471
0 0-4|—
531 001 § -}~
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2.3.3 The most general case

In this subsection, we are going to concentrate on the equation system, Az = b,
where we have n unknowns and m equations.

Axiom 2.3.12 The system Ax = b is solvable if and only if the vector b
can be expressed as the linear combination of the columns of A (lies in
Span[columns of A] or geometrically lies in the subspace defined by columns

of A).

Definition 2.3.13 The set of non-trivial solutions « # 8 to the homogeneous
system Ax = 0 is itself a vector space called the null space of A, denoted by

N(A).

Remark 2.3.14 All the possible cases in the solution of the simple scalar
equation ax = B are below:

ea#0:VBER, dJx= § € R (nonsingular case),
e a=p=0: Yz € R are the solutions (undetermined case),

e a=0,8#0: there is no solution (inconsistent case).

Let us consider a possible LU decomposition of a given A € R™*™ with
the help of the following example:

1 332 1332 1332
A= 2 695 - (0031 —- 0031} =U.
-1-330 0062 0000

The final form of U is upper-trapezoidal.

Definition 2.3.15 An upper-triangular (lower-triangular) rectangular ma-
triz U is called upper-(lower-)trapezoidal if all the nonzero entries u;; lie on
and above (below) the main diagonal, ¢ < j (i > j). An upper-trapezoidal
matrices has the following “echelon” form:

© * * % % % % *x %
0[® * % % % % % %
0 0 0|® * * % % x
0000000|® =
000000000
000000000

In order to obtain such an U, we may need row interchanges, which would
introduce a permutation matrix P. Thus, we have the following theorem.

Theorem 2.3.16 For any A € R™*"™, there is a permutation matriz P, a

lower-triangular matriz L, and an upper-trapezoidal matriz U such that PA =
LU.
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Definition 2.3.17 In any system Az = b & Uz = ¢, we can partition the
unknowns z; as basic (dependent) variables those that correspond to a column
with a nonzero piwot ®, and free (nonbasic,independent) variables correspond-
ing to columns without pivots.

We can state all the possible cases for Az = b as we did in the previous
remark without any proof.

Theorem 2.3.18 Suppose the m by n matrix A is reduced by elementary row
operations and row exchanges to a matriz U in echelon form. Let there be r
nonzero pivots; the last m — r rows of U are zero. Then, there will be r basic
variables and n — r free variables as independent parameters. The null space,
N(A), composed of the solutions to Az = 6, has n —r free variables.

If n = r, then null space contains only = = 6.

Solutions exist for every b if and only if r = m (U has no zero rows), and
Uz = ¢ can be solved by back-substitution.

If r < m, U will have m — r zero rows. If one particular solution & to
the first r equations of Uz = ¢ (hence to Ax = b) exists, then & + ax, Vi €
N(A)\ {8}, Va € R is also a solution.

Definition 2.3.19 The number r is called the rank of A.

2.4 The four fundamental subspaces

Remark 2.4.1 If we rearrange the columns of A so that all basic columns
containing piots are listed first, we will have the following partition of U:

At =[] [

where B € R™*", N € R™*(*=7) g € R™™", Uy € R™*=1) 0 is an
(m — ) X n matriz of zeros, Vy € R"™*(""") and I, is the identity matriz of
order r. Ug is upper-triangular, thus non-singular.

If we continue from U and use elementary row operations to obtain I, in
the Up part, like in the Gauss-Jordan method, we will arrive at the reduced
row echelon form V.

2.4.1 The row space of A

Definition 2.4.2 The row space of A is the space spanned by rows of A. It
is denoted by R(AT).

R(AT) = Span({a;}i~,) = {y eER™:y= Zm:aiai}

i=1

={deR™:FyeR">5yT4A=d"}.
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Proposition 2.4.3 The row space of A has the same dimension r as the row
space of U and the row space of V. They have the same basis, and thus, all
the row spaces are the same.

Proof. Each elementary row operation leaves the row space unchanged. O

2.4.2 The column space of A

Definition 2.4.4 The column space of A is the space spanned by the columns
of A. It is denoted by R(A).

R(A) = Span {C’/j}:___l = {y ER":y= Zﬂjaj}
j=1

={beR":3x € R" 5> Axr = b}.

Proposition 2.4.5 The dimension of column space of A equals the rank r,
which is also equal to the dimension of the row space of A. The number of
independent columns equals the number of independent rows. A basis for R(A)
is formed by the columns of B.

Definition 2.4.6 The rank is the dimension of the row space or the column

space.

2.4.3 The null space (kernel) of A
Proposition 2.4.7

NA) ={zeR": Az =0(Uz =6,V =0)} = N(U) = N(V).
Proposition 2.4.8 The dimension of N(A) is n —r, and a base for N'(A)

—Vn
In—-r '

is the columns of T = [

Proof.
Az =0 Uz=0 V=0 x5+ Vyay =0.

is linearly independent because of the last (n—7)

The columns of T = ;VN
coeflicients. Is their span N(A)?
Let y = 3, 05T7, Ay = ¥ a;(=V§, + Vi) = 6. Thus, Span({Tf};.:f) C

N(A). Is Span({Tf};::) DN(A)? Let z = [—;ﬁ—:}] € N(A). Then,

_ _ _ rp _ —VN iYnN—7
Az =0 g+ Vyzy =0z = [:—E—;] = [In—r] TN € Span({TJ}jzl)

Thus, Span({Tj};.:lr) DN(A). O
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2.4.4 The left null space of A

Definition 2.4.9 The subspace of R™ that consists of those vectors y such
that yT A = 8 is known as the left null space of A.

NATY ={yeR™:yTA=6}.

Proposition 2.4.10 The left null space N'(AT) is of dimension m —r, where
the basis vectors are the last m—r rows of L™'P of PA= LU or L"'PA=U.

Proof.
I.|Vy

A:[A|Im]—>V=[ O

1P|

Then, (L7!P) = [—gl—], where Sp; is the last m — r rows of L™'P. Then,
I
SirA=46. O

Fig. 2.2. The four fundamental subspaces defined by A € R™*".

2.4.5 The Fundamental Theorem of Linear Algebra

Theorem 2.4.11 R(AT)= row space of A with dimension r;
N(A)= null space of A with dimension n —r;

R(A)= column space of A with dimension r;

N(AT)= left null space of A with dimension m — r;

Remark 2.4.12 From this point onwards, we are going to assume thatn > m
unless otherwise indicated.
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Problems

2.1. Graph spaces

Definition 2.4.13 Let GF(2) be the field with + and x (addition and multi-
plication modulo 2 on Z?)

+[01 x[01
0[01 and 0/00
110 101

Fig. 2.3. The graph in Problem 2.1

Consider the node-edge incident matrix of the given graph G = (V| E)
over GF(2), A € RIVIXIEL;

[12345678910111213]

, |1100000000 000

, (1000000010 0 0 0

. 0110000000 0 0 0
A= g |0011000010 000
, (0001100001000

f 0000110000 0 1 1
0000011000 1 0 0

z 0000000101 1 0 1
;10000001100 0 1 0]

The addition + operator helps to point out the end points of the path
formed by the added edges. For instance, if we add the first and ninth columns
of A, we will have [1,0,0,1,0,0,0,0,0]7, which indicates the end points (nodes
a and d) of the path formed by edges one and nine.

(a) Find the reduced row echelon form of A working over GF(2). Interpret
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the meaning of the bases.
(b) Let T = {1,2,3,4,5,6,7,8} and T+ = E\ T = {9,10,11,12,13}.

+  |Ig N
LetA——[OO

with non-zero entries. Interpret z;

(c)Let Y = []IV} For each column 37, j € T+, color the edges with non-zero
5

]. Let Z = [Ig]N]. For each row, 2;,i € T, color the edges

entries. Interpret y;.
(d) Find a basis for the four fundamental subspaces related with A.

2.2. Derivative of a polynomial

Let us concentrate on a (n — k + 1) X (n + 1) real valued matrix A(n, k)
that represents “taking k** derivative of n® order polynomial”

Pty =ap+art+ -+ ant™

(a) Let n = 5 and k = 2. Characterize bases for the four fundamental sub-
spaces related with A(5,2).

(b) Find bases for and the dimensions of the four fundamental subspaces re-
lated with A(n,k).

(c) Find B(n, k), the right inverse of A(n, k). Characterize the meaning of the
underlying transformation and the four fundamental subspaces.

2.3. As in Example 2.1.12, let Y = {y;},—; be defined as
sz = (Oa"'07_171707"' 70)’

the vector that contains -1 in 5** position, 1 in (i 4 1)** position, and Os else-
where. Let A = {y1|y2|-- - |yn]. Characterize the four fundamental subspaces
of A.
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