
Preface

Materials that are either manufactured or occur in nature and used both in indus-
try and in our daily lives (metals, rocks, wood, soil, suspensions, and biological
tissue) are very seldom homogeneous, and have complicated internal structures.
Although the combination of two or more constituents to produce materials with
controlled distinguish properties has been exploited since at least ancient civi-
lization, modern composite materials were developed only a few decades ago and
have found intensive application in contemporary life and in all branches of in-
dustry. Establishment of a link between the structure and properties in order
to understand which kind of structure provides the necessary properties is an
objective of “micromechanics,” which exploits information about microtopology
and properties of constituents of the heterogeneous medium for development of
mathematical models predicting the macroproperties. The problem of microme-
chanical modeling of the mechanical properties of engineering materials is today
a crucial part of the design process, and sample testing is usually performed only
during the final stage for validation of the “virtual” design. An accuracy of the
classical “trial and error” testing method of the new materials and constructions
is no longer be affordable in modern industry and science.

Owing to wide applications of composite materials, their modeling has been
developed very intensively over recent decades, as reflected in the numerous
papers and books only partially presented in the reference section of this book.
A variety of materials and approaches appearing in apparently different contexts
and among different scientific disciplines (solid mechanics, geophysics, solid-state
physics, hydromechanics, biomechanics, chemical technology, etc.) do not allow
the opportunity to investigate adequately the whole field in a single book. In
light of this, I was challenged with a natural question as to why it was neces-
sary to write another book and what is the difference between this book and
the ones published earlier. In parallel with this book, there are a few fundamen-
tal books combining readily applicable results useful for material scientists with
a significant contribution to progress in theoretical research itself. However, a
fundamental difference of this book is a systematic analysis of statistical distri-
butions of local microfields rather than only effective properties based on the
average field concentrator factors inside the phases.
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The uniqueness of this book consists of the development and expressive rep-
resentation of statistical methods quantitatively describing random structures
which are most adopted for the subsequent evaluation of a wide variety of
macroscopic transport, electromagnetic, and elastic properties of heterogeneous
media. The popular methods in micromechanics are essentially one-particle ones
that are invariant with respect to statistical second and higher order quantities
examining the association of one particle relative to other particles. This book
expressively reflects the explosive progress of modern micromechanics resulting
from the development of image analyses and computer-simulation methods on
one hand and improved materials processing on the other hand, since processing
controls the prescribed microstructure. With the appearance of new experimental
techniques, it is now possible to study the microtopology of disordered materials
much more deeply to understand their properties. Modern techniques are also
available to design materials with morphological properties that are suitable
for planned applications. This progress in micromechanics is based on methods
allowing for statistical mechanics of a multiparticle system considering n-point
correlation functions and direct multiparticle interaction of inclusions, and the
book presents a universally rigorous scheme for both analyses of microstructures
and prediction of macroscopic properties which leaves room for correction of
their individual elements if improved methods are utilized for the analysis of
these individual elements. The book successfully combines advanced numerical
methods for the analysis of a finite number of interacting inhomogeneities in
either the bounded or unbounded domain with analytical methods.

It should be mentioned that there are two coupled classes of micromechan-
ical problems for which averaging is critical. Averaging is usually suitable for
predicting effective elastic properties. However, failure and elastoplastic defor-
mations will depend on specific details of the local stress fields when fluctua-
tion is important. In the framework of computational micromechanics in such
a case, one must check the specific observable stress fields for many large sys-
tem realizations of the microstructure with the use of an extremal statistical
technique. A more effective approach used in analytical mechanics is the esti-
mation of the statistical moments of the stress field at the interface between
the matrix and inhomogeneities. The inherent characteristics of this interface
are critical to understanding the failure mechanisms usually localized at the
interface. In the framework of a unique scheme of the proposed multiparticle
effective field method (MEFM), we attempted to analyze the wide class of sta-
tical and dynamical, local and nonlocal, linear and nonlinear micromechanical
problems of composite materials with deterministic (periodic and nonperiodic),
random (statistically homogeneous and inhomogeneous, so-called graded) and
mixed (periodic structures with random imperfections) structures in bounded
and unbounded domains, containing coated or uncoated inclusions of any shape
and orientation and subjected to coupled or uncoupled, homogeneous or inho-
mogeneous external fields of different physical natures.

I do not pretend to cover the whole field of micromechanics in this book
(restricted by my interests); there are many other topics in micromechanics,
of much industrial and scientific importance, that are either treated schemat-
ically or only mentioned. In particular, the homogenization theory of periodic
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structures, the geometrically nonlinear problems, flow in porous media, viscoelas-
ticity problems, and cross-property relations are not considered at all in this book
while stochastic geometry, variation methods, propagation of waves in compos-
ites, and multiscale discrete modeling are not treated in depth they deserve and
sometimes were only mentioned. Interested readers are referred to the references
cited in the appropriate sections to achieve a deeper understanding of these
topics. This book finalizes my research in micromechanics that began with the
papers published in 1986. It was written piece by piece at different times and in
different countries facing new challenging problems in micromechanics. The book
is suitable as a reference for researchers in different disciplines (applied mathe-
maticians; physicists; geophysicists; material scientists; and electrical, chemical,
civil, and mechanical engineers) working in micromechanics of heterogeneous
media and providing a rigorous interdisciplinary treatment through experimen-
tal investigation. The book is also appropriate as a textbook for an advanced
graduate course.
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Foundations of Solid Mechanics

A major problem in continuum mechanics consists of predicting the deforma-
tions and internal forces arising in a material body subjected to a given set of
external fields such as the forces of pure mechanical nature, temperature and
electromagnetic fields. This Chapter summaries some of important definitions,
relations, and methods commonly employed for the analysis of reformable media
although, of course, many aspects of mechanical behavior are left unaccounted
for in this approach and referring the unsatisfied reader to monographs in which
a level of higher generality is adopted. However, it is hoped that sufficient de-
tails are given so that the reader can understand remainder Chapters without
constant reference to other books.

As is customary in continuum mechanics studies, material properties and
fields are expressed in tensor form in this book. The general technique of tensor
analysis is given, e.g. in [99], [1028], [1068] presenting the tensor theory not only
as an autonomous mathematical discipline, but also as a preparation for theories
of continuum mechanics. The special applications of tensors are described in the
books [722], [1114]. The books [21], [364] provide an introduction to the theories
of linear elasticity and nonlinear elasticity. More comprehensive treatments of
nonlinear and anisotropic elasticity can be found, e.g., in the books [398], [410],
[995], [1015], [1082], [832], [722], and [1098]. The coupling effects of mechanical,
temperature and electromagnetic fields are considered in [980], [747], [861]. The
general reviews of phenomenological plasticity with an extensive list of references
are given in [527], [737], [711].

2.1 Elements of Tensor Analysis

This Section provides a remainder of basic notions of tensors of a certain rank
which components transforming in a particular way under the transformation of
coordinates (e1, e2, e3) → (e′1, e

′
2, e

′
3).

We concern with the rectangular Cartesian coordinate systems and require
that the orthonormalized basis is right-handedness e1 · (e2×e3) = 1 and ei ·ei =
δij , where a scalar multiplication ei · ej denotes the projection of the ith basic
vector on the jth one (or vice-versa), and
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δij =
{ 1 if i = j,

0 otherwise
(2.1)

is the Kronecker delta. The vector (cross) product of two basic vectors ei×ej can
be defined by the permutation tensor ε (summation over repeated Latin indices
is implied)

ei × ej = εijkek, εijk =

{+1 if ijk is an even permutation of 123,
−1 if ijk is an odd permutation of 123,
0 if any two indices are identical.

(2.2)

The vector product of the vectors a, b and the triple scalar product of the vectors
a,b, c can consequently be written as

a × b = εijkaibjek, (a × b) · c = εijkaibjck =

∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣
. (2.3)

The expansion of another orthonormalized basis e′ (e′i · e′j = δij) with the
same origin of coordinates into the old one e′i′ = gi′jej is defined by coefficients
gi′j called a cosine matrix, because each element gi′j is the cosine of the angle
between two corresponding axes

gi′j = e′i · ej = cosαi′j . (2.4)

The most frequently used methods of parametric representation of orthogonal
transformation of Cartesian coordinates e′ and e are presented in Appendix
A.1. An arbitrary vector x is completely defined by its magnitude (modulus)
and direction in the space

x =
∑

xiei = xiei, xi = x · ei = |x| cos(x, ei). (2.5)

The orthogonal matrix g = ‖gij‖, (i, j = 1, . . . , 3) called the rotation matrix
links the coordinates x′ of an arbitrary point in the reference orthonormalized
frame e′ (e′i · e′j = δij) with the coordinates x in the crystal orthonormalized
coordinate system e (ei · ej = δij) with the same origin of coordinates (see for
details Appendix A.1)

x′ = gx. (2.6)

The definitions of tensors of order 0 (scalar) 0T(e1, e2, e3) ≡0 T′(e′1, e
′
2, e

′
3)

and 1 [contravariant vector (2.6)] can be easily generalized to contravariant ten-
sors of order n

nT =n Ti1i2...in
ei1 ⊗ . . . ein =n T ′

i1i2...in
e′i1 ⊗ . . . e′in, (2.7)

where the 3n tensor components in the prime and unprime coordinates are linked
by the following transformation

nT ′
j1j2...jn

= gj1i1 . . . gjnin

nTi1i2...in
. (2.8)

A tensor n+mT of rank n + m, contravariant of rank n and covariant of rank m,
is an object with the induced component transformation
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n+mT ′j1j2...jn

j′
1j′

2...j′
m

= gj1i1 . . . gjnin
gi′1j′

1
. . . gi′mj′

m

n+mT i1i2...in

i′1i2...i′m
. (2.9)

It is possible to distinguish four operations with the tensors. The first one
joins the summation and multiplication over the number of the tensors Ti1,...,in

and Si1,...,in
of the same order:

λTi1,...,in
+ βSi1,...,in

= Ri1,...,in
⇔ λT + βS = R, (2.10)

where λ and β are scalars. The tensor (or diadic) production of two tensors of
orders n and m is a tensor of order n + m, defined as

T ⊗ S = (Ti1,...,in
Sj1,...,jm

)ei1 . . . ein
ej1 . . . ejm

. (2.11)

In so doing, in general T and S are not commutative, T⊗S �= S⊗T. The third
operation called convolution (or contraction) is the action with one tensor red-
ucing his order on two in the framework of the Einstein summation convention,
for example

Ti1,...,in,k,k,j1,...,jm
= Si1,...,in,j1,...,jm

. (2.12)

The fourth operation produces the index permutation leads to a new tensor of the
same order but with different index order. For example, one can generates only
one new tensor (called transposed one) of the second order: S = T� ⇔ Sij = Tji.
In so doing, a second order tensor T is called symmetric if T� = T, and it is
called antisymmetric if T = −T�.

By straightforward check we are able to ascertain that the new objects formed
by mentioned operations are really the tensors. These operations can be arranged
in the different combinations. For example, the combination of the diadic pro-
duction and convolution denoting by a dot leads to the following tensors

R = T · S ⇔ Rij = TikSkj , (2.13)
λ = R · ·T ⇔ λ = RijTji, (2.14)
λ = R : T ⇔ λ = RijTij , (2.15)

where multiple dots are appropriate for complex constructions.
In particular, the simplest tensors 2T of order 2 are the unit tensor δ (1.1) and

the rotation tensor g (2.4). They hold the property of orthogonality: 2T ·2T = δ
and isotropy: 2T′ =2T. The tensor δ transform a vector a into itself while g
transforms the unit base vector ei to the unit vector e′i of the primed coordinate
system: e′i = g · ei. The simplest tensor of order 4 is the unit tensor I with
the components Iijkl = 1

2 (δikδjl + δilδjk) can be decomposed into the bulk and
deviatoric parts

I = N1 + N2, N1 ≡ 1
3
δ ⊗ δ, N2 = I − N1 (2.16)

which have the property of orthogonality

N1 : N1 = N1, N2 : N2 = N2, N1 : N2 = 0. (2.17)

Differentiation denoting by the del operator ∂i ≡ ∂/∂xi of a tensor with the
suitably smooth components forms another tensors



20 Valeriy A. Buryachenko

� · T ≡ DivT = (∂jTji1,...,in−1)(x)ei1 ⊗ ei2 . . . ein−1 , (2.18)
�⊗ T ≡ GradT = (∂i1Ti2,...,in+1)(x)ei1 ⊗ ei2 . . . ein+1 , (2.19)
�× T ≡ CurlT = [εi1jk(∂jTk,i2,...,in

)](x)ei1 ⊗ ei2 . . . ein+1 , (2.20)

which are called divergence, gradient, and curl of the tensor field T =n T and
have the orders n − 1, n + 1, and n, respectively. We will also use the other
differential operators of the first-and second-order tensors:

Defa ≡ 1
2
(�⊗ a + a ⊗�) =

1
2
(ai,j + aj,i)ei ⊗ ej , (2.21)

Inc b ≡ εijkεlmnbjn,kmei ⊗ ej (2.22)

called the operator of deformation, and incompatibility, respectively.
Analogously to differentiation, the integration of a tensor field T on both the

domain w and their boundary ∂w can be defined in terms of the integration of
its components. The Gauss theorem relates the action of the del operator on the
tensor field T in domain E to its flux across the boundary ∂E , under suitable
smoothness of both the tensor T and the domain boundary ∂w with the unit
vector of an outward normal n(s) ⊥ ∂E (s ∈ ∂E):

∫

E
� ∗ T dx =

∫

∂E
n ∗ T ds, (2.23)

where ∗ can stand for “ · ”,⊗, or ×. Let ∂E ′ be a portion of an oriented sur-
face with unit outward normal n and with the surface closed edge C. Then for
the tensor field T continuously differentiable in ∂E ′ and continuous in C, the
generalized Stokes theorem can be presented in the form

∫

∂E′
(n × �) ∗ T ds =

∮

C

T ∗ dl. (2.24)

Equation (2.23) is also generalized for the volume E and surface ∂E , excluding
the points of a discontinuity surface τ with unit normal n which may be sweeping
the body. In a similar manner, the surface ∂E ′ with edge C in Eq. (2.24) is
accompanied by a discontinuity line γ that may be sweeping the surface. Thus
(see e.g., [316]),

∫

E\τ

� · T dx =
∫

∂E\τ

T · n ds −
∫

τ

[T] · n ds, (2.25)
∫

∂E′\γ

(n × �) · T ds =
∮

C\γ

T · dl −
∮

γ

[T] dl, (2.26)

where the brackets [·] denote the jump of its enclosure across the discontinuity
surface τ or the discontinuity line γ; E \ τ , ∂E \ τ , and ∂E ′ \ γ, C \ γ exclude
points of τ and γ, respectively.

2.2 The Theory of Strains and Stresses

We consider a body occupying the regions E0 and E , with boundaries E0 and ∂E ,
in some fixed reference configuration and in the current one, respectively. Suppose
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an arbitrary material point P 0 ∈ E0 at time t = 0 has the spatial coordinates x
in the orthonormalized coordinate system ei (i = 1, 2, 3). The point P 0 moves
during the time t of deformations to the point P ∈ E with coordinates ξ(t) in
the same coordinate system. The relations between the coordinates ξ and x are
defined by the smooth one-to-one invertible functions:

ξ = ξ(x, t), (ξi = ξi(x1, x2, x3, t)) and x = x(ξ, t), (xi = xi(ξ1, ξ2, ξ3, t)),
(2.27)

which are provided by an assumption that the Jacobian

J = det
∥
∥
∥

∂(ξ1, ξ2, ξ3)
∂(x1, x2, x3)

∥
∥
∥ =

∣
∣
∣
∣
∣
∣

∂ξ1/∂x1 ∂ξ1/∂x2 ∂ξ1/∂x3

∂ξ2/∂x1 ∂ξ2/∂x2 ∂ξ2/∂x3

∂ξ3/∂x1 ∂ξ3/∂x2 ∂ξ3/∂x3

∣
∣
∣
∣
∣
∣

(2.28)

exists at each point of the configuration E and that J > 0 meaning that the
material cannot penetrate itself, and that material element of non-zero volume
cannot be compressed to a point or expanded to infinite volume during the
motion. The independent variables x and ξ in Eq. (2.27) are referred to as
Lagrange and Euler variables, respectively.

We define the strain tensor (specifying the change between the points in the
deformable body) by introducing the displacement u = ξ − x, ui = ξi − xi as
well as the tensors of the deformation gradient F, material displacement gradient
H, and spatial displacement gradient (J ≡ detF(x) > 0):

∂ξ

∂x
= F(x),

∂u(x)
∂x

= H(x) ≡ F(x) − I,
∂u(ξ)

∂ξ
= h(ξ), Fh = H, (2.29)

respectively. We will reproduce the correspondences between some elements of
the regions E0 and E in the reference and current configurations, respectively.
The equation dξ = F dx describes how an infinitesimal line element dx ∈ E0

transforms linearly into the element dξ ∈ E . The areas ds and dS of the surface
elements of ∂E and ∂E0 with the (positive) unit normals n and N, respectively,
are connected by the Nanson’s formula:

nds = JBNdS, B = (F−1)�. (2.30)

The volume dv in the deformed configuration is related with the volume dV in
the reference configuration by the equation

div = JdV. (2.31)

The ratio of current |ξ| to reference |dx| lengths of a line element that was in
the direction M in the reference configuration defines the stretch:

λ(M) ≡ |dξ|
|dx| = |FM| = [M · (F�FM)]1/2 (2.32)

in the direction M at x. The quality λ(M) − 1 is called the extension ratio in
the direction M, while |dξ| − |dx| is the extension.
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The deformed states of the body in the vicinity of P 0 are defined the strain
tensor specified by the displacement u. Working with the material x and spatial
ξ variables we can define the strain tensors in Lagrange’s (Green’s tensor) and
Euler’s (Almansi’s tensor) representations:

ε =
1
2
(H� + H + H�H), εij(x) =

1
2

( ∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj

)
, (2.33)

ε̃ =
1
2
(h� + h + h�h), ε̃ij(x) =

1
2

(∂ui

∂ξj
+

∂uj

∂ξi
− ∂uk

∂ξi

∂uk

∂ξj

)
, (2.34)

Hereafter the values referred to the variables ξ are marked by the symbol ˜. In
many practical applications, it is possible to neglect the products of derivatives in
Eqs. (2.33) and (2.34). Then the coincidence of the tensors of Green and Almansi
yields the well-known infinitesimal strain expression:

ε = Defu, εij(x) =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
. (2.35)

If a displacements u are given, the components of the strain tensors (2.33)-(2.35)
are easily calculated by proper differentiation of these quantities. However, if six
component of a strain tensor are given, they must be interrelated to serve as
an integrability conditions ensuring a compatible set of the three independent
displacement components. For the linear infinitesimal strain (2.35), these six
interrelations, called Saint-Venan’t compatibility equations, produce only three
independent relations between the six components of the strain:

Incε = 0, εilmεjpq
∂2εmn

∂xl∂xq
= 0. (2.36)

For an arbitrary symmetric tensor of the second order (including Green and
Almansi strain tensors), the characteristic equation det‖εij − εδij‖ = 0, defining
a polynomial of the third degree in ε:

ε3 − Iεε
2 + IIεε − IIIε = 0 (2.37)

has three real roots ε1, ε2, ε3 called principal values. The coefficients Iε, IIε, IIIε

of Eq. (2.37) are scalars called principal basic invariants, and are given by

Iε = trε ≡ εii = ε1 + ε2 + ε3, (2.38)

IIε =
1
2
εijkεilmεjlεkm ≡ 1

2
(I2

ε − ε : ε) = ε11ε22 + ε22ε33 + ε33ε11

− ε2
12 − ε2

13 − ε3
23 = ε1ε2 + ε2ε3 + ε1ε3, (2.39)

IIIε = detε ≡ 1
6
(2εijεjkεki − 3Iεε : ε + I3

ε ) = ε1ε2ε3. (2.40)

To each principal value εi, the corresponding principal direction mi is defined by
the equation (i not summed) ε · mi − εimi = 0. The tensor ε can be expressed
in diagonal form in the principal triad (m1,m2,m3)
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ε =
3∑

i=1

εimi ⊗ mi, (2.41)

which is orthogonal if ε1 �= ε2 �= ε3: mi ·mj = δij . In such a case, the components
of the tensor ε in the principle triad have the form (no sum on i) εij = εiδij .

In parallel with the principle basic invariants (2.38)-(2.40) one can introduce
other invariants such as, e.g., basic algebraic invariants:

A1 = εii = ε1 + ε2 + ε3, (2.42)
A2 = εijεji = ε2

1 + ε2
2 + ε2

3, (2.43)
A3 = εijεjkεki = ε3

1 + ε3
2 + ε3

3 (2.44)

as well as the invariant system specified by the intensity ei of the tensor deviator
ε′ and its phase ψ

e = (ε1 + ε2 + ε3)/3, (2.45)

ei =
1
3

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε1 − ε3)2, (2.46)

1√
2

cos 3ψ = e−3
i (ε1 − e)(ε2 − e)(ε3 − e). (2.47)

The following relationships between the invariants hold true:

Iε = A1, 2IIε = a2
1 − A2, IIIε = (2A3 − 3A2A1 + A3

1)/6, (2.48)

e =
1
3
A1, ei =

1
3

√
3A2 − A2

1,

cos 3ψ =
√

2(9A3 − 9A1A2 + 2A3
1)(3A2 − A2

1)
3/2 (2.49)

Now we will consider some definitions and notations of stress analysis. Let an
element of the internal surface with an area ds have a unit normal vector n. The
total force df acting on this element of surface defines the surface traction t(n) =
df/ds, where the superscript (n) designates the normal to the surface element.
The second-order Cauchy (or Eulerian) stress tensor T is formally related to the
stress traction by the symmetric tensor equation:

t(n) = n · T, t
(n)
j = niTij . (2.50)

The tensor T is symmetric if and only if balance of moment of momentum holds.
Then the stress state in the point ξ can be described either by six components Tij

of the tensor T or by three invariants IT , IIT , IIIT called the principal stresses
[introduced analogously to Eqs. (2.38)-(2.40), T = σ]:

Iσ = trσ ≡ σii = σ1 + σ2 + σ3, (2.51)

IIσ =
1
2
εijkεilmσjlσkm ≡ 1

2
(I2

σ − σ : σ) = σ11σ22 + σ22σ33 + σ33σ11

− σ2
12 − σ2

13 − σ3
23 = σ1σ2 + σ2σ3 + σ1σ3, (2.52)

IIIσ = detσ ≡ 1
6
(2σijσjkσki − 3Iσσ : σ + I3

σ) = σ1σ2σ3 (2.53)
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and by the Eulerian angles specifying the principle triad.
The Cauchy stress tensor defined by Eq. (2.50) refers to the deformed body

in the spatial coordinate system. In a similar manner, we can introduce a nom-
inal stress tensor (that is transposed of the first Piola-Kirchhoff stress tensor)
associated with an original element of undeformed area:

T0 = JF−1T, T 0
ij = J

∂xi

∂ξk
Tkj , (2.54)

where the Jacobian J is written as a determinant (2.28). The first Piola-Kirchhoff
stress tensor is a two-point and, in general, nonsymmetric tensor. For elimination
of these two disadvantages, one introduces the symmetric second Piola-Kirchhoff
stress tensor

σ = T0B = JB�TB, σij = T 0
im

∂xj

∂ξm
= J

∂xi

∂ξm
Tmn

∂xj

∂ξn
, (2.55)

which may be inverted

Tij = J−1 ∂ξi

∂xm
σmn

∂ξi

∂xn
, T 0

im = σij
∂ξm

∂xj
. (2.56)

2.3 Basic Equations of Solid Mechanics

2.3.1 Conservation Laws, Boundary Conditions, and Constitutive
Equation

There are four conservation laws in continuum mechanics: (1) mass conservation,
(2) conservation of linear momentum, (3) conservation of angular momentum,
and (4) conservation of energy. We will reproduce the first, second, and fourth
conservation laws.

The balance equation of linear momentum in spatial coordinates in terms of
the Cauchy stress tensor T is

∂Tij

∂ξi
+ ρbi = ρ

(∂vi

∂t
+ vi

∂vj

∂ξi

)
, (2.57)

where b is the body force per unit of mass acting upon the volume element; ρ is
the mass density at time t related to the initial mass density ρ0 by the equation
of continuity (the first conservation law):

ρ = J−1ρ0 (2.58)

according to Eq. (2.31). vi is a velocity of a particle occupying the coordinate
ξi at some time t found by taking the time derivative and holding the material
coordinates constant: vi = ∂ξi/∂t.

Since the boundary conditions in elastic problems are most easily expressed
in material coordinates, we shall reproduce an equivalent equation of motion in
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Lagrangian coordinates in terms of the first and second Piola-Kirchhiff stress
tensors:

∂T 0
im

∂xi
+ ρ0b0m = ρ0

d2um(x)
dt2

, (2.59)

∂

∂xi

[
σij

(
δjm +

∂um(x)
∂xj

)]
+ ρ0b0m = ρ0

d2um(x)
dt2

, (2.60)

respectively, where the time derivative is actually a simple time derivative.
The basic energy-conservation equation (or first principle of thermodynamic)

equates the rate of change of kinetic K and internal energy E to the rate at
which surface and body forces do mechanical work P and the rate at which
nonmechanical energy Q is transferred (per unit volume):

K̇ + Ė = Q̇ + P, (2.61)

where

K =
1
2Ē

∫

E
ρvivi dv, E =

1
Ē

∫

E
ρe dv, (2.62)

Q = − 1
Ē

∫

∂E
qknk ds +

1
Ē

∫

E
h dv =

1
Ē

∫

E
(−∇ · q + h) dv, (2.63)

P =
1
Ē

∫

E
bivi dv +

1
Ē

∫

∂E
Tijnjvi ds, (2.64)

where e is a specific internal energy per unit mass, q is a nonmechanical energy
flux tensor defining the rate qknkds of any nonmechanical energy transmitted
outward through the surface element ds with outward directed normal n, and h is
heat created per unit volume in the body. In Eq. (2.61) K,E,Q, and P are global
quantities represented as integrals over the volume and its surface (2.62)–(2.64),
but they also have local analogies (for which we will use the same notations)
defined pointwise within the body. Equation (2.61) can be transformed into the
differential form by the use of the equation of continuity (2.58) and the equations
of motion:

ρ
de

dt
= Tijdij −

∂qj

∂ξj
+ ρh, dij =

1
2

(∂vj

∂ξi
+

∂vi

∂ξj

)
, (2.65)

where, d called the rate strain tensor, is the symmetric part of the tensor vi,j ,
and d/dt = ∂/∂t + vi∂/∂ξi is a material derivative.

The second law of thermodynamics states the existence of the total differential
for reversible processes:

dS =
dQ

T
, (2.66)

where S is the entropy regarded as a measure of energy dissipation with respect
to the absolute temperature T , and

Ṡ +
∫

∂E

(q
T

)
· n ds −

∫

E

h

T
dv ≥ 0. (2.67)

The last expression is referred to as the second law of thermodynamics, known
as the Clausius-Duhem inequality, which can be rewritten as
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∫

E

[

ṡ + ∇ ·
(q

T

)
− h

T

]

div ≥ 0, (2.68)

or
T ṡ + ∇ · q − 1

T
q · ∇T − h ≥ 0, (2.69)

which is the local form of the Clausius-Duhem inequality. Here and henceforth
s is the specific entropy density, and the term “specific” will mean “per unit
volume”. Without loss of generality, it is assumed mes E = 1.

If the right-hand side of motion equations (2.57), (2.59), (2.60) are zero, the
resulting equations are called the equilibrium equation. One way to maintain
a body in equilibrium is to apply suitable boundary conditions. The typical
boundary conditions involves the prescribed displacements u specifying on part
of the boundary ∂E0

u ⊂ ∂E0, and the stress vector on the remained, ∂E0
σ, so that

u(x) = u∂(x), on ∂E0
u, (2.70)

T0� · N = t0(N)(F,x) on ∂E0
σ, (2.71)

where ∂E0
u∩∂E0

σ = ∂E0, ∂E0
u∪∂E0

σ = 0. A general configuration dependent loading
(2.70) if reduced to a dead-load traction in the surface traction introduced by
(2.70) is independent of F.

The aforementioned equations of conservation laws are in general insufficient
to determine the body motion produced by given boundary conditions and body
forces. They need to be accompanied by a constitutive equation characterizing the
constitution of the body. It is assumed that there are no stresses and no strains in
the initial (virgin) strain of the body. For Cauchy elastic materials, it is described
by a symmetric single-valued response function G: T = G(F), which does not
depend on the path of deformation. In a special case of Cauchy elasticity called
hyperelasticity, there exists a specific strain-energy function w = w(F) defined
on the space of deformation gradients:

T0 =
∂w

∂F
, T = J−1F

∂w

∂F
. (2.72)

Equations (2.72) are the constitutive equations for finite-deformation elasticity.
The function w defined per unit volume in E0 represents the work done per unit
volume at x ∈ E0 in changing the deformation gradient from I to F. The function
w can be considered as depending on either ε (2.33) or Hij (2.29). Then we get
the representations

σij =
∂w(ε)

εij
, T 0

ij =
∂w(H)

Hij
(2.73)

relating the second Piola-Kirchhoff stress tensor σ to the Green deformation
tensor ε, and the nominal stress tensor T0 to the material displacement gradient
H, respectively.

A material is said to be isotropic if there is no orientation effect in the ma-
terial. In such a case, the strain energy can be presented either as a symmetric
function of the principal stretches or as a function of three independent in-
variants, such as (2.38)–(2.40) or (2.42)–(2.44). For an incompressible material
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J = IIIε ≡ 1 holds, and the function w depends on only two independent
invariants. In particular, the Mooney-Rivlind form of strain energy

w = C1(Iε − 3) + C2(IIε − 3), (C1, C2 = const.) (2.74)

is reduced to the neo-Hookean form

w = C1(Iε − 3). (2.75)

Using Eq. (2.731) and the forms of the strain-energy functions (2.74) and (2.75),
the stress tensor take the forms σ = −pI + 2C1FF� and σ = −pI + 2C1FF� −
2C2(FF�)−1 for Mooney-Rivlin and neo-Hookean materials, respectively; here
p is an arbitrary scalar. Many other forms of the strain energy have been an-
alyzed for both incompressible and compressible nonlinear rubberlike solids in
[26], [830].

Now we will consider the strain-energy functions of physically nonlinear
elasticity defined on the space of infinitesimal strain tensors (2.35). A general
quadratic form of the function w composed by the algebraic invariants (2.42)
and (2.43) is

w = a1A
2
1 + a2A2, (2.76)

leading to the known constitutive equation (2.731) for the isotropic medium:

σ = Lε, L = 3λN1 + 2µI (2.77)

by the use of two, λ and µ, Lame’s elastic constants. A more general special form
of specific strain energy depending on three basic algebraic invariants (2.42)–
(2.44) is the Murnaghan form, defined by

w =
1
2
λA2

1 + µA2 +
a

3
A3

1 + bA1A2 +
c

3
A3, (2.78)

where λ and µ are the Lame’ elastic constants of the second order, and a, b, c are
the elastic constants of the third order. Equations (2.731) and (2.78) yield the
following tensor constitutive equations:

σ = Lε + L(3)ε ⊗ ε, (2.79)
Lijkl = λδijδkl + µ(δikδjl + δilδjk), (2.80)

Lijklmn = aδijδmnδkl + b(δijImnkl + δmnIijkl + δklImnij) + cJijmnkl, (2.81)

Jijmnkl =
1
2
(IipklIpqmn + IipmnIpjkl). (2.82)

The Kauderer potential depending on two basic algebraic invariants (2.42)–(2.43)
and three constant (λ, µ, γ) is known:

w =
1
2
λA2

1 + µA2 +
1
3
γ(A2 −

1
3
A1)2. (2.83)

The strain energy (2.83) is associated with constitutive equations
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σij = λεkkδij + 2µεij + 2γεeq(εij −
1
3
δijεkk), (2.84)

εij =
1
9k

σkkδij +
1
2µ

(1 − γ

9µ3
τ2)sij , (2.85)

where k ≡ λ + 2µ/3 is the bulk modulus, and τ and εeq are the stress and strain
intensities

τ =
(3

2
s : s

)1/2

, εeq =
(2

3
e : e

)1/2

, (2.86)

respectively, where s = N2σ and e = N2ε. The constitutive equation (2.84) can
be presented in more compact form:

σ = Lε + Ψ(ε), L = 3kN1 + 2µN2, Ψ = 2γε2
eqN2, (2.87)

where the tensor Ψ depending on the effective strains εeq describes the nonlinear
material properties.

Also used is an asymptotic expansion of the specific strain energy in a Taylor
series about the state of zero strain and stress as

w =
1
2
L

(2)
ijklεijεkl +

1
6
L

(3)
ijklmnεijεklεmn + . . . (2.88)

assuming w(0) = 0. One can get from Eq. (2.88) that

L(n) =
∂(n)w

∂ε(n)
(2.89)

where n = 2, 3, . . . and ε(n) = ε ⊗ . . . ⊗ ε is n-multiple tensor production of
the tensor ε. The equality (2.89) yields the following symmetry properties of the
elasticity tensors L(n) of the 2n order with respect to the index pairs

L
(2)
ijkl = L

(2)
jikl = L

(2)
ijlk = L

(2)
lkij , (2.90)

L
(3)
ijklpq = L

(3)
jiklpq = L

(3)
ijlkpq = L

(3)
ijklqp = L

(3)
klijpq = L

(3)
pqklij = L

(3)
ijpqkl, (2.91)

and so forth. In so doing, the “pair symmetry” described by two first equalities
of Eq. (2.90) and corresponding to an interchange of the indices of the first pair
and interchange of the indices of the last pair are followed from the symmetry
of both the σ and ε tensors. The “diagonal symmetry” corresponding to an
interchange of the first pair of indices with the second one is described by the
third equality of Eq. (2.90) and defined by Eq. (2.88). Fourth-order tensors with
pair and diagonal-symmetry are referred as “full-symmetric” tensors.

2.3.2 The Equations of Linear Elasticity

We will reproduce the reduction of the elasticity theory of finite deformation to a
linear theory, which is a special case of small deformations superposed on a finite
deformations with the special values b0 = 0, F0 = I, T0

0 = 0. Then all stress
tensors coincide and can be recognized as a Cauchy stress. All strain tensors
likewise reduce to the infinitesimal strain tensor (2.35). Then the equalities
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σ = T = T0, ε = ε̃, J = 1 + εii (2.92)

simplify the basic equations of elasticity theory

∇σ + ρb = ρü,
∂σij

∂xj
+ ρbi = ρ

∂2ui

∂t2
, (2.93)

σ = Lε, σij = Lijklεkl, (2.94)

ε = Defu, εij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
. (2.95)

The mixed boundary conditions on ∂E with the unit outward normal n∂E will
be considered

u(x) = u∂E(x), x ∈ ∂Eu, (2.96)
σ(x) · n∂E(x) = t∂E(x), x ∈ ∂Eσ, (2.97)

where ∂Eu and ∂Eσ are prescribed displacement and traction non-intersected
boundary conditions such that ∂Eu∪∂Eσ = ∂E ; u∂E(x) and t∂E(x) are prescribed
the displacement on ∂Eu and traction on ∂Eσ, respectively; mixed boundary con-
ditions, such as in the case of elastic supports are also possible. When ∂Eσ is
empty, the mixed boundary conditions (2.96) and (2.97) reduce to the displace-
ment problem or the first boundary value problem. If ∂Eu is empty, the boundary
conditions (2.96), (2.97) becomes the traction problem or the second boundary
value problem. As usual we shall distinguish the interior from the exterior prob-
lem according to whether the body occupies the interior or the exterior domain
with respect to E .

Of special practical interest are the homogeneous boundary conditions:

u∂E(x) = ε∂Ex, ε∂E(x) ≡ const., x ∈ ∂E , (2.98)
σ(x) · n∂E(x) = σ∂E(x) · n∂E(x), σ∂E(x) = const., x ∈ ∂E , (2.99)

where ε∂E(x) = 1
2

[
∇⊗ u∂E(x) + (∇⊗ u∂E(x))�

]
, x ∈ ∂Eu.

2.3.3 Extremum Principles of Elastostatic

The principle of minimum potential energy and the principle of minimum com-
plementary energy completely characterize the solution of the mixed boundary
problem (2.93)–(2.97) of elastostatic (ü ≡ 0 in Eq. (2.93)). For definition of
these energy functions we introduce the notion of admissible fields. A sufficiently
smooth (of class C1) displacement field u with the displacement boundary con-
ditions:

Ak(u) = {u|u(x) ∈ C1(E), u(y) = u∂E(y), y ∈ ∂Eu} (2.100)

is called a kinematically admissible displacement field. A kinematically admissible
state is an ordered array s = {u, ε,σ} (forming the set Ak(s)) of kinematically
admissible displacement field u ∈ Ak(u) (2.100) generating the symmetric fields
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ε and σ according to Eqs. (2.95) and (2.94), respectively. While ε(u) is compat-
ible, σ(u) may not necessarily satisfy the equilibrium equations (2.93).

A sufficiently smooth (of class C1) stress field satisfying the equilibrium equa-
tion (2.93) and the traction boundary condition (2.97):

As(σ) = {σ|σ(x) ∈ C1(E), ∇ · σ + ρb = 0, σ(y) · n∂E(y) = t∂E(y), y ∈ ∂Eσ}
(2.101)

is referred to as a statically admissible stress field. The ordered array ss =
{u, ε,σ} (forming the set As(s)) is called a statically admissible state if σ ∈
As(σ) (2.101) generates the symmetric tensor ε according to the constitutive
equation (2.94) and the displacement field u is related to ε by the use of Eq.
(2.95). In so doing, ε(σ) is not necessarily compatible.

We also define the total strain energy W (ε) and the total stress energy W c(σ)
by

W (ε) =
1
2

∫

E
ε : L : ε dx, W c(σ) =

1
2

∫

E
σ : M : σ dx, (2.102)

respectively. Let δu = δu(x) be a virtual, or imaginative, infinitesimal dis-
placement field associated with a virtual strain field from the current state
δε = Def(δu). The components of the virtual displacement vector δu vanish
at ∂Eu: δu(y) ≡ 0 at y ∈ ∂Eu. It can be shown from the equations of linear and
angular momentum, that it holds the principle of virtual work (PVW):

∫

E
σ : δε dx =

∫

∂E
t∂Eσ · δu ds +

∫

E
ρb · δu dx, (2.103)

which is a starting point in developing minimum principles.
As a consequence, one can obtain a work–energy relation (theorem of work

expended) involving the admissible stress field σ and the admissible displacement
field u [ε(u) is the related strain field] corresponding to the given external forces
ρb(x) and t∂Eσ (y) (x ∈ E , y ∈ ∂Eσ):

∫

E
σ : ε dx =

∫

∂E
t∂Eσ · u ds +

∫

E
ρb · u dx, (2.104)

which looks similar to the first law of thermodynamics (2.61), although there
is no thermodynamic expression in (2.104). We note that σ and ε need not be
connected by a specific stress-strain relation.

We will present the classical extremum principles.
Principle of minimum of potential energy. Let Π, called the potential energy
(corresponding to the given external forces ρb(x) and t∂Eσ (y), x ∈ E , y ∈
∂Eσ), be the function defined on the set of kinematically admissible states s̃k =
{ũ, ε̃, σ̃} ∈ Ak(s̃) by the equation

Π(s̃k) = W (ε̃) −
∫

E
ρb · ũ dx −

∫

∂Eσ

t∂Eσ · ũ ds. (2.105)

Then the actual displacement field u with corresponding admissible state sk

renders the potential energy Π an absolute minimum
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Π(sk) ≤ Π(s̃k). (2.106)

Principle of minimum of complementary energy. Let Πc called the complemen-
tary energy (corresponding to the given boundary displacement u∂Eu(y) ∈ ∂Eu)
be the function defined on the set of statically admissible states s̃s = {ũ, ε̃, σ̃} ∈
As(s̃) by the equation

Πc(s̃k) = W c(σ̃) −
∫

∂Eu

t̃n · u∂Eu ds, t̃n ≡ σ̃ · n∂E . (2.107)

Then the actual stress field σ with corresponding admissible state ss renders the
complementary energy Πc an absolute minimum

Πc(ss) ≤ Πc(s̃s). (2.108)

2.4 Basic Equations of Thermoelasticity
and Electroelasticity

2.4.1 Thermoelasticity Equations

In classical thermodynamics we are concerned with the small neighborhood
of thermodynamic equilibrium. We also consider the infinitesimal deformations
(2.92). In such a case the first law of thermodynamics (2.65) can be recast in the
form (hereafter a unit volume is considered)

dE = dQ + σijdεij , (2.109)

To derive the constitutive relations of thermoelasticity theory, we transform
(2.109) for the reversible processes (2.66) to the thermodynamic relation:

dE = σij dεij + T dS (2.110)

equating the total differential of the internal energy (2.622) and the sum of the
increment of the deformation work and the amount of the heat introduced into
the considered volume; here T is the absolute temperature and S is the entropy
density (2.68). We see that E is a state function of ε and S for the reversible
adiabatic (isentropic, S =const.) processes, and according to the ordinary rules
of differentiation, we get

σij =
∂E

∂εij

∣
∣
∣
∣
S

, T =
∂E

∂S

∣
∣
∣
∣
ε

. (2.111)

On the other hand, if the process is isothermal (T =const.), the dependence of
the stresses σ on the strains ε is found by introducing the Helmholtz free-energy
function:

F = E − TS, dF = σij dεij − S dT (2.112)

with the strains and temperature as its independent variables. The value −TS
is the irreversible heat energy due to entropy as related to temperature, with
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the negative sign indicating that the compressive reaction results from thermal
expansion in a restrained body. Then, from Eqs. (2.110) and (2.112), we get

σij =
∂F

∂εij

∣
∣
∣
∣
T

, S = −∂F

∂T

∣
∣
∣
∣
ε

. (2.113)

Thus, the strain energy density w can be identified with the internal energy E
in an isentropic process (S ≡const.) and the free energy F in an isothermal
process (T ≡const.). The temperature is determined by Eq. (4.32) when using
the potential E and the entropy is determined by Eq. (2.113) when using the
potential F .

For small deformations and small temperature changes θ = T − T 0 (θ/T0 �
1), F (ε, T ) can be expanded in a power series of its arguments in the neighbor-
hood of the virgin state (ε = 0, θ = 0):

F (ε, T ) =
1
2
Lijklεijεkl + αT

ijεijθ − Cε

2T0
θ2, (2.114)

where one introduces the notations

Lijkl =
∂2F (0, T0)
∂εij∂εkl

, αT
ij =

∂2F (0, T0)
∂εij∂T

,
Cε

T0
= −∂2F (0, T0)

∂T 2
(2.115)

and Cε denotes the specific heat at constant strain, which can be also determined
as

Cε =
dQ

dT

∣
∣
∣
∣
ε

=
∂E

∂T

∣
∣
∣
∣
ε

= T
∂S

∂T

∣
∣
∣
∣
ε

. (2.116)

The negative sign for the last term on the right-hand side of Eq. (2.114) indicates
that a temperature rise leads to a compressive reaction on the restricted body.
This term signifies the thermal energy due to temperature while the second
term αT εθ describes the coupling effect between temperature and mechanical
deformation. The difference between the isentropic moduli L̃ and isothermic
moduli L:

L̃ − L =
T0

ρCε
αT ⊗ αT , L̃ =

∂2E

∂ε ⊗ ∂ε

∣
∣
∣
∣
S

, L =
∂2F

∂ε ⊗ ∂ε

∣
∣
∣
∣
T

is of as order of 1% or less for metals and ceramics.
To determine the entropy as a function of ε and T , consider the total differ-

ential of the function S(ε, T ):

dS =
∂S

∂ε

∣
∣
∣
∣
T

: dε +
∂S

∂T

∣
∣
∣
∣
ε

dT. (2.117)

Taking Eqs. (2.113) and (2.116) into account and that

∂σ

∂T

∣
∣
∣
∣
ε

=
∂2F

∂T∂ε

∣
∣
∣
∣
ε

= αT , (2.118)

equation (2.117) becomes
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dS = −αT : dε +
Cε

T
dT, (2.119)

which after integration under the virgin state conditions ε = 0 and T = T0 gives,
for small temperature change (θ/T0 � 1),

S = −αT : ε +
Cε

T0
θ. (2.120)

The Gibbs thermodynamic potential per unit volume is defined for the case
where the stress and temperature are chosen as the independent state variables

Ge = F − TS, dGe = −εij dσij − S dT. (2.121)

Since dGe is a total differential (as dE and dF ), it follows that

∂Ge

∂T

∣
∣
∣
∣
σ

= −S,
∂Ge

∂σij

∣
∣
∣
∣
T

= −εij . (2.122)

Thus, −Ge can be identified with the complementary energy function W c, which
has the property that ∂W c/∂σij = εij . In the neighborhood of the virgin state
(θ/T0 � 1, M :: (σ ⊗ σ) � 1; M is the compliance tensor) we have a power
series expansion

Ge(σ, T ) = −1
2
Mijklσijσkl − βT

ijσijθ +
1
2
Cσ

θ2

T0
(2.123)

depending on the coefficient of thermal expansion βT and the specific heat at
constant stress Cσ

βT ≡ ∂ε

∂T

∣
∣
∣
∣
σ

= −MαT , Cσ =
dQ

dT

∣
∣
∣
∣
σ

, (2.124)

where Cσ is related to Cε by the equation

Cσ = Cε + Lijklβ
T
ijβ

T
klT0. (2.125)

Analogously to the tensor L (2.90), the complience tensor M is also full-
symmetric.

Substitution of the representation (2.114) into Eq. (2.1131) yields the general
Duhamel-Newmann form of Hook’s law for an anisotropic body in the form of
invertible relations:

σ = Lε + α, ε = Mσ + β (2.126)

where α ≡ αT θ, β� = β/θ is the coefficient of thermal expansion related to α
by α = −Lβ, αij = −Lijklβkl; see Eq. (2.124). β(x) and α(x) ≡ −L(x)β(x) are
second-order tensors of local eigenstrains and eigenstresses, respectively (fre-
quently called transformation fields) which may arise by thermal expansion,
phase transformation, twinning, and other changes of shape or volume of the ma-
terial. Substitution of the constitutive equation (2.1261) into the motion equation
(2.60) at small deformations (2.92) leads to the Navier equation:
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∇(L∇u)+ρb = ρü−αT∇θ,
∂

∂xj

(

Lijkl
∂uk

∂xl

)

+ρbi = ρ
∂2uj

∂t2
−αT

ij

∂θ

xj
, (2.127)

which should be considered simultaneously with the generalized heat condition
equation:

∇(λ∇θ) − Cεθ̇ + T0α
T : ε̇ = −h,

∂

∂xi

(

λij
∂

∂xj
θ

)

− Cε
∂θ

∂t
+ T0α

T
ij

∂εij

∂t
= −h,

(2.128)
where h is the heat source function. The coefficient αT couples the equations
of the dynamic thermoelastic problem (2.127) and (2.128). Dropping the term
T0α

T : ε̇ in the left-hand side of Eq. (2.1281), we obtain the uncoupled equa-
tions of dynamic thermoelasticity. Further neglecting the inertial term ρü in Eq.
(2.127) leads to a system of equations of the quasistatic thermoelastic problem.

The system (2.127) and (2.128) should be accompanied by appropriate
boundary and initial conditions. The initial conditions specify the temperature,
displacements, and velocities at all points x ∈ E within E : θ(x, 0) = θ0(x),
u(x, 0) = u0(x), u̇(x, 0) = v0(x) with the prescribed functions θ0,u0,v0 on
E . The most widely used boundary condition for the temperature function θ is
expressed by

λ : (∇θ(x, t) ⊗ n) + α∂E [θ(x, t) − θ∂E(x, t)] = q0(x, t) (2.129)

with θ∂E , q0 as known functions of the time and point x ∈ ∂E . If q0 ≡ 0,
Eq. (2.129) describes heat exchange of the third kind called Newton’s law. The
conditions α∂E = ∞ and q0 ≡ 0 reduce Eq. (2.129) to the boundary conditions of
the first kind. We obtain the second kind of boundary conditions if α∂E ≡ 0. The
mechanical boundary conditions (2.96) and (2.97) should be added to the thermal
boundary conditions (2.129). In so doing, the traction t(x) = σ(x)n(x) acting
on any surface with the normal n(x) through the point x can be represented in
terms of displacements:

t(x) = t̂(n,∇)u(x) + αn, t̂ik(n,∇) ≡ Lijklnj(x)∂/∂xl, (2.130)

where t̂ik(n,∇) is the so-called “stress operator.”
We will consider the uncoupled quasistatic thermoelasticity theory [ρü ≡ 0

in Eq. (2.127) and T0α
T : ε̇ ≡ 0 in Eq. (2.128)], where the temperature field

is determined by Eq. (2.128) with no influence of the latent heat due to the
change of strain. It takes place according to so-called body force analogy [197]
asserting that {u, ε,σ} is a solution of the mixed problem of thermoelastostatics
corresponding to the external loading conditions (b, t∂Eσ ,u∂Eu , θ) on E ∪ ∂Eσ ∪
∂Eu if and only if {u, ε,σ−α} is a solution of the mixed problem of elastostatic
corresponding to the external loading (b + 1/ρ∇α, t∂Eσ − α · n,u∂Eu) on E ∪
∂Eσ ∪ ∂Eu.

To present the extremum principles of linear thermoelastostatic, determine
the total strain energy W (ε) and total stress energy W c(σ):

W (ε) =
∫

E
w(ε) dx, w(ε) =

1
2
(ε − β) : L : (ε − β),

W c(σ) =
∫

E
wc(σ) dx, wc(σ) =

1
2
(σ − α) : M : (σ − α) (2.131)
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yielding Eqs. (2.102) at α = β ≡ 0. w(ε) and wc(σ) are potential functions for
determining the stress and strain according to the equations

σij =
∂w(ε)
∂εij

, εij =
∂wc(σ)

∂σij
, (2.132)

respectively, which are valid for both elasticity and thermoelasticity; in linear
theory w(ε) and wc(σ) are equal: w = wc. Positiveness of w and wc (at ε,σ �= 0)
leads to the positive definiteness of L and M, respectively (i.e. ε : L : ε > 0 for
∀ε �= 0).

The classical extremum principles (2.106) and (2.108) for pure mechanical
loading can be generalized for the thermostatic case in the following manner. We
determine the potential Π and complementary Πc energies:

Π(s̃k) = W (ε̃) −
∫

E
ρb · ũ dx −

∫

∂Eσ

t∂Eσ · ũ ds,

Πc(s̃s) = W c(σ̃) −
∫

∂Eu

t̃n · u∂Eu ds, t̃n ≡ σ̃ · n∂E . (2.133)

defined on the sets of kinematically s̃k = {ũ, ε̃, σ̃} ∈ Ak(s̃) (2.100) and statically
s̃s = {ũ, ε̃, σ̃} ∈ As(s̃) (2.101) admissible states, respectively. In so doing one
assumes that Eqs. (2.94) is replaced by Eq. (2.1261) to include the σ̃ and ε̃
generated by ũ ∈ Ak(ũ) and by σ̃ ∈ As(σ̃), respectively. Then the actual state
s = {u, ε,σ} renders the potential energy Π and complementary energy Πc an
absolute minimum

Π(s) ≤ Π(s̃k), Πc(s) ≤ Πc(s̃s). (2.134)

2.4.2 Electroelastic Equations

Another example of the theory of coupled fields is associated with electroelastic-
ity and deals with phenomena caused by interactions between the elastic, electric,
and thermal fields. The relations between the mechanical, electrical, and thermal
properties can be demonstrated from equilibrium thermodynamics described by
the potential Gibbs function:

Ge = E − E · D − ST, (2.135)

whose differential form

dGe = σijdεij − DidEi − S dT (2.136)

yields the relations

σij =
∂Ge

∂εij

∣
∣
∣
∣
E,T

, Dm = − ∂Ge

∂Em

∣
∣
∣
∣
ε,T

, S = −∂Ge

∂T

∣
∣
∣
∣
ε,E

. (2.137)

Differentiating Eqs. (2.137) gives
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∂σij

∂Em

∣
∣
∣
∣
ε,T

= −∂Dm

∂ε

∣
∣
∣
∣
E,T

,
∂σij

∂T

∣
∣
∣
∣
ε,E

= − ∂S

∂εij

∣
∣
∣
∣
E,T

,
∂Dm

∂T

∣
∣
∣
∣
ε,E

=
∂S

∂Em

∣
∣
∣
∣
ε,T

.

(2.138)
It was assumed that the strains ε, the electric field intensity E, and the temper-
ature T = T0 + θ are considered the independent variables, and the dependent
variables will be the stresses σ, the vector of induction D, and the entropy S.
Ge is a state function of ε, E, and T , and the ordinary rules of differentiation
yield the explicite representation of dσ, dD, and dS as the functions of dε, dE,
and dT :

dσij =
∂σij

εkl

∣
∣
∣
∣
E,T

dεkl +
∂σij

Em

∣
∣
∣
∣
ε,T

dEm +
∂σij

∂T

∣
∣
∣
∣
E,ε

dT,

dDm =
∂Dm

εkl

∣
∣
∣
∣
E,T

dεkl +
∂Dm

Ek

∣
∣
∣
∣
ε,T

dEk +
∂Dm

∂T

∣
∣
∣
∣
ε,E

dT,

dS =
∂S

εkl

∣
∣
∣
∣
E,T

dεkl +
∂S

Em

∣
∣
∣
∣
ε,T

dEm +
∂S

∂T

∣
∣
∣
∣
εE

dT, (2.139)

For small variations of ε, E, and T in the neighborhood of virgin state (ε,E, θ =
0), the partial derivatives can be considered as constants and Eqs. (2.139) be-
comes integrable. This allows us to obtain the constitutive relations of a de-
formable piezoelectric medium (see, e.g., [747], [861]):

σij = Lijklεkl + ekijEk + αT
ijθ,

Di = eijkεjk − kijEj + piθ, dS = αijεij + piEi + cεθ/T0, (2.140)

where the coefficients of the system (2.140) denote the particular derivatives:

Lijkl =
∂σij

∂εkl

∣
∣
∣
∣
E,T

, eijk =
∂σij

∂Ek

∣
∣
∣
∣
ε,T

,

pi =
∂Di

∂T

∣
∣
∣
∣
ε,E

, kij =
∂Di

∂Ej

∣
∣
∣
∣
ε,T

,

αT
ij =

∂σij

∂T

∣
∣
∣
∣
ε,E

,
cε

T0
=

∂S

∂T

∣
∣
∣
∣
ε,E

(2.141)

The constitutive equations (2.1401) and (2.1402) can be inverted

εij = Mijklσkl + dkijDk + βT
ijθ, (2.142)

Ei = dijkσjk − bijDj + qiθ. (2.143)

The coefficients of Eqs. (2.140) and (2.142), (2.143) are denoted as follows: L and
M are the elastic and compliance tensors, k and b are the tensors of dielectric
permeability and impermeability, e and d are the piezoelectric moduli, αT and
βT are the coefficients of thermoelastic stress and expansion, p and q are the
pyroelectric coefficients; and cε is a specific heat per unit volume at constant
strain. To obtain a symmetric matrix of coefficients we replace the electric field
E by −E. Hereinafter in Subsection 2.4.3, the Latin indexes range from 1 to 3,
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and the Greek ones range from 1 to 4. We will assume that the electric and elastic
fields are fully coupled, but temperature enters the problem only as a parameter
through the constitutive equation. The tensor coefficients in the above equations
are related as ekij = dkmnLmnij , dkij = ekmnMmnij , MijmnLmnkl = Iijkl. We
will use the matrix notation instead of the tensor one, as it is accepted in the
theory of elasticity. For notational convenience the elastic and electric variable
will be treated on equal footing, and with this in mind we recast the local linear
constitutive relations of thermoelectroelasticity for this material in the notation
introduced in [38]. For this purpose, we introduce the matrices of generalized
stresses Σ and strains E (i, j = 1, 2, 3):

Σ =
(

σ
D

)

, Σij = σij , Σi4 = Di, (2.144)

E =
(

ε
E

)

, Eij = εij , E4i = Ei, (2.145)

which are interrelated through the matrices of generalized elastic coefficients
Lαβγδ, compliance Mαβγδ, and generalized coefficients of thermal expansion Λαβ :

Σ = L(E − Λ), E = MΣ + Λ, (2.146)

where the generalized coefficients can be presented in matrix form:

L =
(

L e�

e −k

)

, M =
(

M d�

d −b

)

, Λ =
(

βT θ
qθ

)

(2.147)

as well as in component form:

Lijkl = Lijkl, L4ikl = Li4kl = eikl, (2.148)
Lij4l = Lijl4 = elij , L44kl = Lkl44 = −kkl, (2.149)

Mijkl = Mijkl, M4ikl = Mi4kl = dikl, (2.150)
Mij4l = Mijl4 = dlij , M44kl = Mkl44 = −bkl, (2.151)

Λij = βijθ, Λ4i = Λi4 = qiθ (2.152)

The generalized static equation and the Cauchy conditions of small generalized
deformations are expressed in the form:

∇αΣαβ = fβ , ∇4 ≡ 0, (2.153)
Eαβ = (∇αUβ + ∇βUα)/2, (2.154)

where U = (u1, u2, u3,−φ)�, φ is the electrostatic potential, and fβ is a density of
generalized body forces. Equations (2.153) and (2.154) should be complemented
by the boundary conditions of the first or the second type. Except for notations,
these equations coincide with the equations of linear thermoelasticity (2.126).
Because of this the theory of piezoelectric composite materials (PCM) retraces
at a particular instant the path of development of the theory of microinhomo-
geneous elastic media, exhibiting substantial progress. In light of the analogy
mentioned in our brief survey we will not consider in detail the PCM; one may
refer instead to the appropriate scheme of thermoelastic composites.
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2.4.3 Matrix Representation of Some Symmetric Tensors

Many material (e.g., elastic moduli (2.90)) and field (e.g., the stresses (2.50))
tensors have internal symmetry with respect to pairs of indices. Although all cal-
culations with these tensors can be done by common methods of tensor analysis
(see Section 2.2), it is sometimes convenient to introduce a contracted notation
significantly simplifying the calculations. It is possible to form six different pairs
ij for permuted indices i, j (i, j = 1, 2, 3). Then the pair of these Latin indices
ij can be substituted by a single Greek index α ranging from 1 to 6 according
to the Voight notation:

tensor notation ij = 11 22 33 23 32 13 31 12 21
matrix notation α = 1 2 3 4 5 6 , (2.155)

which can be presented in a formula form (no sum on i, j):

α = iδij + (9 − i − j)(1 − δij). (2.156)

To avoid confusion, it should be mentioned that the prescribed reduction rule
ij ↔ α between the Latin and Greek indices is also used for Latin indices ij ↔ k
(i, j = 1, 2, 3, k = 1, . . . , 6) where the correspondence between the pair indices
and one index is provided by the scheme (2.155). We will also use this traditional
form of an accordance.

We accept the convention that for the tensors with the prescribed aforemen-
tioned symmetry, Greek indices α, β, γ range from 1 to 6 and are connected with
the pairs of Latin indices ij, kl and others by relation (2.155). In such a case, the
tensor representations of the thermoelastic constitutive equations (2.126) can be
presented in matrix notations:

σγ = Lγδεδ + αγ , εγ = Mγδσδ + βγ . (2.157)

It is also required that the tensor representations of widely used scalar pro-
ductions L : M and σ : ε have an appropriate vector form LλµMµν

= δλν ,
σijεij = σλελ with the standard assumption of summation over the repeated in-
dices. However, it is conceivable to show that if the quantities corresponding to
the different tensors are formed by one and the same rule (such as e.g. σij = σλ),
the equalities either (2.156) or (2.157) cannot be fulfilled. The mentioned in-
consistency can be avoided if the following matrix representations of tensors are
used (i, j, k, l = 1, 2, 3; λ, µ = 1, . . . , 6)

εij =
ελ

2 − δij
, σij = σλ, (2.158)

Lijkl = Lλµ, Mijkl =
Mλµ

(2 − δij)(2 − δkl)
. (2.159)

In so doing, the transition to Greek indices for all symmetric second-rank tensors
could be done in the unique manner αij = (2 − δij)−1/2αλ.

Since the components of the stress and strain tensors are functions of the
orientation of the reference system, the elastic coefficients in Eqs. (2.1261) (and,
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analogously, in Eq. (2.1262)) are also tensor functions of this orientation and
they can be presented in a new coordinate system:

L′ = ggLg�g�, L′
ijkl = qimgjngkoglpLmnop (2.160)

with the relevant transformation for the strain tensors:

ε′ = ggε, ε′ij = gikgjlεkl. (2.161)

These tensors as well as the thermal expansion and thermoelasticity coefficients
are transformed using Voight reduced components as

L′ = qLL(qL)�, M′ = qRM(qR)�, (2.162)

σ′ = qLσ, ε′ = qRε, αT ′
= qLαT , βT ′

= qRβT . (2.163)

where the fourth-order tensors qL and qR =
[
(qL)−1

]� presented in the form of
(6 × 6) transformation matrices:

qL =
(

K1 2K2

K3 K4

)

, qR =
(

K1 K2

2K3 K4

)

, (2.164)

are combined by four matrices (3 × 3):

K1 =

⎛

⎝
g2
11 g2

12 g2
13

g2
21 g2

22 g2
23

g2
31 g2

32 g2
33

⎞

⎠ , K2 =

⎛

⎝
g12g13 g13g11 g11g12

g22g23 g23g21 g21g22

g32g33 g33g31 g31g32

⎞

⎠ ,

K3 =

⎛

⎝
g21g31 g22g32 g23g33

g31g11 g32g121 g33g13

g11g21 g12g22 g13g23

⎞

⎠ ,

K4 =

⎛

⎝
g22g33 + g23g32 g23g31 + g21g33 g21g32 + g22g31

g32g13 + g33g12 g33g11 + g31g13 g31g12 + g32g11

g12g23 + g13g22 g13g21 + g11g23 g11g22 + g12g21

⎞

⎠ . (2.165)

The elements of the matrices qL and qR can be represented by means of the
formulae

1
2
(gi′kgj′l + gi′lgj′k) =

qR
λ′µ

2 − δi′j′
=

qL
λ′µ

2 − δkl
, (2.166)

where the index λ′ corresponds to the pair i′j′, and µ to the pair kl.
The equations describing the piezoelectric effect (2.142) and (2.143) can be

presented in the matrix form:

εγ = Mγδσδ + dγiEi + λγ , Di = eiγεγ − kijEj + piθ, (2.167)

which leads to the following recalculation rules for the coefficients (jk ↔ γ):
dijk = (2 − δjk)−1diγ , eijk = eiγ with Latin indices ranging from 1 to 3. The
transformation formulae for quantities diγ and eiγ in the old ek and new e′k
(k = 1, 2, 3) coordinate systems with the cosine matrix gij (2.4) are

d′iγ = gijq
R
γδdjδ, djδ = g�jiq

L
δγd′iγ , e′iγ = gijq

L
γδejδ, ejδ = g�jiq

R
δγe′iγ . (2.168)

The recalculation rules and the transformation formulae can be obtained by
the same method for other coefficients characterizing piezoelectric properties of
crystals (for details see [1015]).
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2.5 Symmetry of Elastic Properties

Under an orthogonal transformation (2.6) the elastic stiffnesses L′
ijkl referred to

the e′i coordinate system are described by Eq. (2.160). When L′ = L, i.e.,

Lijkl = gipgjqgkrgstLpqrt, (2.169)

the material is said to possesses a symmetry with respect to g, which is called a
symmetry transformation. If g is a symmetry transformation, g−1 = g� is also a
symmetry transformation, and if g and q are two symmetry transformations then
gq is also a symmetry transformation. The set of all symmetry transformations
at x ∈ E forms a symmetry group Sx with the unit transformation δ. The group
Sx always contains the two-element subgroup {δ,−δ}. We describe by g(ωn)
(A.1.2) a right-handed rotation by the angle ω, 0 < ω < π, about an axis
oriented in the direction of unit vector n. The transformation R(n) = −g(πn)
is called a reflection in the plane P (n) with the normal unit vector n. A unit
vector n is called an axis of symmetry at x if gn = n for some g ∈ Sx, with
g �= δ. A plane P (n1,n2), spanned by two mutually orthogonal unit vectors
n1 and n2, is called a plane of symmetry at x if gn1 = n1 and gn2 = n2,
for some g ∈ Sx, with g �= δ. The condition symmetry (2.169) introduces a
restriction on the elastic moduli L. A triclinic material has a minimum symmetry
group Sx formed by the two-element group {δ,−δ}. According to Eq. (2.90), the
number of independent elastic coefficients for the general anisotropic linearly
elastic triclinic materials is reduced from 34 = 81 to 21, which is the number of
terms on the main diagonal of the matrix L and the five subdiagonals above it:
6+5+4+3+2+1 = 21. This number is reduced when the symmetry of the crystal
class of medium is accounted for. A material is called monoclinic if for any x ∈ E
the symmetry grope Sx is formed by the transformations ±δ,±g(π,n) for any
x ∈ E . An orthotropic has the symmetry group Sx formed for any x ∈ E by the
transformations ±δ,±g(π,n1),±g(π,n2),±g(π,n3), where n1,n2,n3 are three
mutually orthogonal unit vectors. A material is called transversally isotropic
with respect to the direction n if its symmetry group Sx (∀x ∈ E) consists of the
transformations ±δ and ±g(ω,n) with 0 < ω < π.

Depending on the number of rotations and/or reflection symmetry a crystal
possesses, the 6 × 6 matrix L can be represented by one of the eight groups
summarized in [821]. If the matrix L′ referred to a different coordinate system
e′i is desired, the transformation (2.160) is used.

Let us consider polycrystalline aggregates of an orthorhombic system. Then
for the classes of symmetry with nine independent elastic constants, the tensors of
the elastic moduli and compliance of a crystallite in the crystallographic system
of coordinates can be represented in the form (see, e.g., [995]):

Lijkl =
∑

n

[
λnδinδjnδknδln + µn(δinδjnδkl + δijδknδln)

+ νn(δinδjkδln + δjnδikδln + δinδjlδkn + δjnδilδkn)
]
, (2.170)

Mijkl =
∑

n

[
pnδinδjnδknδln + qn(δinδjnδkl + δijδknδln)
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+ rn(δinδjkδln + δjnδikδln + δinδjlδkn + δjnδilδkn)
]
, (2.171)

where the elastic constants λn, µn, νn and pn, qn, rn (n = 1, 2, 3) are defined
by the matrix representation of the elastic moduli Lmn and stiffness Mij in the
crystallographic system:

λ1=L11 + L23 + 2L44 − (L12 + L13 + 2L55 + 2L66),
λ2=L22 + L13 + 2L55 − (L12 + L23 + 2L44 + 2L66),
λ3=L33 + L12 + 2L66 − (L13 + L23 + 2L44 + 2L55),

2µ1=L12 + L13 − L23, 2ν1 = L55 + L66 − L44,

2µ2=L12 + L23 − L13, 2ν2 = L44 + L66 − L55,

2µ3=L13 + L23 − L12, 2ν3 = L44 + L55 − L66,

p1=M11 + M23 + M44/2 − (2M12 + 2M13 + M55 + M66)/2,

p2=M22 + M13 + M55/2 − (2M12 + 2M23 + M44 + M66)/2,

p3=M33 + M12 + M66/2 − (2M13 + 2M23 + M44 + M55)/2,

2q1=M12 + M13 − M23, 8r1 = M55 + M66 − M44,

2q2=M12 + M23 − M13, 8r2 = M44 + M66 − M55,

2q3=M13 + M23 − M12, 8r3 = M44 + M55 − M66, (2.172)

In particular, for tetragonal crystals, the relations L11 = L22, L13 =
L23, L44 = L55 reduce the number of unknown elastic constants from nine
to six:

λ1=λ2 = L11 − (L12 + L66),
λ3=L33 + L12 + 2L66 − 2(L13 + 2L44),

2µ1=2µ2 = L12, 2µ3 = 2L13 − L12,

2ν1=2ν2 = L66, 2ν3 = 2L44 − L66. (2.173)

For hexagonal crystals,the addition condition 2L66 = L11 − L12 takes place
substitution of which into Eq. (2.173) leads to

λ1=λ2 = 0, λ3 = L11 + L33 − 2(L13 + 2L44),
2µ1=2µ2 = L12, 2µ3 = 2L13 − L12,

4ν1=4ν2 = L11 − L12, 4ν3 = 4L44 + L12 − L11. (2.174)

For cubic symmetry, substitution of the conditions L22 = L33, L12 =
L13, L44 = L66 into Eq. (2.173) gives

λ1=λ2 = λ3 = L11 − L12 − 2L44,

µ1=µ2 = µ3 = L12/2, ν1 = ν2 = ν3 = L44/2. (2.175)

At last, a material is called elastically isotropic if its elastic properties are inde-
pendent of direction. In the case of cubic crystal symmetry this is realized when
L44 = (L11 − L12)/2. The deviation of the cubic lattice from an isotropic one
can be quantified by the so-called Zener anisotropy ratio
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Z =
2L44

L11 − L12
. (2.176)

Substitution of an additional condition 2L44 = L11−L12 for the isotropic medium
into Eq. (2.175) yields

λ1=λ2 = λ3 = 0, µ1 = µ2 = µ3 = L12/2,

ν1=ν2 = ν3 = (L11 − L12)/2. (2.177)

The representation of elastic moduli in the reference coordinate system
(Ox′, Oy′, Oz′) can be obtained by the use of rotation g ∈ O3 from the ten-
sors L (2.170) and M (2.171) according to Eqs. (2.160) and (2.161), respectively.
The final representation is simplified in exploiting of the identities gijδjn = gin

and gijgkj = gik:

L′
ijkl =

∑

n

[
λngingjngkngln + µn(gingjnδkl + δijgkngln)

+ νn(ginδjkgln + gjnδikgln + ginδjlgkn + gjnδilgkn)
]
, (2.178)

M ′
ijkl =

∑

n

[
pngingjngkngln + qn(gingjnδkl + δijgkngln)

+ rn(ginδjkgln + gjnδikgln + ginδjlgkn + gjnδilgkn)
]
. (2.179)

where the elastic constants λn, µn, νn and pn, qn, rn (n = 1, 2, 3) are defined
by the matrix representations Lij and Mij in the crystallographic coordinate
system (2.172).

In particularly, for the tetragonal crystals (2.173),

L′
ijkl = L12δijδkl + L66(δikδjl + δilδjk) + (L11 − L12 − 2L66)

∑
ijkl

+ (L33 − L11 + 2L12 − 2L13 + 4L66 − 4L44)Tijkl

+ 2(L44 − L66)(T(ikδjl) + T(ilδjk)) + 2(L13 − L12)T(ijδkl), (2.180)

for hexagonal crystals (2.174),

L′
ijkl = L12δijδkl + (L11 − L12)(δikδjl + δilδjk)

+ (L33 + L11 − 2L13 − 4L44)Tijkl + 2(L13 − L12)T(ijδkl)

+ (L12 − L11 + 2L44)(T(ikδjl) + T(ilδjk)), (2.181)

for cubic crystals (2.175),

L′
ijkl = L12δijδkl + L44(δikδjl + δilδjk) + (L11 − L12 − 2L44)

∑
ijkl, (2.182)

and for the isotropic material (2.177),

L′
ijkl = L12δijδkl + L44(δikδjl + δilδjk). (2.183)

Here one introduces the notations



2 Foundations of Solid Mechanics 43

∑
ijkl =

3∑

n=1

gingjngkngln, Tij = gi3gj3, Tijkl = gi3gj3gk3gl3, (2.184)

where the tensors Tijkl and
∑

ijkl show the properties

Tiikl = Tkl, TijklTklpq = Tijpq,
∑

iikl = δkl,
∑

ijkl

∑
klpq =

∑
ijpq.

(2.185)
The representation (2.182) for the cubic crystals can be also presented in

more detailed form:

L′
11 = L11 − 2L(g2

11g
2
12 + g2

12g
2
13 + g2

13g
2
11),

L′
12 = L12 + L(g2

11g
2
21 + g2

12g
2
22 + g2

13g
2
23),

L′
44 = L44 + L(g2

12g
2
13 + g2

22g
2
32 + g2

23g
2
33), L ≡ L11 − L12 − 2L44. (2.186)

The inverse transformations from the coefficients Lγν to Mγν can be carried
out by direct inversion of the matrix of known coefficients because LγδMδν = δγν .
However, in some cases the simple relations between the coefficients Lγν and Mγν

are useful. They are presented below for some symmetry groups described, at
most, by seven independent parameters:
Trigonal materials:

M11 + M12 = L33/l, M11 − M12 = L44/l′, M13 = −L13/l,

M14 = −L14/l′, M33 = (L11 + L12)/l, M44 = (L11 − L12)/l′,

l ≡ L33(L11 + L12) − 2L2
13, l′ ≡ L44(L11 − L12) − 2L2

14. (2.187)

Hexagonal materials:

M11 + M12 = L33/l, M11 − M12 = (L11 − L12)−1, M13 = −L13/l,

M33 = (L11 + L12)/l, M44 = L−1
44 ,

l ≡ L33(L11 + L12) − 2L2
13. (2.188)

Cubic materials:

M11 = (L11 + L12)(L11 − L12)−1(L11 + 2L12)−1,

M12 = −L12(L11 − L12)−1(L11 + 2L12)−1,

M44 = L−1
44 . (2.189)

In particular, the elastic constants in the isotropic matrix (A = L,M; Aij =
Lij ,Mij):

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A12 A12 0 0 0
A12 A11 A12 0 0 0
A12 A12 A11 0 0 0
0 0 0 A44 0 0
0 0 0 0 A44 0
0 0 0 0 0 A44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.190)

(where L44 = (L11 − L12)/2, M44 = 2(M11 − M12)) are usually written in the
engineering notations:
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L11 =
E

1 + ν

1 − ν

1 − 2ν
, L12 =

E

1 + ν

ν

1 − 2ν
, L44 =

E

2(1 + ν)
, (2.191)

M11 =
1
E

, M12 = − ν

E
, M44 =

2(1 + ν)
E

, (2.192)

where two independent constants Young’s modulus E and Poisson’s ratio ν can
be also used in the tensor representations (N1 = δ ⊗ δ/3)

L =
3νE

(1 + ν)(1 − 2ν)
N1 +

E

1 + ν
I, M = −3ν

E
N1 +

1 + ν

E
I. (2.193)

Another popular representations of the elastic isotropic properties using Lame’s
constants λ and µ can be formed in both the matrix

L11 = λ + µ, L12 = λ, L66 = µ, (2.194)

and tensor
L = 3λN1 + 2µI, M = 3sN1 + 2qI, (2.195)

notations where the compliances s and q are expressed in terms of elastic con-
stants:

s =
1

3(3λ + 2µ)
, q =

1
4µ

. (2.196)

Due to the decomposition of the unit tensor I into the orthogonal bulk N1

and deviatoric N2 tensors (2.16), the isotropic tensors L and M can also be
decomposed:

L = (3k, 2µ) ≡ 3kN1 + 2µN2, M = (3p, 2q). (2.197)

where k and µ, called the bulk and shear moduli, are related to the appropriate
compliance coefficients p, q by means of the “multiplication table” for the prod-
ucts between the elementary idempotent tensors N1 and N2 (2.17). Then the
inverse tensor L−1

1 ≡ M, and the product L1 : L2 of such tensors, L1 = (3k1, 2µ1)
and L2 = (3k2, 2µ2), can be estimated by the compact formulae:

L−1
1 = (3p, 2q) =

( 1
3k

,
1
2µ

)
, L1 : L2 = (9k1k2, 4µ1µ2). (2.198)

Table 2.1 shows the relationships between the various elastic constants of
isotropic materials.
Table 2.1. Relationships between elastic moduli

Constant λ, µ K, µ µ, ν E, ν E, µ

λ λ K − 2
3µ 2µν

1−2ν
νE

(1+ν)(1−3ν)
µ(E−2µ)

3µ−E

µ µ µ µ E
2(1+ν) µ

K λ + 2
3µ K 2µ(1−ν)

3(1−2ν)
E

3(1−2ν)
Eµ

3(3µ−E)

E (3λ+2µ)µ
λ+µ

9Kµ
3K+µ 2(1 + ν)µ E E

ν λ
2(λ+µ)

3K−2µ
6K+2µ ν ν E

2µ -1
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The bulk and shear components of the isotropic tensors L and M are found
through a suitable contraction of the indices of L and M in the following relations

3k =
1
3
Liikk, 2µ =

1
5
(Likik − 1

3
Liikk), (2.199)

3p =
1
3
Miikk, 2q =

1
5
(Mikik − 1

3
Miikk), (2.200)

which can be used at the estimation of average moduli of isotropic polycrystals.
Transversely isotropic materials have five independent elastic parameters. If

the plane of isotropy coincides with the x1, x2-plane, the elastic and compliance
matrices (A = L,M; Aij = Lij ,Mij):

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A11 0 0 0
0 0 0 A44 0 0
0 0 0 0 A44 0
0 0 0 0 0 A55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.201)

(where L55 = (L11 − L12)/2, M55 = 2(M11 − M12)) can be presented in engi-
neering notations:

L11 = l
( 1

EE3
− ν2

3

E2
3

)
, L12 = l

( ν

EE3
+

ν2
3

E2
3

)
, L13 = l

(1 + ν)ν3

EE3
,

L33 = l
1 − ν2

E2
, L44 = µ3, l =

E2E2
3

(1 + ν)[(1 − ν)E3 − 2ν2
3E]

, (2.202)

M11 =
1
E

, M12 = − ν

E
, M13 = − ν3

E3
, M33 =

1
E3

, M44 =
1
µ3

. (2.203)

Here the Young modulus and the Poisson ratios in the x1, x2-plane are the same,
say, E1 = E2 = E and ν12 = ν21 = ν, respectively. The corresponding shear
modulus µ12 = µ21 = µ is formed as µ = E/2(1 + ν). Young modulus, Poisson
ratio, and the shear modulus associated with the x3-direction and a direction in
the x1x2-plane are denoted by, say, E3, ν13 = ν23 = ν3, and µ13 = µ23 = µ3,
respectively.

For the orthotropic case, the elastic and compliance matrices are defined
by nine independent elastic parameters and can be presented in a coordinate
system coincident with the material symmetry directions as (A = L,M; Aij =
Lij ,Mij):

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A12 A13 0 0 0
A12 A11 A23 0 0 0
A13 A23 A11 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.204)

where, for example, the compliance matrix in engineering terminology becomes
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M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/E1 − ν21/E2 − ν31/E3 0 0 0
− ν12/E1 1/E2 − ν32/E3 0 0 0
− ν13/E1− ν23/E2 1/E3 0 0 0

0 0 0 1/µ23 0 0
0 0 0 0 1/µ13 0
0 0 0 0 0 1/µ12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.205)

We will now consider a unique representation of the constitutive laws and
elastic moduli for a d-dimensional linear isotropic material with bulk modulus
k[d], shear modulus µ[d], Young’s modulus E[d], and Poisson’s ratio ν[d] in the
space dimensionality d (i, j, k, l = 1, . . . , d; d = 2, 3) (see, e.g., [1106]):

σij = (k[d] −
2
d
µ[d])εkkδij +2µ[d]εij , εij = −

ν[d]

E[d]
σkkδij +

(1 + ν[d])
E[d]

σij (2.206)

and

L = dk[d]N1 + 2µ[d]N2, M =
1 + ν[d](1 − d)

E[d]
N1 +

1 + ν[d]

E[d]
N2, (2.207)

where the projection tensors

N1|ijkl =
1
d
δijδkl, N2|ijkl =

1
2
(δikδjl + δilδjk) − 1

d
δijδkl (2.208)

satisfy the normality conditions (2.17) allowing the inverse of relation (2.2071)

M =
1

dk[d]
N1 +

1
2µ[d]

N2. (2.209)

Comparison of representations (2.2072) and (2.209) leads to the interrelations

k[d] =
E[d]

d[1 + ν[d](1 − d)]
, µ[d] =

E[d]

2(1 + ν[d])
,

1
E[d]

=
1

d2k[d]
+

d − 1
2dµ[d]

, ν[d] =
dk[d] − 2µ[d]

d(d − 1)k[d] + 2µ[d]
. (2.210)

Passages to the limits of the positive moduli k[d]/µ[d] → ∞ and µ[d]/k[d] → ∞
in the expression (2.2104) yield the upper and lower limits of ν[d]: −1 ≤ ν[d] ≤
(d − 1)−1, respectively.

Finally, we will consider either plane-strain (ε11 = ε12 = ε13 in Eq. (2.206)
with d = 3) or plane-stress (σ11 = σ12 = σ13 in Eq. (2.206) with d = 3) elasticity.
If we compare these simplified three-dimensional expressions to relations (2.206)
with d = 2, we obtained the interrelations:

E[2] =
E[3]

(1 + ν[3])(1 + ν[3])
, ν[2] =

ν[3]

1 − ν[3]
, k[2] = k[3] +

1
3
µ[3], µ[2] = µ[3],

(2.211)
for plane-strain elasticity and

E[2] = E[3], ν[2] = ν[3], k[2] =
9k[3]µ[3]

3k[3] + 4µ[3]
, µ[2] = µ[3] (2.212)

for plane-stress elasticity, respectively.
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2.6 Basic Equations of Thermoelastoplastic Deformations

2.6.1 Incremental Theory of Plasticity

We assume that the thermomechanical properties of the composite medium with,
generally speaking, anisotropic components are described by the theory of small
elastic-plastic strains under arbitrarily varying external loading. Additive de-
composition of the increments of total strain tensor ε is assumed:

dε = dεe + dεt + dεp, (2.213)

with the increments of the elastic strains dεe, the so-called “transformation
strains” dεt including thermal strains and plastic strains dεp.

The stress increment dσ relates to the elastic part of the strain increment dε
by the elasticity relation given in the form

dσ(x) = L(x) dεe(x), (2.214)

where L(x) is the fourth-order elasticity tensor (2.88).
The transformation strain increment dεt (2.213) may consist of contributions

of different physical origins. For example, if only thermal effects are considered,
εt = βT θ, where βT is the tensor of linear thermal expansion coefficients and θ
is the temperature change from the reference value to the current temperature.

In the six-dimensional stress space, consider a yield surface f(x, . . .) = 0
bonding the region of plastic deformation, in which f(σ, . . .) > 0; here dots stand
for temperature and for internal variables characterizing material hardening. The
behavior is elastic if f < 0, or if f = 0 and [(∂f/∂σ) : dσ + (∂f/∂θ)dθ] ≤ 0
(for the elastic unloading and neutral loading); elastic-plastic deformations take
place under active loading, when f = 0 and [(∂f/∂σ) : dσ + (∂f/∂θ)dθ] > 0.
In the general case, the yield surface can depend on a variety of tensor ap and
scalar hardening parameters. The hardening tensor parameter, in particular,
may simply coincide with the plastic-strain tensor. Regarding the constitutive
equations for the elastic-plastic materials we use the so-called J2-flow theory
with combined isotropic-kinematic hardening. The von Mises form of the yield
surface is given by

f ≡ τ − F (γ, θ) = 0, F (0, θ) = τ0(θ) (2.215)

in terms of von Mises effective stress, τ , and the accumulated effective plastic
strain increment, γ, respectively, as defined by

τ =
(

3
2
sa

ijs
a
ij

)1/2

, dγ =
(

2
3
dεp

ij dεp
ij

)1/2

, sa = N2(σ − ap). (2.216)

Here τ0 is the initial yield stress, F is a nonlinear function describing the harden-
ing effect and temperature dependence, for example as in the modified Ludwik
equation:

F (γ, θ) = τ0(θ) + h(θ)γn(θ), (2.217)
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where h and n are hardening parameters. sa is the active stress deviator; ap is
a symmetric second order tensor corresponding to the “back-stresses” defining
the location of the center of the yield surface in the deviatoric stress space. For
evaluation of the back stress tensor ap we use Ziegler’s assumption:

dap = dγAsa, A ≡ A(γ), (2.218)

or Prager’s rule
dap = Bdεp, B ≡ B(γ), (2.219)

respectively, with ap = 0 if γ = 0. In the case ap ≡ 0, h �= 0, Eqs. (2.215) and
(2.216) are reduced to the isotropic hardening; the case h ≡ 0, ap �= 0 correspon-
dents to the kinematic hardening. Though the von Mises yield criterion (2.215)
is assumed in this study, modifications of the present method for introducing
other yield criteria and hardening laws are possible.

Drucker’s postulate states that the work of additional stresses is positive over
the whole cycle. Then for any stress state σ0 within or on the convex yield surface
the local maximum principle (σ−σ0) : dεp ≥ 0. Drucker’s postulate leads to the
necessity of the associated law of plastic flow when the smooth yield function f
is taken as plastic potential function from which the incremental plastic strain
can be derived as

εp = dλ
∂f

∂σ
, for f = 0,

∂f

∂σ
: dσ > 0, (2.220)

where the plastic flow is fixed in the direction along the normal to the yield
surface, while its magnitude dλ, called a proportionality factor, is undetermined.
For consistency during plastic deformation:

df ≡ ∂f

∂σ
: dσ +

∂f

∂ap
: dap +

∂f

∂γ
dγ +

∂f

∂θ
dθ = 0. (2.221)

Substitution of (2.216), (2.218), (2.219) in (2.221) leads to the determination of
dλ by

dλ = G

(
∂f

∂σ
: dσ +

∂f

∂θ
dθ

)

, (2.222)

where the proportionality parameter G is defined by the explicit form of harden-
ing rule (2.217)–(2.219). For example, for isotropic-kinematic hardening, (2.217),
(2.218), we have

G = −
(

∂f

∂γ
+ A(γ)

∂f

∂ap
: sa

)−1 (
2
3

∂f

∂σ
:

∂f

∂σ

)−1/2

. (2.223)

The associated flow law (2.220) requires the smoothness of the yield surface
with a defined normal to the surface. However, the plastic flow corresponding
to edges or vertexes of the yield surface f = 0 originated by the intersections
of smooth surfaces fα = 0 (α = 1, . . .) can be estimated from superposition
principle by Koiter [581]:
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dεp =
∑

α=1

dλα
∂fα

∂σ
, (2.224)

fα = 0,
∂fα

∂σ
: dσ ≥ 0. (2.225)

A state of stress on the yield surface is described by a value of zero of one or more
yield functions, all other yield functions being negative. In so doing, the nonzero
proportionality factors dλα correspond only to the yield surfaces satisfying the
conditions (2.225).

2.6.2 Deformation Theory of Plasticity

It is assumed that the rheological properties of isotropic media are described by
the theory of small elastoplastic strains under monotonic, proportional loading
when the ratio of the stress components σ11 : σ22 : σ33 : σ13 : σ23 : σ12 is held
constant at all time. Specifically, the total strain ε is written as the sum of elastic
εe and plastic εp contributions:

ε = εe + εp, (2.226)

where the mean stress and mean strain are linearly related: σii = 3kεii. The
local equation for the elastic material state, which relates the stress tensor σ(x)
and the elastic strain tensor εe(x), is given in the form (2.214) where L(x) is an
isotropic fourth-order elasticity tensor described by the Young’s modulus E and
the Poisson’s ratio ν (2.193).

The relation between flow stress and plastic strains is represented by the
expression

τ = τ0 + f(εp
eq), f(0) = 0 (2.227)

in terms of the von Mises effective stress τ and the effective plastic strain εp
eq,

defined as

τ =
(

3
2
sijsij

)1/2

, εp
eq =

(
2
3
εp

ijε
p
ij

)1/2

, s ≡ N2σ. (2.228)

In Eq. (2.227), τ0 is the initial yield stress and f is a nonlinear function describing
the material’s hardening behavior, for example:

f(εp
eq) = h(εp

eq)
n, (2.229)

where h and n are the strength coefficient and the work-hardening exponent,
respectively. The material remains elastic, i.e., εp ≡ 0, when τ < τ0. In addition,
Hencky’s flow rule

εp
ij =

3εp
eq

2τ
σij (2.230)

is adopted. A more general relation given in Prager’s form is

εp
ij = αsij + βtij , (2.231)
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where tij = sikskj−2/3J2δij is the deviation of the square of the stress deviation,
and for an isotropic materials α and β are the functions of the invariants J2 =
sijsij/2 and J3 = sijsjkski/3.

Based on relation (2.226) one may determine the secant modulus as

Es =
[

1
E

+
εp
eq

τ0 + f(εp
eq)

]−1

. (2.232)

Due to the plastic incompressibility the secant bulk modulus ks is equal to k,
and we may accordingly define the secant Poisson’s ratio and shear modulus:

νs =
1
2
−

(
1
2
− ν

)
Es

E
, µs =

Es

2(1 + νs)
. (2.233)

Both here and below the superscript s indicates the calculation of the parameter
under consideration with the help of the secant modulus Es. Therefore, under a
monotonic, proportional loading, the plastic state can be described by a single
secant modulus, say Es, and the other two elastic constants. For these loading
the incremental flow rule can be integrated to yield the deformation rule.
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Conclusion. Critical Analysis of Some Basic
Concepts of Micromechanics

T is strange,- but true, for Truth is always strange-
Stranger than fiction ...

-Lord Byron. Don Juan.

If you can look into the seeds of time,
And say which grain will grow and which will not,
Speak then to me ...

-William Shakespeare. Macbeth.

Let us discuss the main scheme as well as the short sketch of limitations
and ideas as well as possible generalizations of some basic concepts of the linear
version of the MEFM and some related methods (see Chapters 7-14). This sketch
does not pretend to be rigorous and may contain controversial statements, too
personal or one-sided arguments which are deliberately presented with the aim
to give free reins to our imagination.

Let us consider the basic equations of linear elasticity of composites in mi-
cropoint (see Chapter 8 for details):

∇σ = 0, σ(x) = L(x)ε(x), ε(x) = Defu(x). (19.1)

Substituting (19.12) and (19.13) into the equilibrium equation (19.11) we obtain
a differential equation:

∇Lc∇u(x) = −∇L1(x)∇u(x) (19.2)

with the constant coefficients in the left-hand side that allows the general integral
equation (7.19)

ε(x) = 〈ε〉(x) +
∫

Uc(x − y)[τ (y) − 〈τ 〉]dy. (19.3)

where the tensor Uc = ∇∇Gc is defined by the Green function Gc (3.3) for the
infinite homogeneous medium with an elastic modulus Lc.

Equation (19.3) can be rearranged in the form of an infinite system of integral
equations (8.8)–(8.11) that can be solved by the different approximate methods
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considered in Chapters 8 and 9. The main hypothesis of many micromechanical
methods called effective field hypothesis H1) (8.14) and (8.15) allows the infi-
nite system for integral equations with respect the smooth effective fields for any
shape and structure of inclusions [see Eqs. (8.18) and (8.19)]. However, a gener-
ality of the last statements is an illusion because arbitrariness of the inclusion
shape does not guarantee a protection from the necessity of using of Eshelby
tensor in the MEFM. Indeed, the notion Eshelby tensor has a fundamental con-
ceptual sense rather than only an analytical solution of some particular problem.
Exploiting the Eshelby tensor concept in the MEFM is based on the ellipsoidal
shape of the correlation hole v0

ij rather than on the inclusion shape vi. An aban-
donment of the assumption of the v0

ij ’s ellipsoidal shape leads of necessity to the
inhomogeneity of the effective field σi acting on the inclusion vi that is prohibited
for the classical version of the MEFM (see Sections 9.4).

For statistically homogeneous medium subjected to homogeneous boundary
conditions, two-particle approximation of a closing hypothesis H2 (8.39):

〈σ̃(x)1,2〉i = 〈σ(x)〉i = const. (i = 1, 2). (19.4)

reduces this system to the system of algebraic Eqs. (8.40). Further simplification
is accomplished by “quasi-crystalline” approximation by Lax (8.65):

〈σi(x)|vi,xi; vj ,xj〉 = 〈σi〉, x ∈ vi (19.5)

which is weaker than Mori-Tanaka assumption (8.90):

σi ≡ 〈σ〉(0). (19.6)

The Mori-Tanaka hypothesis (19.6) is probably the most popular hypothesis of
micromechanics which at the same time exerted most deleterious impact on the
development of this subject. Harmful effect is explained not only by the loss of
the effective modulus symmetry (see Subsections 8.3.3 and Section 18.3) in some
general cases but, that is crucial, by self-closing nature of the hypothesis (19.6).
The seeming simplicity and illusory assuredness hide the ways of generalization
of this hypothesis while an extension of “quasi-crystalline” approximation (19.5)
to the closing hypothesis (19.4) is obvious.

Summarizing what we said above, we will present now the contractions of
some concepts and assumptions erroneously recognized in micromechanics as
basic ones: a) constitutive equation, b) homogeneous comparison medium, c)
Green function, d) Eshelby tensor, e) effective field hypothesis H1.

The fallacy in these recognitions will be justified in an inverse order.
Indeed, we demonstrated in the book two methods of analyses of the

inhomogeneous effective fields σi. In the first case of statistically homogeneous
medium subjected to the homogeneous boundary conditions, the inhomogeneity
of σi takes place if the correlation hole v0

ij is nonellipsoidal that leads to the
problem of the estimation of stress distribution in the domain v0

ij undergoing
to the constant eigenstrains β1(x) ≡ const, L1(x) ≡ 0 (x ∈ v0

ij) (see Subsec-
tions 4.2.3 and Section 9.4). A more general second method applicable for the
analysis of both statistically homogeneous and statistically inhomogeneous fields
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in both the infinite and bounded media, and for any shape of v0
ij is reduced to

the estimation of perturbations produced by the inclusion vj in both inside and
outside in some vicinity of the inclusion vj (see Eq. (14.63)). In so doing these
perturbations evaluated by any either numerical or analytical method available
for a researcher are reduced to the classical Eshelby internal and external tensors
only in some particular simplest cases.

Thus the popular effective field hypothesis H1 is not fundamental and can
be easily avoided if it is known the numerical solution just for one inclusion
obtained by any numerical method available for researcher. Known numerical
methods such as FEA, VIE, BIE, and the complex potentials, which can be used
for micromechanical analysis, have a series of advantages and disadvantages.
It is crucial for the analyst to be aware of their range of applications. This
solution only in simplest cases is expressed through the Green function and
Eshelby tensor which are not, in general, necessary tools in micromechanics. In
the case of taking of multiparticle interactions into account, a solution for a single
inclusion should be complemented by a solution for n interacting inclusions in
the comparison medium that also can be performed without the notions Green
function and Eshelby tensor (see Chapters 10 and 14) by the use of operator
representations of these solutions. In so doing, the existence of the mentioned
operators was justified through the Green function’s technique.

The challenge of modern micromechanics is a development of the general
methodology incorporating the solution for multiple interacting inhomogeneities
obtained by highly accurate numerical methods into the most general scheme
of analytical micromechanics (see Chapters 10-12, and 14). A fundamental dif-
ference between the proposed methodology and the ones published earlier is a
systematic analysis of statistical distributions 〈σ(⊗σ)n〉(k)(x) (n = 0, 1, . . . ; k =
0, 1, . . . , N ; x ∈ v(k)) of local microfields rather than only effective properties
based on the average fields inside the phases 〈σ〉(k). Moreover, this approach
allows us to estimate the conditional moments of stresses inside the fixed
inclusions vi: 〈σ(⊗σ)n〉i(xl) (xl ∈ vi ⊂ v(k)), which are more informative than
〈σ(⊗σ)n〉(k)(x) (x ∈ v(k)) (see Chapter 14). Obviously, the analysis of non-
linear phenomena such as plasticity, creep, and damage should use precisely
〈σ(⊗σ)n〉i(xl) (xl ∈ vi ⊂ v(k)), rather than 〈σ(⊗σ)n〉(k)(x) (x ∈ v(k)) (see
Chapters 15 and 16), which is a too rough descriptor of the stress distribution
especially in the case of statistically inhomogeneous media in bounded domains
(see Chapters 10, 13, and 14).

Furthermore, popular assumptions about homogeneity of the comparison
medium and their unboundedness (19.2) were in reality accepted exclusively
for introduction of a much more powerful tool of micromechanical research such
as Green’s function; see Eq. (19.3). However, the eventual abandonment of the
Green function concept (see Chapters 10, 11, and 14) removed any restrictions
on the comparison medium in the case of linear elastic problems. A compar-
ison medium can either coincide with the whole space or be bounded by any
surface (either simple connected or multiply connected). Elastic properties and
eigenstrains of the comparison medium can be either homogeneous or inhomo-
geneous. A single restriction on the inhomogeneity of a comparison medium is a
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deterministic nature of this inhomogeneity. So, a comparison medium can have
either continuously varying elastic moduli or piecewise constant elastic properties
such as e.g. periodic structure (see Chapter 11) or two joint elastic half spaces.
The bounded or unbounded medium with one or a few fixed macroinclusions
(e.g. macrocracks) can also be considered as a comparison medium. However,
at any rate, we need only to know the numerical solutions for the mentioned
comparison medium containing one and a few interacting micro inclusions with
any their possible location in the comparison medium.

At last, must we really know a local constitutive law (19.12) if we are going to
estimate the effective elastic moduli of composite materials? At first glance this
question is beyond the scope of common sense. However, despite the apparent
paradoxicality, the correct answer to this question is no, in the following sense.
Indeed, it was demonstrated in Section 18.2 that we don‘t need to know anything
about either local or nonlocal nature of constitutive laws of inclusions. We only
need to know that these laws are linear and also need to know the concentrator
factors Aσ(x) and Bσ(x) (18.10) (which can be found directly, e.g., from MD
simulations) at least for one inclusion in a comparison medium mentioned above.

Shortening what we said above, we can conclude that for linear elastic prob-
lems for microinhomogeneous medium of random structure:

a) we do not need to know a constitutive law for the inclusions,
b) we do not need to assume the homogeneity and infiniteness

of a comparison medium,
c) we do not need to know the Green tensor and Eshelby tensor, and
d) we do not need to assume homogeneity of the effective fields σ(x).

What we really need is the numerical solutions for one and a few interacting
inclusions with any their possible location in the comparison medium described
above.

Thus, in the framework of a unique scheme of the proposed MEFM, we have
undertaken in this book an attempt to analyze the wide class of statical and
dynamical, local and nonlocal, linear and nonlinear multiscale problems of com-
posite materials with deterministic (periodic and nonperiodic), random (statis-
tically homogeneous and inhomogeneous, so-called graded) and mixed (periodic
structures with random imperfections) structures in bounded and unbounded
domains, containing coated or uncoated inclusions of any shape and orientation
and subjected to coupled or uncoupled, homogeneous or inhomogeneous external
fields of different physical natures.


