Preface

This book is written out of a tradition that places special emphasis on the
following three approaches to semantics:

— operational semantics,
— denotational semantics, and
— axiomatic semantics.

It is therefore beyond the scope of this introductory book to cover other ap-
proaches such as algebraic semantics, game semantics, and evolving algebras.

We strongly believe that semantics has an important role to play in the fu-
ture development of software systems and domain-specific languages (and hence
is not confined to the enormous task of specifying “real life” languages such
as C++, Java or C#). We have therefore found the need for an introductory
book that

— presents the fundamental ideas behind these approaches,

— stresses their relationship by formulating and proving the relevant theorems,
and

— illustrates the applications of semantics in computer science.

This is an ambitious goal for an introductory book, and to achieve it, the bulk
of the technical development concentrates on a rather small core language of
while-programs for which the three approaches are developed to roughly the
same level of sophistication; this should enable students to get a better grasp
of similarities and differences among the three approaches.

In our choice of applications, we have selected some of the historically
important application areas as well as some of the more promising candidates
for future applications:

vi Preface

Chapter 1

ter 2

ter 5

g

Chapter 7

ter 9

Chapter 10 Chapter 8

Chapter 11

— the use of semantics for validating prototype implementations of program-
ming languages;

— the use of semantics for verifying program analyses that are part of more
advanced implementations of programming languages;

— the use of semantics for verifying security analyses; and

— the use of semantics for verifying useful program properties, including infor-
mation about execution time.

Clearly this only serves as an appetizer to the fascinating area of “Semantics
with Applications”; some pointers for further reading are given in Chapter 11.

Overview. As is illustrated in the dependency diagram, Chapters 1, 2, 5, 9,
and 11 form the core of the book. Chapter 1 introduces the example language
While of while-programs that is used throughout the book. In Chapter 2
we cover two approaches to operational semantics, the natural semantics of

Preface vii

G. Kahn and the structural operational semantics of G. D. Plotkin. Chapter
5 develops the denotational semantics of D. Scott and C. Strachey, including
simple fixed point theory. Chapter 9 introduces program verification based on
operational and denotational semantics and goes on to present the azxiomatic
approach due to C. A. R. Hoare. Finally, Chapter 11 contains suggestions for
further reading. Chapters 2, 5, and 9 are devoted to the language While and
cover specification as well as theory; there is quite a bit of attention to the
proof techniques needed for proving the relevant theorems.

Chapters 3, 6, and 10 consider extensions of the approach by incorporat-
ing new descriptive techniques or new language constructs; in the interest of
breadth of coverage, the emphasis is on specification rather than theory. To be
specific, Chapter 3 considers extensions with abortion, non-determinism, par-
allelism, block constructs, dynamic and static procedures, and non-recursive
and recursive procedures. In Chapter 6 we consider static procedures that may
or may not be recursive and we show how to handle exceptions; that is, certain
kinds of jumps. Finally, in Section 10.1 we consider non-recursive and recursive
procedures and show how to deal with total correctness properties.

Chapters 4, 7, 8, and 10 cover the applications of operational, denotational,
and axiomatic semantics to the language While as developed in Chapters 2, 5,
and 9. In Chapter 4 we show how to prove the correctness of a simple compiler
using the operational semantics. In Chapter 7 we show how to specify and
prove the correctness of a program analysis for “Detection of Signs” using the
denotational semantics. Furthermore, in Chapter 8 we specify and prove the
correctness of a security analysis once more using the denotational semantics.
Finally, in Section 10.2 we extend the axiomatic approach so as to obtain
information about execution time.

Appendix A reviews the mathematical notation on which this book is based.
It is mostly standard notation, but some may find our use of — and ¢ non-
standard. We use D — FE for the set of partial functions from D to FE; this is
because we find that the D — E notation is too easily overlooked. Also, we
use R ¢ S for the composition of binary relations R and S. When dealing with
axiomatic semantics we use formulae { P } S { @ } for partial correctness
assertions but { P } S { | @ } for total correctness assertions, hoping that
the explicit occurrence of || (for termination) may prevent the student from
confusing the two systems.

Appendix B contains some fairly detailed results for calculating the number
of iterations of a functional before it stabilises and produces the least fixed
point. This applies to the functionals arising in the program analyses developed
in Chapters 7 and 8.

viii Preface

Notes for the instructor. The reader should preferably be acquainted with the
BNF style of specifying the syntax of programming languages and should be
familiar with most of the mathematical concepts surveyed in Appendix A.

We provide two kinds of exercises. One kind helps the student in understand-
ing the definitions, results, and techniques used in the text. In particular, there
are exercises that ask the student to prove auxiliary results needed for the main
results but then the proof techniques will be minor variations of those already
explained in the text. We have marked those exercises whose results are needed
later by “Essential”. The other kind of exercises are more challenging in that
they extend the development, for example by relating it to other approaches.
We use a star to mark the more difficult of these exercises. Exercises marked by
two stars are rather lengthy and may require insight not otherwise presented
in the book. It will not be necessary for students to attempt all the exercises,
but we do recommend that they read them and try to understand what the
exercises are about. For a list of misprints and supplementary material, please
consult the webpage http://www.imm.dtu.dk/~riis/SWA/swa.html.

Acknowledgments. This book grew out of our previous book Semantics with
Applications: A Formal Introduction [18] that was published by Wiley in 1992
and a note, Semantics with Applications: Model-Based Program Analysis, writ-
ten in 1996. Over the years, we have obtained many comments from colleagues
and students, and since we are constantly reminded that the material is still
in demand, we have taken this opportunity to rework the book. This includes
using shorter chapters and a different choice of security-related analyses. The
present version has benefitted from the comments of Henning Makholm.

Kongens Lyngby, Denmark, January 2007 Hanne Riis Nielson

Flemming Nielson

