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Preliminary Linear Algebra 

This chapter includes a rapid review of basic concepts of Linear Algebra. After 
denning fields and vector spaces, we are going to cover bases, dimension and 
linear transformations. The theory of simultaneous equations and triangular 
factorization are going to be discussed as well. The chapter ends with the 
fundamental theorem of linear algebra. 

2 .1 V e c t o r S p a c e s 

2.1.1 Fields and linear spaces 

Definition 2.1.1 A set F together with two operations 

+ : F x F ^ F Addition 
• : F X F H F Multiplication 

is called a field if 

1. a) a + 0 — 0 + a, Va, 0 G F (Commutative) 
b) (a + 0) + 7 — a + (0 + 7), Va, 0,7 6 F (Associative) 
c) 3 a distinguished element denoted by 0 B Va E F, a + 0 = a (Additive 

identity) 
d) Va €W 3 — a s F 3 a + (—a) = 0 (Existence of an inverse) 

2. a) a • 0 — 0 • a, Va,/3 € F (Commutative) 
b) (a • 0) • 7 = a • (0 • 7), Va, 0,7 e F (Associative) 
c) 3 an element denoted by 1 B Va e F, a • 1 = a (Multiplicative 

identity) 
^ V a ^ 0 e F 3 a _ 1 e F 3 a - a _ 1 = l (Existence of an inverse) 

3. a • (/3 + 7) = (a • /?) + (a • 7), Va, 0,7 e F (Distributive) 
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Definition 2.1.2 Let ¥ be a field. A set V with two operations 

+ :V xV ^V Addition 
• : F x V H-> V Scalar multiplication 

is called a vector space (linear space) over the field F if the following axioms 
are satisfied: 

1. a) u + v = u + v, Vu, v G V 
b) (u + v) + w = u + (v + w), Vu, v, w G V 
c) 3 a distinguished element denoted by 8 3 W G V, v + 6 = v 
d) Vw G V 3 unique - v eV B v + (-v) = 6 

2. a) a • (0 • u) = (a • /3) • u, Va,^ G F, VM G V 
b) a • (u + v) = (a • u) + (a • v), Va G F, Vu,v eV 
c) (a + p) • u = (a • u) + (p • u), Va, p G F, VM G F 
d̂  1 • w = w, VM G V, where 1 is the multiplicative identity ofW 

Example 2.1.3 Mn = { ( a i , a 2 , . . . , Q „ ) J ' : Q i , a 2 , . . . , « r l 6 R } is a vector 
space overR with(aci,a2,-. .,an)+{Pi,P2,---,Pn) = (ai+Pi,oi2+P2,-- -,an+ 
Pn); c- (cti,a2,-.. , a„) = (cai,ca2,. ..,can); and 6 — (0,0,. . . , 0 ) r . 

Example 2.1.4 The set of all m by n complex matrices is a vector space over 
C with usual addition and multiplication. 

Proposition 2.1.5 In a vector space V, 

i. 0 is unique. 
ii. 0 • v = 6, Mv G V. 
Hi. (—1) • v = —v, Vw G V. 
iv. -6 = 6. 
v. a-v = 6<&a = 0orv = 8. 

Proof. Exercise. • 

2.1.2 Subspaces 

Definition 2.1.6 Let V be a vector space overW, and let W C V. W is called 
a subspace ofV ifW itself is a vector space over F. 

Proposition 2.1.7 W is a subspace of V if and only if it is closed under vec­
tor addition and scalar multiplication, that is 

u>i, w2 G W, a i , c*2 € F <̂> ai • w± + a2 • w2 G W. 

Proof. (Only if: =>) Obvious by definition. 
(If: <=) we have to show that 6 G W and Vw G W, -w G W. 

i. Let a i = 1, a>2 = —1, and w\ = W2- Then, 

l-wi + (-1) •wi=w1 + (-wi) = 9 eW. 
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ii. Take any w. Let e*i = - 1 , a2 = 0, and wi = w. Then, 

(-l)-w + (0)-w2 =-w eW. D 

Example 2.1.8 S C R2 x 3 , consisting of the matrices of the form 

0 P 7 
a a - P a + 27 

is a subspace of j>2x3 

Proposition 2.1.9 IfWx,W2 are subspaces, then so is W\ l~l W2. 

Proof. Take u>i, u>2 € Wi n W2, a i , a2 £ F. 

i. wi, w2 G Wi =>• a i • wi + a2 • w2 € Wi 
ii. wi,w2 e W2 => cti • Wi + a2 • w2 £ W2 

Thus, aitui + a2w2 € Wi n W2. • 

Remark 2.1.10 IfW\, W2 are subspaces, then W\ UW2 is not necessarily a 
subspace. 

Definition 2.1.11 Let V be a vector space over ¥, X C V. X is said to 
be linearly dependent if there exists a distinct set of xi,x2,... ,Xk £ X and 
scalars a\,a2, ...,atk 6 F not all zero 3 5^ i = 1 o^Xi = 9. Otherwise, for any 
subset of size k, 

k 

X\,X2,...,Xk £ X, 2_2aixi — ® => al — a2 = ••• = <*k = 0. 

In this case, X is said to be linearly independent. 
We term an expression of the form $Z i=1 ot{Xi as linear combination. 

In particular, if JZi=i ai — 1» we ca^ ^ affine combination. Moreover, if 
Si=i ai = 1 and ai > 0, Vi = 1,2, ...,k, it becomes convex combination. 
On the other hand, if a* > 0, Vi = 1,2,..., k; then X)=i 

said to be 
canonical combination. 

Example 2.1.12 In Rn, let E = {e;}"=1 where ef = (0, • • • 0,1,0, • • • , 0) is 
the ith canonical unit vector that contains 1 in its ith position and 0s elsewhere. 
Then, E is an independent set since 

aiei H h a „ e n = 

« i 

a„ 

at = 0, Vi 

Let X = {xi}"=1 where xf = (0, • • -0,1,1, • • • , 1) is the vector that con­
tains 0s sequentially up to position i, and it contains Is starting from position 
i onwards. X is also linearly independent since 
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8 = a\X\ + V anxn => a; = 0, Mi. 

Let Y = {Vi}"=1 where yf = (0, • • -0, -1 ,1 ,0 , • • • ,0) is the vector that 
contains -1 in ith position, 1 in(i + l)st position, and 0s elsewhere. Y is not 
linearly independent since y\ + • • • + yn — #• 

Definition 2.1.13 Let X C V. The set 

Span(X)= \v=YlaiXi £V : xi,x2,..-,xk€ X; ai,a2,---,ak eF; k€N> 

is called the span of X. If the above linear combination is of the affine combi­
nation form, we will have the affine hull of X; if it is a convex combination, 
we will have the convex hull of X; and finally, if it is a canonical combination, 
what we will have is the cone of X. See Figure 2.1. 

Affine b 

Convex 

Span(x) 

Cone(x) , 

Affine(p,q)v 

Span(p.q)=R 

/ 

Convex(p,q) 

Fig. 2.1. The subspaces defined by {a;} and {p, q}. 

Proposition 2.1.14 Span(X) is a subspace ofV. 

Proof. Exercise. • 

2.1.3 Bases 

Definition 2.1.15 A set X is called a basis for V if it is linearly independent 
and spans V. 
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Remark 2.1.16 Since Span(X) C V, in order to show that it covers V, we 
only need to prove that Vv € V, v € Span(X). 

Example 2.1.17 In Kn, E = {ej}"=1 is a basis since E is linearly indepen­
dent andVa = ( a i , a 2 , . . -,an)

T € Kn, a = a^ei -\ 1- ane„ € Span(E). 
X — {xi}™=1 is also a basis for Rn since Va = ( a i , a 2 , . . . ,an)

T € Rn , 
a = aixi + (a2 - " l ) ^ H 1- K - an-i)xn £ Span(X). 

Proposition 2.1.18 Suppose X = {a?i}7=i *s a ^0Sl'5 / o r ^ o w e r ^- ^ e n » 

aj Vw £ l^ can be expressed as v = E?=i aixi where cti 's are unique. 
b) Any linearly independent set with exactly n elements forms a basis. 
c) All bases for V contain n vectors, where n is the dimension ofV. 

Remark 2.1.19 Any vector space V of dimension n and an n-dimensional 
field F™ have an isomorphism. 

Proof. Suppose X = {xi}"=1 is a basis for V over F. Then, 

a) Suppose v has two different representations: v = Y17=iaix' = Y^i=i&iXi-

Then, 6 — v — v = E i = i ( a i ~ Pi)xi =^ °-% — ft, Vz — 1,2,.. . , n. Contra­
diction, since X is independent. 

b) Let Y = {j/i}7=i be linearly independent. Then, yi = Yl^ixi (40> where at 
least one S{ ^ 0. Without loss of generality, we may assume that Si ^ 0. 
Consider Xi = {yi,x?,... ,xn}. Xi is linearly independent since 6 = 

fttfi+E?=2#** = / M E W * * + E r = 2 f t ^ = ft^^i+£r=2(ft^ + 
fr)xi =*• ft<5i = 0; PiSi + ft = 0, Vi = 2 , . . . , n =*• )8i = 0 (<Ji # 0); and 
ft = 0, Vi = 2 , . . . , n. Any o e K can be expressed as v = E?=i 7*:c* = 

7iai + E_r=27iffi 
u = 7i(< r̂12/i - Er=2<Jr1^a;i)(*) = (7i^r1)yi + E"=2(7i - n s ^ s ^ . 
Thus, Span(Xi) = V. 
Similarly, 
X2 = {yi,y2,x3,...,xn} is a basis. 

Xn = {2/1,2/2, • • • ,2/n} = Y is a basis. 
c) Obvious from part b). • 

Remark 2.1.20 Since bases for V are not unique, the same vector may have 
different representations with respect to different bases. The aim here is to 
find the best (simplest) representation. 

2.2 Linear transformations, matrices and change of basis 

2.2.1 Matrix multiplication 

Let us examine another operation on matrices, matrix multiplication, with 
the help of a small example. Let A e K3 x 4 , B G R4 x 2 , C € R 3 x 2 
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C l l C12 

C21 C22 

C31 C32 

C = AB = 

_ 
a n a i 2 a i 3 014 

021 022 ^23 «24 

^31 «32 O33 034 j 

fell &12 

&21 &22 

631 fe32 
641 642 _ 

Ollfell + 012621 + 013&31 + 014&41 OH&12 + 012622 + 013632 + O14642 

021&11 + 022fe21 + 023fe31 + 024641 O21612 + 022&22 + O23632 + 024642 

031&11 + «32fe21 + 033631 + 034641 0 3 1 6 ^ + 032622 + 033632 + O34642 

Let us list the properties of this operation: 

Proposition 2.2.1 Let A, B, C, D fee matrices and x be a vector. 

1. {AB)x = A(Bx). 
2. {AB)C = A{BC). 
3. A(B + C) = AB + AC and (B + C)D = BD + CD. 
4. AB = BA does not hold (usually AB ^ BA) in general. 
5. Let In be a square n by n matrix that has Is along the main diagonal and 

Os everywhere else, called identity matrix. Then, AI = IA = A. 

2.2.2 Linear transformation 

Definition 2.2.2 Let A e R m x n , i e l " . The map x i-> Ax describing a 
transformation K™ i-> Km with property (matrix multiplication) 

Vx, y € R"; Vo, 6 € K, A(bx + cy) = b(Ax) + c(Ay) 

is called linear. 

Remark 2.2.3 Every matrix A leads to a linear transformation A. Con­
versely, every linear transformation A can be represented by a matrix A. Sup­
pose the vector space V has a basis {vi,t>2> • • • ,vn} and the vector space W 
has a basis {u>i,W2, • • •, wm}. Then, every linear transformation A from V to 
W is represented by an m by n matrix A. Its entries atj are determined by 
applying A to each Vj, and expressing the result as a combination of the w's: 

AVJ = ^2 aHwi, j = 1,2,..., n. 
i = i 

Example 2.2.4 Suppose A is the operation of integration of special polyno­
mials if we take l,t,t2,t3, • • • as a basis where Vj and Wj are given by V~x. 
Then, 

AVJ = / V~x dt = — = -Wj 
J J 3 

vj+1. 
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For example, if dim V = 4 and dim W = 5 then A = 

to integrate v(t) = 2t + 8t3 = 0«i + 2u2 + 0u3 + 8v4: 

"0 0 0 0" 
1 0 0 0 
0 \ 0 0 
0 0 | 0 
ooo \ 

Let us try 

"0 0 0 0" 
1 0 0 0 
0 \ 0 0 
0 0 \ 0 
ooo \ 

"0" 
2 
0 

8 

"0" 
0 
1 
0 
2 

<^ y (2* + 8t3) dt = t2 + 2t4 = w3 + 2w5. 

Proposition 2.2.5 If the vector x yields coefficients ofv when it is expressed 
in terms of basis {v\, V2, • • •, vn}, then the vector y = Ax gives the coefficients 
of Av when it is expressed in terms of the basis {w\,W2, • • • ,wm}. Therefore, 
the effect of A on any v is reconstructed by matrix multiplication. 

m 

Av = Y2yiWi = 5Z aijXJWi-
i=\ i,3 

Proof. 
n n n 

V = J2 xivi ^ Av = A(52 xiv^ = Z] xiAvi = X) xi X aiiWi- D 

j=l 1 1 j i 

Proposition 2.2.6 / / the matrices A and B represent the linear transforma­
tions A and B with respect to bases {vi} in V, {u>i} in W, and {zi} in Z, then 
the product of these two matrices represents the composite transformation BA. 

Proof. A : v i->- Av B : Av i-> BAv => BA : v >-> BAv. D 

Example 2.2.7 Let us construct 3 x 5 matrix that represents the second 
derivative J J I , taking P4 (polynomial of degree four) to Pi-

t4 ^ 4tz, t3
 M- 3t2, t2 >->• 2t, 11-> 1 

=*> B = 

01000 
00200 
00030 
00004 

Let v(t) = 2t + 8t3, then 

d2v(t) _ 

dt2 

A = 
0 1 0 0 
0 0 2 0 
0 0 0 3 

AB = 
0 0 2 0 0 
0 0 0 6 0 
0 0 0 0 12 

0 0 2 0 0 
0 0 0 6 0 
0 0 0 0 12 

'0' 
2 
0 
8 
0 

= 
" 0" 
48 
0 

= 48*. 



20 2 Preliminary Linear Algebra 

Proposition 2.2.8 Suppose {vi,v2,. ..,vn} and {wi, w2, • • •, wn} are both 
bases for the vector space V, and let v € V, v = Y^lxivi ~ J2"yjwj- V 
Vj = ]T™ SijWi, then yt = YJl sijxj-

Proof. 

y ] XjVj - ] P ^2 XjSijWi is equal to ] P y{Wi J ^ ^ SijXjWi. • 
j i i i i j 

Proposition 2.2.9 Let A : V ^ V. Let Av be the matrix form of the 
transformation with respect to basis {vi,v2,. •. ,vn) and Aw be the matrix 
form of the transformation with respect to basis {wi,W2,.-.,wn}. Assume 
that Vj = J2i sijwj- Then, 

Proof. Let v € V, v — J2xjvj- ^x g i y e s the coefficients with respect to w's, 
then AwSx yields the coefficients of Av with respect to original w's, and fi­
nally S~1AwSx gives the coefficients of Av with respect to original u's. 0 

Remark 2.2.10 Suppose that we are solving the system Ax = b. The most 
appropriate form of A is In so that x = b. The next simplest form is when 
A is diagonal, consequently Xi = £-. In addition, upper-triangular, lower-
triangular and block-diagonal forms for A yield easy ways to solve for x. One 
of the main aims in applied linear algebra is to find a suitable basis so that 
the resultant coefficient matrix Av = 5_1>l l„5 has such a simple form. 

2.3 Systems of Linear Equations 

2.3.1 Gaussian elimination 

Let us take a system of linear m equations with n unknowns Ax 
particular, 

2u + v + w— 1 
4u + v=-2 <& 

-2u + 2v + w= 7 

Let us apply some elementary row operations: 

51. Subtract 2 times the first equation from the second, 
52. Subtract —1 times the first equation from the third, 
53. Subtract —3 times the second equation from the third. 

= b. In 

" 2 1 1 " 
4 10 

- 2 2 1 

u 
V 

w 
= 

r - 2 
7 

The result is an equivalent but simpler system, Ux 
triangular: 

c where U is upper-

"2 1 1" 
0 - 1 - 2 
0 0 - 4 

u 
V 

w 
= 

1" 
- 4 
- 4 
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Definition 2.3.1 A matrix U (L) is upper(lower)-triangular if all the entries 
below (above) the main diagonal are zero. A matrix D is called diagonal if all 
the entries except the main diagonal are zero. 

Remark 2.3.2 / / the coefficient matrix of a linear system of equations is 
either upper or lower triangular, then the solution can be characterized by 
backward or forward substitution. If it is diagonal, the solution is obtained 
immediately. 

Let us name the matrix that accomplishes SI (£21), subtracting twice the 
first row from the second to produce zero in entry (2,1) of the new coefficient 
matrix, which is a modified J3 such that its (2,l)st entry is - 2 . Similarly, 
the elimination steps S2 and S3 can be described by means of £31 and £32, 
respectively. 

£• 21 

1 0 0 " 
2 10 
0 0 1 

, £31 — 
"100" 
0 10 
1 0 1 

, £32 — 
1 0 0 
0 1 0 
0 3 1 

These are called elementary matrices. Consequently, 

E32E31E21A = U and £3 2£3i£2ib = c, 

where £32 £31 £21 = is lower triangular. If we undo the steps of 
1 0 0 " 

- 2 10 
- 5 3 1_ 

Gaussian elimination through which we try to obtain an upper-triangular 
system Ux = c to reach the solution for the system Ax = b, we have 

A - #32 -^31 E2\ U : LU, 

where 

p—1171—1171—1 
•^21 ^ 3 1 -^32 

" 1 0 0 " 
2 1 0 
0 0 1 

1 0 0 ' 
0 10 

- 1 0 1 

' 1 0 0 ' 
0 10 
0 3 1 

= 
1 0 0 
2 10 

-1 - 3 1 

is again lower-triangular. Observe that the entries below the diagonal are ex­
actly the multipliers 2 , - 1 , and - 3 used in the elimination steps. We term L 
as the matrix form of the Gaussian elimination. Moreover, we have Lc = b. 
Hence, we have proven the following proposition that summarizes the Gaus­
sian elimination or triangular factorization. 

Proposition 2.3.3 As long as pivots are nonzero, the square matrix A can 
be written as the product LU of a lower triangular matrix L and an upper 
triangular matrix U. The entries of L on the main diagonal are Is; below the 
main diagonal, there are the multipliers Uj indicating how many times of row j 
is subtracted from row i during elimination. U is the coefficient matrix, which 
appears after elimination and before back-substitution; its diagonal entries are 
the pivots. 
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In order to solve x = A~~xb — U~1c = U~1L~1b we never compute inverses 
that would take n3-many steps. Instead, we first determine c by forward-
substitution from Lc = b, then find x by backward-substitution from Ux = c. 
This takes a total of n2 operations. Here is our example, 

1 
2 
1 

0 0 
10 

- 3 1 

C\ 

Cl 

cz 
= 

1 
- 2 

7 
=» 

C\ 

C2 

C3 

= 

1 
- 4 
- 4 

2 1 1 
0 - 1 - 2 
0 0 - 4 

Z l 

X2 

xz 
= 

1 
- 4 
- 4 

=> 
xx 

Z2 

2 3 

= 

- 1 
2 
1 

Remark 2.3.4 Once factors U and L have been computed, the solution x' 
for any new right hand side b' can be found in the similar manner in only n2 

operations. For instance 

b' = 

Remark 2.3.5 We can factor out a diagonal matrix D from U that contains 
pivots, as illustrated below. 

8 
11 
3 

=» 
c\ 
c'i 

4 
= 

8 
- 5 
- 4 

=> 
x\ 
x2 
x3 

= 
2 
3 
1 

u 

di 
d2 

d„ 

I "12 "13 . . , 
d\ di 
1 H2a . . . 
1 d2 

d2 

1 

Consequently, we have A = LDU, where L is lower triangular with Is on the 
main diagonal, U is upper diagonal with Is on the main diagonal and D is 
the diagonal matrix of pivots. LDU factorization is uniquely determined. 

Remark 2.3.6 What if we come across a zero pivot? We have two possibil­
ities: 

Case (i) If there is a nonzero entry below the pivot element in the same col­
umn: 
We interchange rows. For instance, if we are faced with 

"0 2" 
3 4 

u 
V 

- V 

0 1 
_10_ 

represents the exchange. A permutation matrix P^i is the modified identity 

we will interchange row 1 and 2. The permutation matrix, P\2 
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matrix of the same order whose rows k and I are interchanged. Note that 
Pki — P[^ (exercise!). In summary, we have 

PA = LDU. 

Case (ii) If the pivot column is entirely zero below the pivot entry: 
The current matrix (so was A) is singular. Thus, the factorization is lost. 

2.3.2 Gauss-Jordan method for inverses 

Definition 2.3.7 The left (right) inverse B of A exists ifBA = I (AB = I). 

Proposition 2.3.8 BA = I and AC = I <£> B = C. 

Proof. B(AC) = (BA)C &BI = IC&B = C. O 

Proposition 2.3.9 If A and B are invertible, so is AB. 

(AB)'1 = B-1A~1. 

Proof. 

(AB^B^A-1) = AiBB-^A'1 = AIA'1 = AA~X = I. 

(B^A-^AB = B~l{A~lA)B = B^IB = B~XB = 7. • 

Remark 2.3.10 Let A = LDU. A-1 = U^D^L-1 is never computed. If 
we consider AA_1 — I, one column at a time, we have AXJ = ej,Vj. When 
we carry out elimination in such n equations simultaneously, we will follow 
the Gauss-Jordan method. 

Example 2.3.11 In our example instance, 

[A\eie2e3] = 
" 2 1 1 

4 1 0 
- 2 2 1 

10 0" 
0 1 0 
0 0 1 

- > • 

"2 1 1 
0 - 1 - 2 
0 3 2 

1 0 0 ' 
- 2 10 

1 0 1 

-» 
"2 1 1 
0 - 1 - 2 
0 0 - 4 

1 0 0 " 
- 2 10 
- 5 3 1 

= \U\L-1] 

1 0 0| 

o i o j 
OOl l 

1 I _ I 
8 8 8 
k k k 
2 2 2 
5 _ 3 _ I 
4 4 4 

= m^1] 
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2.3.3 The most general case 

In this subsection, we are going to concentrate on the equation system, Ax = b, 
where we have n unknowns and m equations. 

Axiom 2.3.12 The system Ax = b is solvable if and only if the vector b 
can be expressed as the linear combination of the columns of A (lies in 
Spanfcolumns of A] or geometrically lies in the subspace defined by columns 
of A). 

Definition 2.3.13 The set of non-trivial solutions x ^ 8 to the homogeneous 
system Ax = 8 is itself a vector space called the null space of A, denoted by 

Remark 2.3.14 All the possible cases in the solution of the simple scalar 
equation ax = /? are below: 

• a 7̂  0: V/3 e R, 3a; = £ € K (nonsingular case), 
• a = (3 = 0: Vx € R are the solutions (undetermined case), 
• a — 0, (3 ^ 0: there is no solution (inconsistent case). 

Let us consider a possible LU decomposition of a given A 6 fl£»™xn with 
the help of the following example: 

U. 

The final form of U is upper-trapezoidal. 

Definition 2.3.15 An upper-triangular (lower-triangular) rectangular ma­
trix U is called upper- (lower-)trapezoidal if all the nonzero entries Uij lie on 
and above (below) the main diagonal, i < j (i > j). An upper-trapezoidal 
matrices has the following "echelon" form: 

1 332" 
2 695 
1-330 

-» 
"1332' 
0031 
0062 

-> 
"1332" 
0031 
0000 

© 
~ol© 

0 * * * * * 
© * 

0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

In order to obtain such an U, we may need row interchanges, which would 
introduce a permutation matrix P. Thus, we have the following theorem. 

Theorem 2.3.16 For any A 6 R m x n , there is a permutation matrix P, a 
lower-triangular matrix L, and an upper-trapezoidal matrix U such that PA = 
LU. 
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Definition 2.3.17 In any system Ax = b <£> Ux = c, we can partition the 
unknowns Xi as basic (dependent) variables those that correspond to a column 
with a nonzero pivot 0 , and free (nonbasic,independent) variables correspond­
ing to columns without pivots. 

We can state all the possible cases for Ax = b as we did in the previous 
remark without any proof. 

Theorem 2.3.18 Suppose the m by n matrix A is reduced by elementary row 
operations and row exchanges to a matrix U in echelon form. Let there be r 
nonzero pivots; the last m — r rows of U are zero. Then, there will be r basic 
variables and n — r free variables as independent parameters. The null space, 
Af(A), composed of the solutions to Ax = 8, has n — r free variables. 

If n — r, then null space contains only x = 6. 
Solutions exist for every b if and only if r = m (U has no zero rows), and 

Ux = c can be solved by back-substitution. 
If r < m, U will have m — r zero rows. If one particular solution x to 

the first r equations of Ux = c (hence to Ax = b) exists, then x + ax, \/x G 
Af(A) \ {6} , Va S R is also a solution. 

Definition 2.3.19 The number r is called the rank of A. 

2.4 The four fundamental subspaces 

Remark 2.4.1 If we rearrange the columns of A so that all basic columns 
containing pivots are listed first, we will have the following partition of U: 

A = [B\N] -> U = 
UB\UN 

o -^v = 
Ir\VN 

o 
where B € Rm*r, N € M™x("-'-)j \jB <= Rrxr^ Uff £ Rrx(n-r)> o is an 

(m-r) x n matrix of zeros, VN £ K r x ( n - r >, and Ir is the identity matrix of 
order r. UB is upper-triangular, thus non-singular. 

If we continue from U and use elementary row operations to obtain Ir in 
the UB part, like in the Gauss-Jordan method, we will arrive at the reduced 
row echelon form V. 

2.4.1 The row space of A 

Definition 2.4.2 The row space of A is the space spanned by rows of A. It 
is denoted by 1Z(AT). 

Tl(AT) = Spandat}^) =lyeRm:y = f > a < j 

= {d G Rm : 3y € Rm 9 yTA = dT) . 
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Proposition 2.4.3 The row space of A has the same dimension r as the row 
space of U and the row space of V. They have the same basis, and thus, all 
the row spaces are the same. 

Proof. Each elementary row operation leaves the row space unchanged. • 

2.4.2 The column space of A 

Definition 2.4.4 The column space of A is the space spanned by the columns 
of A. It is denoted by H(A). 

71(A) = Span {a^}n
j=1 = \y € R" : y = ^ / 3 , - a ' 

= {b e Rn : 3x E R" 3 Ax = b} . 

Proposition 2.4.5 The dimension of column space of A equals the rank r, 
which is also equal to the dimension of the row space of A. The number of 
independent columns equals the number of independent rows. A basis for 71(A) 
is formed by the columns of B. 

Definition 2.4.6 The rank is the dimension of the row space or the column 
space. 

2.4.3 The null space (kernel) of A 

Proposition 2.4.7 

N(A) = {x G Rn : Ax = 0(Ux = 6,Vx = 9)} = Af(U) = tf(V). 

Proposition 2.4.8 The dimension of J\f(A) is n — r, and a base for Af(A) 
\ -VN~ 

is the columns ofT = 

Proof. 

In-

The columns of T 

Ax = 6 «• Ux = 0 <£• Vx - 6 «• xB + VNxN = 0. 

-VN~ 
*n—r 

is linearly independent because of the last (n — r) 

coefficients. Is their span Af(A)? 

Let y = EjajTi, Ay = £ , - « ; ( - * # + V&) = 6. Thus, Span{{Ti}nZD Q 

M{A). Is Span({Ti}n
=l) DM(A)1 Let x XB 

Ax - 6 <& xB + VNXN = 8 <̂> x = xB 

xN 

XN 

~-VN 

*n — r 

eM{A). Then, 

xN G Span({Ti}".:;) 

Thus, Span({Ti}n
=l)DAf(A). D 
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2.4.4 The left null space of A 

Definition 2.4.9 The subspace of Rm that consists of those vectors y such 
that yTA = 6 is known as the left null space of A. 

M(AT) = { ! / eR m : yTA = 9} . 

Proposition 2.4.10 The left null space M{AT) is of dimension m - r, where 
the basis vectors are the lastm-r rows ofL~xP of PA = LU orL~lPA = U. 

Proof. 

Then, (L _ 1P) 

SUA = 6. • 

A = [A\Im] - • V •• 
Ir\VN 

o 
L~lP 

Si 
Sn 

where Sn is the last m - r rows of L lP. Then 

Fig. 2.2. The four fundamental subspaces defined by A G 

2.4.5 The Fundamental Theorem of Linear Algebra 

Theorem 2.4.11 TZ(AT)= row space of A with dimension r; 
N{A)= null space of A with dimension n — r; 
11(A) = column space of A with dimension r; 
Af(AT)— left null space of A with dimension m — r; 

Remark 2.4.12 From this point onwards, we are going to assume that n> m 
unless otherwise indicated. 
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Problems 

2.1. Graph spaces 

Definition 2.4.13 Let GF(2) be the field with + and x (addition and multi­
plication modulo 2 on I?) 

0 1 
0 1 
10 

and 
0 1 
0 0 
0 1 

Fig. 2.3. The graph in Problem 2.1 

Consider the node-edge incident matrix of the given graph G = (V, E) 
over G,F(2), A G RII^HXIISH: 

a 
b 
c 

A= d 
e 
f 
9 
h 

12 3456 789 10 11 12 13 
1 10000000 0 0 0 0 
100000001 0 0 0 0 
01 1000000 0 0 0 0 
0011000010 0 0 0 
0001 10000 1 0 0 0 
00001 1000 0 0 1 1 
000001 1 0 0 0 1 0 0 
000000010 1 1 0 1 
0000001100 0 1 0 

The addition + operator helps to point out the end points of the path 
formed by the added edges. For instance, if we add the first and ninth columns 
of A, we will have [1,0,0,1,0,0,0,0,0]T , which indicates the end points (nodes 
a and d) of the path formed by edges one and nine. 

(a) Find the reduced row echelon form of A working over GF(2). Interpret 
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the meaning of the bases. 

(b) Let T = {1,2,3,4,5,6,7,8} and Tx = E \ T = {9,10,11,12,13}. 

Let A = ® . Let Z - [h\N]. For each row, zt,i € T, color the edges 

with non-zero entries. Interpret z, 
(c) Let y = , . For each column yj, j £TX, color the edges with non-zero 

entries. Interpret j / j . 
(d) Find a basis for the four fundamental subspaces related with A. 

2.2. Derivative of a polynomial 

Let us concentrate on a (n - k + 1) x (n + 1) real valued matrix A(n, k) 
that represents "taking kth derivative of nth order polynomial" 

P(t) =a0 + ait + --- + a„tn. 

(a) Let n = 5 and k = 2. Characterize bases for the four fundamental sub-
spaces related with .4(5,2). 
(b) Find bases for and the dimensions of the four fundamental subspaces re­
lated with A(n, k). 
(c) Find B(n, k), the right inverse of A(n, k). Characterize the meaning of the 
underlying transformation and the four fundamental subspaces. 

2.3. As in Example 2.1.12, let Y = {2/j}™=1 be defined as 

yf = ( 0 , - " 0 , - l , l , 0 , - - - , 0 ) , 

the vector that contains -1 in ith position, 1 in (i + l)st position, and 0s else­
where. Let A = [2/1I2/2I • • • \yn]- Characterize the four fundamental subspaces 
of A 
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