
2

A Java Client for MDSplus

This book assumes that you, our readers, have had an introductory-level expe-
rience with Java programming. You should have written some Java classes and
methods and you should have built up a small, multi-class system. The next
few sections of this chapter are intended as a revision of the parts of the Java
language, and API, that you need in order to write client/server programs:
specifically Java’s input/output framework including sockets. Following this,
we will briefly discuss exception handling and threading and then we will start
to build a program which can interact with an MDSplus server. This program
will build on itself to eventually become our prototype EScope application.
We will call its various versions “PreEScope” to distinguish them from the
EScope versions which we will develop through the successive application of
design patterns.

The Java input/output (IO) framework makes it possible to get data from
a server over a network in a completely analogous way to reading it from a
file on your local disk. So we will start out by looking at Java IO in general
and we will do this using an example.

2.1 An Example: SimplePlot

The code in Listing 2.1 reads in two arrays, of X and Y data, and then calls
a static method of a Plotter class to plot the graph. This example and its
data files are available on the CD provided with this book (as are all of the
other examples). You can compile and run it providing its class file is located
in the same directory as the data files.

For the moment, we are not concerned with the details of the plotting
method or about the details of the data itself. We just observe that this
program opens up two files called “data xVals” and “data yVals”. These
files contain binary data; you cannot list them at a terminal but you can read
them into your Java program using classes from the java.io package. The
files each contain an int (giving the length of the data array) followed by

16 2 A Java Client for MDSplus

an array of double data. The example foreshadows the way that EScope will
eventually work!

Listing 2.1. SimplePlot reads binary data and constructs an XY plot.

import j a v a . i o . ∗ ;
/∗ ∗ Read data from 2 b i n a r y f i l e s and c a l l P l o t t e r . p l o t ∗/
pub l i c c l a s s S imp l eP l o t
{

pub l i c s t a t i c vo id main (S t r i n g [] a r g s)
{

double [] xVa l s=nu l l , yVa l s=nu l l ;
i n t xLen=0, yLen=0;
t r y
{ // read Y v a l u e s from f i r s t f i l e

F i l e f 1 = new F i l e (” da t a yVa l s ”) ;
Data InputStream in1 =

new DataInputStream (
new Bu f f e r ed I npu tS t r e am (
new F i l e I n pu tS t r e am (f1))) ;

yLen = in1 . r e a d I n t () ;
yVa l s=new double [yLen] ;
f o r (i n t i = 0 ; i < yLen ; i ++)
{

yVa l s [i] = i n1 . readDoub le () ;
}
// read X v a l u e s from second f i l e
F i l e f 2 = new F i l e (” da t a xVa l s ”) ;
Data InputStream in2 =

new DataInputStream (
new Bu f f e r ed I npu tS t r e am (
new F i l e I n pu tS t r e am (f2))) ;

xLen = in2 . r e a d I n t () ;
xVa l s=new double [xLen] ;
f o r (i n t i = 0 ; i < xLen ; i ++)
{

xVa l s [i] = i n2 . readDoub le () ;
}
i n 1 . c l o s e () ;
i n 2 . c l o s e () ;

}
catch (IOExcept i on e) { System . out . p r i n t l n (e) ; }
P l o t t e r . p l o t (xVals , yVals , ” t e s t ”) ;

}
}

2.2 Java IO 17

2.2 Java IO

Java “streams” are objects which deal with the flows of data into, and out of,
your program:

• “Input streams” get sequences of bytes from a “source” of data.
• “Output streams” send sequences of bytes to a “sink” of data.

Streams can transfer data to and from files, network connections and other
input/output devices as well as internal program variables.
To read data from a file we need to

• open the file as a FileInputStream
• apply some buffering to our stream using, for example, objects of type

BufferedInputStream
• call methods of a special “reader” object which can recognize specific

data types (for example, the DataInputStream methods readInt() and
readDouble() read and recognize int and double data respectively)

The complete “reader object” is constructed by “chaining together” the
opening, buffering and reading objects. The constructor of the reader ob-
ject accepts a buffering object which itself accepts an opening object in its
constructor. For example, in the following code excerpt from SimplePlot,
FileInputStream reads bytes from the file. BufferedInputStream buffers the
data so that not every read is associated with a disk access and DataInput-
Stream reads groups of bytes that are associated with the primitive data types:

F i l e f 2 = new F i l e (” da t a yVa l s ”) ;
Data InputStream in2 =

new DataInputStream (
new Bu f f e r ed I npu tS t r e am (
new F i l e I n pu tS t r e am (f2))) ;

Note that binary files can combine data of different types. In the example,
we read an int which let us know how many elements of a double array
remained to be read.

In addition to readInt() and readDouble(), DataInputStream has anal-
ogous methods to read all the primitive types as well as readUTF() which
returns a string. It can also read whole lines, read whole files and skip over
bytes of data.

The unusual pattern of constructing a DataInputStream object by feeding
it objects of the other classes is, in fact, a well-known design pattern known
as the decorator . We will return to it much later in this book in Chapter 11.
A schematic representation of the chaining involved in the pattern is shown
in Fig. 2.1.

2.2.1 A Remark on Exceptions

All of the file handling methods described above throw exceptions when un-
foreseen error conditions occur. For example, your code may attempt to read

18 2 A Java Client for MDSplus

DataInputStream BufferedInputStream FileInputStream

Fig. 2.1. Schematic representation of a DataInputStream object showing the chain-
ing to objects of type BufferedInputStream and FileInputStream.

data from a file which does not exist. The block of code which contains the
read method will stop executing and control will transfer to a appropriate
catch block. Java forces you to wrap methods which throw exceptions inside
try...catch blocks like the ones shown in the SimplePlot example. We will
discuss exception handling in Section 2.3.

2.2.2 Character-Based Text Streams

Byte streams are efficient ways of storing data but they are not readable by
humans! We can use text files to cope with this problem.

Using text files with Java programs creates another problem. Java uses
Unicode (2 byte) encoding which is not the usual operating-system default.
Unicode is designed to be compatible with all of the human-readable scripts
in the world so it contains additional storage requirements to the common,
ASCII, encoding.

A Java InputStreamReader object turns an input stream that is based
on an operating-system default into one that it based on Unicode. Like the
BufferedInputStream, it is constructed using the Decorator pattern. An ar-
gument of type FileInputStream is passed to the constructor:

InputSt reamReader i n =
new InputSt reamReader (new F i l e I n pu tS t r e am (” tex tData ”)) ;

Once you have created your InputStreamReader you can pass it to the
constructor of an object of the BufferedReader class which can read whole
lines of text and return them as strings:

Buf f e r edReade r i n1 = new Buf f e r edReade r (
new InputSt reamReader (
new F i l e I n pu tS t r e am (” tex tData ”)) ;

S t r i n g l i n e ;
whi le ((l i n e=in1 . r e adL i n e ()) != nu l l)
{

. . . .
}

Now that you have your data as a string, you might need to parse the
strings to convert them to other data types. For example,

double x = Double . pa r seDoub l e (l i n e)

2.2 Java IO 19

would be a valid way of parsing a line which contains just one double value.
Otherwise, if there are several numbers on any one line you could use a
java.util.StringTokenizer object to break up the line and then parse each
token separately.

2.2.3 Input from the Keyboard

As something of an aside, we remark on the way you used to have to read
input from your keyboard into a Java program. Although the procedure is
somewhat tedious and now unnecessary, it is interesting because of the neat
way that it fits in with the other Java IO examples shown here.

Before Java 1.5, you needed to be aware that the System class contains
a static field, System.in, which is an object of type InputStream. It also
has a static field, System.out, which is an object of type PrintStream.
InputStream objects have a method, read, which is able to read a single byte
at a time but it cannot read a line of text input (which is what you want to
do). In order to increase the functionality of System.in, it needs to be passed
to an InputStreamReader object which can read individual characters. This
InputStreamReader object then needs to be passed to a BufferedReader
object which has a readLine method to read entire lines at once.

This is how it works:

InputSt reamReader i sR e ad e r = new InputSt reamReader
(System . i n) ;

Bu f f e r edReade r bReader = new Buf f e r edReade r (i sR e ad e r) ;
System . out . p r i n t l n (‘ ‘What i s your name? ’ ’) ;
S t r i n g name = bReader . r e adL i n e () ;

Since Java 1.5, this has been greatly streamlined. There is a class java.-
util.Scanner which can be used to deliver string tokens corresponding to
successive lines of input typed at a console and this is how it works:

j a v a . u t i l . Scanner sc = new j a v a . u t i l . Scanner (System . i n) ;
System . out . p r i n t l n (‘ ‘What i s your name? ’ ’) ;
S t r i n g name = sc . nex t () ;

2.2.4 Writing Text Output

The PrintWriter class is often used for writing text to files:

P r i n tWr i t e r out = new P r i n tWr i t e r (
new OutputStreamWrite r (
new F i l eOutputSt r eam (” output . t x t ”))) ;

A PrintWriter object has print and println methods (just like System.-
out). It also has flush() and close() methods which are good to use to make
sure that the output buffers have been emptied. The PrintWriter construc-
tor can also be called with a second boolean argument set to true in order to
“autoflush” buffers.

20 2 A Java Client for MDSplus

Note that you can actually leave out the OutputStreamWriter because
PrintWriter adds one by default. (But, in contrast, BufferedReader must
have InputStreamReader in order to read in text data.) The three classes
are chained together using the decorator pattern just the same way as for the
InputStream example of Fig. 2.1.

2.2.5 Other Topics in IO

Java’s Input/Output framework has many other subtleties and features which
you can explore using Sun’s online Java tutorials and documentation and by
looking at good books. Some interesting ones are

• parsing strings
• reading from zip and jar compressed files
• reading from URL’s

2.3 Exception Handling

The sorts of exceptions that a programmer needs to handle using Java’s ex-
ception mechanism include

• user input errors,
• trying to read past the end of a file,
• trying to open a file which does not exist,
• trying to send data to a socket which has not been opened.

All of these problems occur when the behavior of the system, or a user, causes
an error condition to occur. These errors are quite different from programming
errors. As a pedagogical point, you should fix your bugs before your program
gets released. You should not use exceptions to deal with the existence of
possible programming bugs!

Exceptions are objects of classes which extend the Throwable class. You
can define your own exception classes. Java has an extensive hierarchy of
exception classes which you can read about as you need them.

Exceptions are thrown by methods and caught within the code bodies of
other methods: If method B throws an exception and it gets called by another
method, A, then method A must either

• throw the same exception as B, or
• the call to method B must take place inside a try ... catch block inside

method A.

In the SimplePlot example, all of the input-output calls are placed inside
one big try block in the calling method. Because all of the exceptions of the
java.io library are children of IOException, they end up being handled by
the one catch clause:

2.4 Sockets 21

catch (IOExcept i on e) { System . out . p r i n t l n (e) ; }

This catch clause simply printed out a string identifier of the offending
exception object. Using the parent IOException object is a very “coarse-
grained” way of catching IO exceptions. As an alternative, it is possible to
have a number of catch clauses following one try block. Any number of
exception subclasses of IOException could be identified one after another and
the program would be able to test each one and provide specialized handling
for each.

The Java exception-handling mechanism allows you to look at only the try
blocks to identify which parts of a method get executed if all goes well. This
is a great advantage over other languages where you need to “pollute” your
algorithms with “what if something bad happens here” types of statements
in order to deal with user or system errors.

If you want to throw an exception from your method, you add a throws
clause to the header such as

pub l i c vo id hand l e I npu t () throws IOExcept i on

You can keep throwing exceptions right up to a program’s main method.
If the main method throws an exception, then it gets handled by the Java
virtual machine.

There is also an optional finally clause which follows the catch clauses
in a method which handles exceptions. It contains a code block which gets
executed after all of the try, and possibly catch, clauses have been processed
(i.e. regardless of whether exceptions were generated during the processing of
the try block).

2.4 Sockets

A process is an active computer program on some computer somewhere in the
world. We are all familiar with personal computers which run many differ-
ent processes (your program, the desktop, a network connection, email...) at
the same time. Before the widespread use of parallel supercomputers, scien-
tific programming was concerned with single-process applications which solved
problems using a well-defined sequence of steps. On the other hand, much real-
time programming for data acquisition and experimental control has needed
to deal with concurrent processes which are active at the same time. Internet
programming has some similarities with real-time systems where the concur-
rent processes can be located on distant computers.

Concurrent processes on the same or different computers can communicate
using “sockets”. The Java model for sockets treats them in a very similar way
to files. Each socket can be associated with an input stream and an output
stream; when your program sends data to a socket’s output stream it looks
just like you are writing to a file. But, in reality, your data might be being
shipped all over the world. (The Java API also contains special classes for

22 2 A Java Client for MDSplus

communicating with web pages and you can even configure a Java program
to send people email.)

In order to establish a socket for communication to a remote server, a
Java program needs to know the Internet Protocol (IP) address, and the
port number, on the remote computer. Once your process (the “client”) has
connected to the server then both processes are, in some sense, locked together.

2.4.1 A Socket Example: Requesting Data from a Server

In the following listing SimplePlotClient sends requests for data over the
internet and then plots the data as before. SimplePlotClient uses the IP
“localhost” address of the present computer and the port number 8004 (port
numbers in the 8000’s are good ones to use for your networking experiments).
The requests are sent using a very simple “language” having only 3 commands.
Note that the server can accept these commands in any order.

YVALS Asks the server to return an int which gives the number of Y values.
This is followed by the array of y values.

XVALS Requests the array of X values in the same way as for the Y values.
CLOSE Closes the connection.

Listing 2.2. SimplePlotClient reads binary data from a socket and plots it.

import j a v a . i o . ∗ ;
import j a v a . net . ∗ ;
/∗ I n t e r a c t s w i th the s imp l e p l o t s e r v e r ∗/
pub l i c c l a s s S imp l eP l o tC l i e n t
{

pub l i c s t a t i c vo id main (S t r i n g [] a r g s)
{

double [] xVa l s=nu l l , yVa l s=nu l l ;
i n t xLen=0, yLen=0;

t r y
{

Socket s = new Socket (” l o c a l h o s t ” ,
8004) ;

P r i n tW r i t e r out =
new P r i n tWr i t e r (s . getOutputStream () , t rue) ;

Data InputStream i n = new DataInputStream (
new Bu f f e r ed I npu tS t r e am (

s . ge t I npu tS t r eam ())) ;
out . p r i n t l n (”YVALS”) ;
yLen = i n . r e a d I n t () ;
System . out . p r i n t l n (”yLen = ” + yLen) ;
yVa l s=new double [yLen] ;
f o r (i n t i = 0 ; i < yLen ; i ++)

2.4 Sockets 23

{
yVa l s [i] = i n . readDouble () ;
i f (i %100 == 0) System . out . p r i n t l n (yVa l s [i]) ;

}
out . p r i n t l n (”XVALS”) ;
xLen = i n . r e a d I n t () ;
System . out . p r i n t l n (”xLen = ” + xLen) ;
xVa l s=new double [xLen] ;
f o r (i n t i = 0 ; i < xLen ; i ++)
{

xVa l s [i] = i n . readDouble () ;
i f (i %100 == 0) System . out . p r i n t l n (xVa l s [i]) ;

}
out . p r i n t l n (”CLOSE”) ;
s . c l o s e () ;
P l o t t e r . p l o t (xVals , yVals , ” t e s t ”) ;

}
catch (IOExcept i on e) { System . out . p r i n t l n (e) ; }

}
}

Here is the corresponding server program to Listing 2.2. Look at the two
programs carefully and see how they correspond:

Listing 2.3. SimplePlotServer is the corresponding server class to
SimplePlotClient.

import j a v a . i o . ∗ ;
import j a v a . net . ∗ ;
pub l i c c l a s s S imp l eP l o t S e r v e r
{

pub l i c s t a t i c vo id main (S t r i n g [] a r g s)
{

S imp l eP l o t S e r v e r s = new S imp l eP l o t S e r v e r () ;
}
pub l i c S imp l eP l o t S e r v e r ()
{

double [] xVa l s=nu l l , yVa l s=nu l l ;
i n t xLen=0, yLen=0;
t r y
{

Se r v e rSo ck e t s = new Se r v e rSo ck e t (8004) ;
Socket conne c t i on = s . accep t () ;

Bu f f e r edReade r i n = new Buf f e r edReade r
(new InputSt reamReader (

c onne c t i on . ge t I npu tS t r eam ())) ;
DataOutputStream out =

new DataOutputStream (
new Buf fe redOutputSt ream (

24 2 A Java Client for MDSplus

conne c t i on . getOutputStream ())) ;
boolean done=f a l s e ;
whi le (! done)
{

S t r i n g l i n e = i n . r e adL i n e () ;
i f (l i n e==nu l l) done=t rue ;
e l s e
{

i f (l i n e . t r im () . e qu a l s (”YVALS”))
{ // Read data from f i l e

F i l e f 2 = new F i l e (” da t a yVa l s ”) ;
Data InputStream in2 =

new DataInputStream (
new Buf f e r ed I npu tS t r e am (
new F i l e I n pu tS t r e am (f2))) ;

yLen = in2 . r e a d I n t () ;
System . out . p r i n t l n (”yLen = ” + yLen) ;
yVa l s=new double [yLen] ;
f o r (i n t i = 0 ; i < yLen ; i ++)
{

yVa l s [i] = i n2 . readDoub le () ;
}
// Write data down the s o ck e t
out . w r i t e I n t (yLen) ;
f o r (i n t i = 0 ; i < yLen ; i ++)
{

out . w r i t eDoub l e (yVa l s [i]) ;
}
out . f l u s h () ;
i n 2 . c l o s e () ;

}
i f (l i n e . t r im () . e qu a l s (”XVALS”))
{ // Read data from f i l e

F i l e f 3 = new F i l e (” da t a xVa l s ”) ;
Data InputStream in3 =

new DataInputStream (
new Buf f e r ed I npu tS t r e am (
new F i l e I n pu tS t r e am (f3))) ;

xLen = in3 . r e a d I n t () ;
System . out . p r i n t l n (”xLen = ” + xLen) ;
xVa l s=new double [xLen] ;
f o r (i n t i = 0 ; i < xLen ; i ++)
{

xVa l s [i] = i n3 . readDoub le () ;
}
// Write data down the s o ck e t
out . w r i t e I n t (xLen) ;
f o r (i n t i = 0 ; i < xLen ; i ++)
{

2.5 Introduction to Threads 25

out . w r i t eDoub l e (xVa l s [i]) ;
}
out . f l u s h () ;
i n 3 . c l o s e () ;

}
i f (l i n e . t r im () . e qu a l s (”CLOSE”))

done = t rue ;
}

}
out . f l u s h () ;
c onne c t i on . c l o s e () ;

}
catch (IOExcept i on e)
{

System . out . p r i n t l n (
” E r r o r i n S imple P lo t S e r v e r ” + e) ;

}
System . e x i t (0) ;

}
}

2.5 Introduction to Threads

We will briefly consider the subject of threads in Java. This is so that you can
have a better idea of what the MDSPlus server is doing when it interacts with
multiple clients at the same time. The subject of threads in Java is important
and it can be quite complicated. This brief excursion into its territory might
be skipped over on a first reading of this book. Multi-threaded programs will
be the subject of Chapter 19.

Threads are like independent processes except that threads share the same
data context (memory space) of the program which started them. Threads are
easy to create and destroy and communication between threads is much easier
than between processes. They are, therefore, useful candidates for parallel
processing.

There are two ways to use threads in Java:

• to extend the Thread class, or
• to implement the Runnable interface.

The second method is available to you if the class you want to make into a
thread already extends another class.

To start a new thread, you can create an instance of a class which extends
Thread or implements Runnable. This class must have a run method. You
then start the run method with a call to start()! This very strange pattern
is because a distinction needs to be made between starting an independent

26 2 A Java Client for MDSplus

thread and making a direct call to run() which would start it in the same
thread as the caller.

2.5.1 Threaded Plot Server

Recall that our SimplePlotServer program of Sect. 2.4.1 had the following
lines:

Se r v e rSo ck e t s = new Se r v e rSo ck e t (8004) ;
Socket conne c t i on = s . accep t () ;

The server waits for a client to connect at the line s.accept. Once a client
has connected, input and output streams are allocated and the server listens
for a set of commands. In order to convert this program into a threaded plot
server, we can encapsulate the server logic in the run() method of a new class
which extends Thread and we spawn threads as follows:

t r y
{

Se r v e rSo ck e t s = new Se r v e rSo ck e t (8004) ;
do
{

Socket conne c t i on = s . accep t () ;
ThreadedPlotDataReader r e a d e r =

new ThreadedPlotDataReader (c onne c t i on) ;
r e a d e r . s t a r t () ;

}
whi le (t rue) ;

}

This server program now functions in an infinite loop and you will need
to crash it if you want it to stop! (Try typing Crtl-C.)

The SimplePlotThreadedServer class is shown below. You can test it out
by running several clients at the same time in several different shell windows
(remembering to crash the server when you have finished!) The mdsip simula-
tor program, described in Appendix A.1, on page 227, has a structure which
is very similar to SimplePlotThreadedServer.

Listing 2.4. Threaded version of a plot server.

import j a v a . i o . ∗ ;
import j a v a . net . ∗ ;
pub l i c c l a s s S imp l eP l o tTh r eadedSe r v e r
{

pub l i c s t a t i c vo id main (S t r i n g [] a r g s)
{

S imp l eP l o tTh r eadedSe r v e r s =
new S imp l eP l o tTh r eadedSe r v e r () ;

}
pub l i c S imp l eP l o tTh r eadedSe r v e r ()

2.5 Introduction to Threads 27

{
t r y
{

Se r v e rSo ck e t s = new Se r v e rSo ck e t (8004) ;
do
{

Socket conne c t i on = s . accep t () ;
ThreadedPlotDataReader r e a d e r =

new ThreadedPlotDataReader (c onne c t i on) ;
r e a d e r . s t a r t () ;

}
whi le (t rue) ;

}
catch (IOExcept i on e)
{

System . out . p r i n t l n
(” E r r o r i n S imp l eP l o tTh r eadedSe r v e r ” + e) ;

}
System . e x i t (0) ;

}
}
c l a s s ThreadedPlotDataReader extends Thread
{

Socket c onne c t i on ;
double [] xVa l s=nu l l , yVa l s=nu l l ;
i n t xLen=0, yLen=0;
pub l i c ThreadedPlotDataReader (Socket s)
{

t h i s . c onne c t i on = s ;
}
pub l i c vo id run ()
{

t r y
{

Buf f e r edReade r i n = new Buf f e r edReade r (
new InputSt reamReader (
c onne c t i on . ge t I npu tS t r eam ())) ;

DataOutputStream out =
new DataOutputStream (
new Buf fe redOutputSt ream (
conne c t i on . getOutputStream ())) ;

boolean done=f a l s e ;
whi le (! done)
{

S t r i n g l i n e = i n . r e adL i n e () ;
i f (l i n e==nu l l) done=t rue ;
e l s e
{

28 2 A Java Client for MDSplus

i f (l i n e . t r im () . e qu a l s (”YVALS”))

. // (same as S imp l eP l o t S e r v e r)

i f (l i n e . t r im () . e qu a l s (”CLOSE”))
done = t rue ;

}
}
out . f l u s h () ;
c onne c t i on . c l o s e () ;

}
catch (IOExcept i on e)
{

System . out . p r i n t l n (
” IO e r r o r i n ThreadedPlotDataReader ”) ;

}
}

}

2.6 A Java API for MDSplus

In order to make progress in constructing EScope, we will need to have a Ap-
plication Programming Interface (API) for accessing MDSplus. On the accom-
panying CD, we have provided three helper classes and one interface which will
be all that you need in order to download and visualize typical data entries.
Their full listings are provided in Appendix C. (These classes are a simplified
version of the Java tools provided with the full MDSplus package. We admit
that their structure is based on the historical development of MDSplus rather
than being excellent examples of object-oriented design!)

The helper classes comprise the following:

• MDSDescriptor is a class which stores and describes a single MDSplus
dataset. It contains a predefined set of constants which are used to flag
the type of data. It also contains the data array itself and a number of
methods for storing and accessing it. This class is a simplified version of the
information which is stored at every data-containing node in the MDSplus
tree. The beginning of this class is shown in Listing 2.5.

• MDSMessage is the class which negotiates remote access to MDSplus. Using
the mdsip protocol described in Section 2.7.1, string “messages”, which
consist of a packet of header information and an expression to be evaluated,
are sent to the server. The MDSplus server evaluates the expression and
the result is received by MDSMessage, decoded into a MDSDescriptor and
eventually returned to a client.

• MDSNetworkSource wraps up the negotiation with the MDSplus server into
high-level methods like connect, open, evaluate and so on. All a client

2.6 A Java API for MDSplus 29

program needs to know about are the method signatures for the some of
these methods, so it makes sense to have this class implement an interface,
MDSDataSource, which, in principle, is provided to the client software.

The way in which these classes work together is shown schematically in
Fig. 2.6. Because data is eventually returned to the client program wrapped
up in a MDSDescriptor, the client needs to know about this class as well as
the MDSDataSource interface. The meaning of the symbols in this figure will
be described later in this book.

The following sections will discuss further details of the data organization
and the remote-data-access protocol of MDSplus. Their aim is to more fully
motivate and describe the helper classes. If you have made a start reading
the MDSplus web-site then you might find this discussion useful. For many
readers, they can be skimmed over on a first pass (perhaps dwelling briefly
on the discussion of MDSNetworkSource in Section 2.7.3).

MDSDataSource

MDSNetworkSource

MDSDescriptor

MDSMessage

MDSplus

<<interface>>

Client

Fig. 2.2. Schematic representation of the helper classes MDSDescriptor,
MDSMessage, MDSNetworkSource and the interface MDSDataSource showing the way
in which they interact with a client class and the MDSplus database.

Listing 2.5. Part of the MDSDescriptor class used to hold data returned from
MDSplus.

/∗ ∗ Used to s t o r e the r e s pon s e from the MDSPlus s e r v e r ∗/
pub l i c c l a s s MDSDescriptor
{ // P r ed e f i n e d c on s t a n t s f l a g the type o f data :

pub l i c s t a t i c f i n a l byte MAX DIM = 8;
// s t r i n g or c h a r a c t e r data
pub l i c s t a t i c f i n a l byte DTYPE CSTRING = 14 ;

30 2 A Java Client for MDSplus

pub l i c s t a t i c f i n a l byte DTYPE CHAR = 6;
// i n t e g e r data
pub l i c s t a t i c f i n a l byte DTYPE BYTE = 2;
pub l i c s t a t i c f i n a l byte DTYPE SHORT = 7;

// (s h o r t i s c onve r t ed to i n t)
pub l i c s t a t i c f i n a l byte DTYPE INT = 8;
// f l o a t i n g po i n t data
pub l i c s t a t i c f i n a l byte DTYPE FLOAT = 10;

// (f l o a t i s c onve r t ed to doub le)
pub l i c s t a t i c f i n a l byte DTYPE DOUBLE = 11;
// uns i gned word
pub l i c s t a t i c f i n a l byte DTYPE WORDU = 3;

// (” u s i gned word ” i s conve r t ed to i n t)
// even t
pub l i c s t a t i c f i n a l byte DTYPE EVENT = 99;

// The f o l l o w i n g v a r i a b l e s s t o r e the data :
p r i v a t e byte d e s c r i p t o rTyp e ;

p r i v a t e byte byteData [] ;
p r i v a t e i n t i n tData [] ;

p r i v a t e double doubleData [] ;

p r i v a t e S t r i n g charData ;
p r i v a t e S t r i n g c s t r i n gDa t a ;
p r i v a t e S t r i n g eventData ;
. . . .

}

2.7 The Data Organization of MDSplus

In this section we will briefly discuss the structure of the MDSplus database as
well as the APIs for accessing and manipulating data. Readers may also wish
to consult Appendix A for more information about installing and running
MDSplus.

MDSplus assumes that the top level description of data is that of an “ex-
periment”. Experiments can be defined in the database to be comprised of a
number of files corresponding to data recorded from physical diagnostics and
control parameters. This files are arranged in a tree hierarchy which is some-
thing which suits fusion experiments which have a large number of diagnostics
concerned with notions such as “radio-frequency power”, “neutral-beam injec-
tion”, “coil currents”, “spectroscopy” and so on. A physical diagnostic within
one of these categories might measure a number of signals so it is easy to
imagine that a tree structure for the entire database would be 3 or 4 levels
deep.

2.7 The Data Organization of MDSplus 31

Each data record for an MDSplus experiment is given the name of a “shot”
or “pulse”. This is the popular jargon for a single plasma discharge: the ionized
gas is pumped into the chamber, the magnetic coils are energized and the gas is
heated to temperatures approaching those of the sun. Many diagnostics collect
megabytes of data over periods of time ranging from some tens of milliseconds
to several seconds. Many shots are taken during one experimental campaign.

Every dataset in an MDSplus experiment is identified by its path inside
the tree structure. For example
.OPERATIONS : I FAULT

specifies the i fault (fault current) dataset which sits under the operations
sub-tree (of the h1data experiment) Note that MDSplus names are case-
insensitive and they begin with either a “.” or a “:”. It is also possible to
associate a unique name, called a tag, with a dataset in order to simplify
identification. Tags are a convenience mechanism and are often defined for
the most frequently-accessed data, such as significant experimental results.

In MDSplus trees the leaves typically store data and internal nodes are
typically used to specify the hierarchy without storing data. A dataset may
specify a variety of information, ranging from string expressions to scalar val-
ues to scalar arrays to arrays composed of a sequence of pairs (with each pair
describing a physical measurement and the sampling time). A data descriptor
is associated with every data item in an MDSplus experiment and contains the
definition of the the data type, its dimension and other information.

As mentioned above, EScope uses a simplified data interface to MDSplus
and handles a subset of the MDSplus data types. Because, in EScope, we will
be interested only in those data items which describe the evolution of some
quantity over time, we will only need to handle arrays of data values and
strings to describe data and error messages.

It often happens that a scientific user is not interested in a simple data
item but, rather, in a combination of different items. For example, it might
be the case that a user requires the values of one dataset to be scaled or offset
by another: a data reference in a shot file my data might need to be processed
as
my data ga in ∗ (2 . 3 ∗ my data) − my da t a o f f s e t

For this reason, data access in MDSplus is, in general, carried out by provid-
ing generic expression evaluations. A specialized language, TDI (“Tree Data
Interface”), is provided for this purpose. Expressions may also specify that a
specific user-supplied analysis program gets executed at the time the expres-
sion is evaluated.

A detailed description of the TDI expression syntax is outside the scope of
this book but it is important to realize that every data access in MDSplus cor-
responds to the evaluation of some kind of expression. The methods provided
in the helper classes therefore define a string input argument representing the
expression to be evaluated (possibly a simple reference to a data item) and
return a descriptor object which describes the result of the evaluation.

32 2 A Java Client for MDSplus

2.7.1 The mdsip Protocol for Remote Data Access

The following discussion of the mdsip protocol for remote access to MDSplus
can be skipped or skimmed on a first reading. It complements the discussion
of mdsip in Appendix A.

Many modern database systems provide for remote data access, i.e. ac-
cessing the database from a machine which is different from that hosting the
database itself over a network connection. Remote data access requires the
following components:

• A database server, i.e. an application running on the machine hosting the
database and accessing data on behalf of the client currently requesting
the data.

• A client API, usually implemented as a library. The definitions of the meth-
ods defined in the API are usually close to the methods defined for local
database access. The implementation of these methods handle network
communication with the database server. Typically, a client application
first connects to a database server. The established network connection
remains active until the client disconnects from the database server or
exits.

• A network protocol for data exchange. The client and the server need to
communicate properly. Most database applications use the TCP/IP proto-
col for communication. TCP/IP allows the establishment of a connection,
and reliable communication over it. Using a network protocol which guar-
antees reliable communication has the advantage that the code that han-
dles the client-server communication does not need to handle the many
problems which arise in network communication such as loss of data or
the corruption of data packets. It is, nevertheless, necessary to build an
application-specific protocol over the network layer.

The remote-data-access layer of MDSplus defines its own protocol over
TCP/IP, called mdsip. In a data-access transaction, the client sends a string
specifying the expression to be evaluated and the mdsip server returns the
result of the evaluation. As different kinds of data can be returned by ex-
pression evaluations, mdsip specifies the transmission of a descriptive header,
followed by the data itself. The client can handle the reception of a different
number of bytes because this information is available after the fixed-length
header has been received. (In TCP/IP it is necessary to know the number of
bytes being received in advance since this information is not provided by the
network layer.)

The MDSMessage class, defines all the information required for sending an
expression as a string to the server and retrieving the result of the evaluation.
The “packet” exchanged via TCP/IP with MDSplus contains the following
information:

• msglen: the total length of the message in bytes.

2.7 The Data Organization of MDSplus 33

• status: the status of the expression evaluation. This field is valid only
when the message carries the result of the expression evaluation, i.e. when
it is transmitted by the MDSplus server back to the client.

• length: the length in bytes of the data field included in the message. The
total length of the message is, therefore, the sum of the data length and
of the length of the associated header (which is 48 bytes).

• nargs: the number of arguments. The expressions being evaluated are de-
scribed as strings, but it is possible to define additional arguments, which
are sent by the client to the server and then used in the expression eval-
uation. This feature is useful, for example, when the mdsip protocol is
used for application servers in which powerful computers are used to run
simulation codes to model experimental results. In this case the expression
being evaluated can invoke a separate simulation program. It is interesting
to observe that the syntax can generalize to cases where the arguments
might contain a huge string of data values: The arguments can be identi-
fied in the expression by the symbols $1, $2, ..$n, and the message will be
followed by other messages containing a binary encoding of the arguments.
This is beyond the scope of this book.

• descr idx: the “descriptor index”. As noted above, when arguments are
defined in the expression to be evaluated, more mdsip messages may need
to be sent by the client. The server knows the number of arguments it is
going to receive after receiving the fist message. The descr idx labels the
subsequent arguments. This is beyond the scope of this book.

• dtype: the type of the data associated with this message. In EScope
only string messages will be sent to the server so dtype will always be
DTYPE CSTRING. On return from the server, dtype can take the range of
values shown in the MDSDescriptor class.

• client type: the “type” of the client computer. This is to register the “en-
dianness” and IEEE floating point encoding of the client computer with the
mdsip server. Because the byte order of data storage varies between com-
puter manufacturers, it may be the case that bytes transmitted in “big en-
dian” format over a network need to be “swapped” for the client machine.
When the mdsip server receives the client type flag, it decides whether
to swap bytes for transmitting the result of the expression evaluation. At
the time of writing, mdsip violates the convention that data transmission
over TCP/IP should be big endian. Instead it determines the endian type
of the client machine and modifies the data accordingly. This may result in
an efficiency gain under some circumstances. (The client type flag also
determines whether any translation of floating point format needs to be
done before transmission of data by the server. We shall hide its complex-
ities inside the MDSMessage class and forget about it. Such is the situation
with some real-world case studies!)

• msgid: an identifier for the message which is copied by the MDSplus server
onto its reply. This identifier can be used to label messages in, for example,
situations where a threaded client might be making several requests in

34 2 A Java Client for MDSplus

different threads, possibly with several mdsip servers. In this case the
msgid field can be used to properly associate answer with requests.

• ndims: the number of dimensions in an array of binary data. We will not
make use of this field in our EScope case study as we will only be concerned
with one-dimensional arrays.

• dimensions: a fixed size array of integers specifying each dimension (up to
eight dimensions). This field and the the previous one are used to handle
multidimensional data, serialized in row-first order in the associated data
buffer. Once again, this will not be relevant to our EScope.

• body: the data buffer containing serialized data. The reconstruction of
the transmitted data from the content of this buffer is unambiguous when
combined with the contents of the mdsip header (particularly dtype, ndims
and dimensions).

2.7.2 Operation of MDSMessage

The above variables define the mdsip protocol, being the set of rules the
client and server must adhere to to communicate unambiguously. The con-
structor of MDSMessage, shown in Appendix C.4, accepts a string argument
and constructs a mdsip header corresponding to a request to evaluate the ex-
pression corresponding to this argument. The method send() had an instance
of DataOutputStream as its argument. Using a Java DataOutputStream for
sending messages, and a DataInputStream for message reception, simpli-
fies the serialization process because DataOutputStream provides the cor-
rect serialization in its write... methods. The mdsip protocol defines twos-
complement and IEEE 754 formats to serialize integer and float numbers,
respectively. These formats are supported by the DataInputStream and
DataOutputStream classes in their write.. and read.. methods.

By way of illustration, the MDSMessage method receive(DataInput-
Stream s) reads the incoming mdsip message from the DataInputStream
instance “s” and performs the following steps:

1. Fill in the MDSMessage fields from the fixed length header. This operation
is done in two steps: first a fixed-length byte array corresponding to the
bytes of the message header is read from the input stream. Then the
desired fields are retrieved, using the support methods byteArrayToInt,
byteArrayToShort and byteArrayToShort.

2. Read the rest of the message. When the header has been decoded, the
number of incoming bytes is known and it is possible to decode them
correctly, based on the knowledge of the data type and of the dimensions.

Once the incoming message has been decoded, the received data, converted
into Java data types, is returned by method receive. The result is encapsu-
lated into an instance of the MDSDescriptor class. This class describes a
generic scalar or array data item and resembles the descriptor structure de-
fined in MDSplus.

2.8 PreEScope0: A Program to Connect to MDSPlus 35

2.7.3 Operation of MDSNetworkSource

As we have just seen, MDSMessage is responsible for the proper management of
the mdsip network protocol once a proper network connection has been estab-
lished. Managing the connection to MDSplus is done by the MDSNetworkSource
class whose public interface has the following methods:

• connect(String serverAddrCPort): represents the first action carried
out to establish a connection. The string argument specifies the IP address
and the port number of the mdsip server (separated by a colon in the
string). The method establishes a socket and input and output streams as
we did in our earlier SimplePlotClient example.

• open(String experiment, int shot): opens the specified experiment
and shot database. This is done by sending a special expression
JAVAOPEN(experiment,shot) to MDSplus.

• evaluate(String expression) calls the MDSMessage send and receive
methods to evaluate the string expression in its argument. The result is
returned as a MDSDescriptor object.

• close() closes a currently opened shot database.
• disconnect() terminates a currently established network connection to

MDSplus.

At any time a connection to a mdsip server is in one of the following states:

• initial: no connection has been established.
• connected: a connection has been established, but no shot database has

been opened.
• open: a shot database is currently open.
• closed: a previously opened shot database has been closed and no other

database is now open.
• disconnected: a network connection to a mdsip server has been closed and

no other connection is currently active.

The behavior of the methods of MDSNetworkSource depends on the current
state of the connection. For example, the method evaluate can be success-
fully executed if and only if the connection is open. The implementation of
this method checks the status of flags isConnected and isOpen to determine
whether or not the expression can be sent. Exceptions are thrown if it can-
not be sent. We will return to the structure of this class as our case study
evolves.

2.8 PreEScope0: A Program to Connect to MDSPlus

We would like to propose that this section be accomplished as an exercise by
the reader. It is not “compulsory” and you could turn to Appendix D to find

36 2 A Java Client for MDSplus

the solution if you wished. But it is only a small step beyond what you have
learnt from the earlier examples in this chapter and you can use the supplied
helper classes to connect to the MDSplus database or to the simulator program
described in Appendix A.1.

The specifications of this program are as follows:

1. It will run in the command line and take four arguments: the server ad-
dress and port (in the form “address:portNo”), the name of the experi-
ment, the shot number and the name of a dataset to be downloaded.

2. After checking that the arguments have been supplied correctly, the pro-
gram will open a connection with the MDSplus database and download
the data corresponding to the particular dataset. One example dataset is
the “.operations:i fault” leaf node.

3. The X and Y data arrays of this dataset are then written to two binary
files data yVals and data xVals.

4. The Plotter.plot method will be called to plot the data.

Does this sound familiar? In fact, this program will set up the files that
you need to run SimplePlot. And you can run SimplePlot to test it out.

You can also try sending other commands to the MDSplus server and print-
ing out its response. For example

• Sending “10+2” should return the number “12”.
• Sending “units of(.operations:i fault)” should return a string

“Amps”.
• Other datasets such as .operations:diamag, can be downloaded, plot-

ted up and written to file.

2.9 Programming Exercises

The following exercises will help readers become familiar with the parts of the
Java API described in this chapter.

1. As well as the binary input classes, Java has a completely analogous set of
classes to output data to binary files. You can look these up in Sun’s Java
API documentation and then try modifying the SimplePlot program to
write out the data arrays into different files. You can then read the data
back in from these new files to make sure that they have been written
correctly. You could make this slightly more complicated by writing the
data into files in different directories on your computer.

2. You could now try to modify SimplePlot to read text data. Just type some
X and Y data into two text files using an editor. Calling your modified
SimplePlot will now construct an unlabelled line graph of the data you
typed! Modify the data to draw some interesting waveform shapes.

3. You could now write a program to solicit a number of (X,Y) data pairs
from a user and then plot them up.

2.10 Further Reading 37

4. If you have already converted SimplePlot to read text data, you will be
forced to handle NumberFormatExceptions when you convert this data to
Java primitive types. You might wish to practice catching these exceptions
and testing your program with good and bad data.

5. Download the SimplePlotServer examples from the CD to your com-
puter. You run them by starting the server from a different terminal win-
dow to the client or by running it in background from the same terminal
window. Play with the examples and verify that the commands can be
sent in a different order from the client to the server. You might then like
to set up your own client/server system using a simple language to talk
between them:

CLIENT: Hello

SERVER: Hello. I am a server. How can I help?

CLIENT: Time

SERVER: 1126870937252

6. The SimplePlotServer program exits if a client sends a CLOSE command
or a null line. You might think that it would handle multiple clients if it
were modified to have an infinite server loop. This turns out not to be
the case and, as described in the next section, you need to turn to Java
threads to build a true, multiple-client server.
Try out making the loop infinite by putting a line “done =false;” at
the end of the SimplePlotServer while-loop. If you start one client then
you will see the graph. If you start another client then you will not see
another graph and the client will hang. Remember to stop the server as
well, by crashing it, when you have finished with this exercise. (On Linux,
you can find the process number of the server by typing ps and looking
for java. You can “kill” this process by typing kill -9 followed by the
process number.)

2.10 Further Reading

Sun’s web documentation on the Java API [12] and Java Tutorial [13] are
book-marked by every Java programmer.

There are many Java programming texts which are suitable for background
reading about Java IO. We particularly acknowledge, and recommend, those
by Hunt ([14]), Horstmann ([15]) and Horstmann and Cornell ([16]).

