
Chapter 2

FOUNDATIONS
Global Database Query and Market-based Resource Allocation

1. O V E R V I E W

As the evolution of enterprise integration continues (see Chapter 1),
the evolution of the technology for information integration continues. Scope
of integration has been and will continue to be the driving force of the
evolution and the determinant of the technology. The Enterprise
Collaboration results developed in this book is a part of the evolution, and
hence should be put in the larger context of the field of enterprise
information integration. For the purpose of the research, we recognize two
particular foundations based on which the TSCM results have been
developed. The first is Global Database Query, of which the federated
databases results are arguably the most noticeable and influential for the
industry. The second is the market-based approaches to information
exchange, which include a variety of results ranging from auction-oriented
algorithms to agent-based market models. Among them, we focus mostly on
the concepts and methods that have impacted our work and that have a direct
bearing to the TSCM results from a comparison perspective. In the review of
the previous results, we implicitly keep this context in mind: the integration
environment that the field faces today is increasing on a global scale,
perhaps numbering in the hundreds of millions of data sources.
Furthermore, these global resources are owned and managed by disparate
groups or individuals, with unique policies, schedules, and agendas. It is in
this context that we emphasize independent databases as the target of
integration.

22

The effort to integrate these resources manifest itself in a number of
fields from a number of perspectives, which include but are not limited to
grid computing and agent-oriented computing systems as well as distributed
database systems. Each approach shares similar concerns: (1) how to
dynamically scale the integration architecture, (2) how to dynamically
include new resources, and (3) how to accommodate heterogeneous
resources, both in content and physical capabilities. Although we review
only the very limited subset that concerns the TSCM directly, it should still
be pointed out that the larger trend in the larger literature certainly helps to
solidify our concept and design.

The market-based results, including multi-agents, are reviewed first.
The ensuing review on Global Query results also includes some popular
Internet-motivated technologies such as Peer-to-Peer systems and Web
Services.

2. MARKET-BASED MECHANISMS FOR
RESOURCE MANAGEMENT AND
ALLOCATION: MATCHING, AUCTION, AND
AGENTS

Market-based systems, or systems that simulate a market economy,
have emerged as compelling mechanisms for resource allocation. One
advantage with this approach is the ability to deal with the integration
complexity inherent to heterogeneous, distributed and autonomous
resources. In these simulated economies, buyers represent resource
consumers (e.g. applications, users) and sellers represent resource providers
(e.g. database, CPU). Buyers and sellers trade resources, exchanging goods
and/or services for profit. An underlying economic model, such as an
auction or fixed price model facilitates the interaction between buyers and
sellers. The applications of economic models for resource management are
now widespread, including resource allocation and management in
computing systems, manufacturing systems, communication networks. Grid
computing, multi-agent systems, and distributed database management
systems. Clearwater (Clearwater 1996) provides a survey of a diverse set of
applications that offer market-based control of distributed resources.

In (Kwiat 2002), an illustration of the similarities between
information grids and electric power grids suggests that they both offer
dependable service requirements, infrastructure for large-scale pooling of
resources, consistency of service, and pervasiveness. However, management
issues arise due to the complexity of the resource allocation problem. It is

23

suggested that this can be solved by creating a market and allowing prices to
allocate the resources. Whereas the application of the market to the electric
power grid failed (e.g. the notorious California energy crisis (Kuttner 2002;
Bushnell 2004)), this was primarily due to the fact that supply was
significantly less than demand, and increasing resources required expensive
(time and cost) new infrastructure. On the other hand, adding more resources
to the information grid is, comparatively, significantly less expensive, and so
the advantage of pursuing the market model for the information grid is
"appealing" (Kwiat 2002). Doing so provides for arbitrary scale,
heterogeneity of resources, decentralized asynchronous operation, and
tolerance of localized failures (Kwiat 2002).

A brief survey of various economic models used to manage
distributed resources is provided in (Buyya, Abramson et al. 2002).
Identified are: (1) the Commodity Market model, (2) Posted Price model, (3)
Bargaining model, (4) Contract-Net model, and (5) Auction model among
others. In the Commodity Market, consumers are charged for the amount of
resources consumed. Posted price is similar to Commodity Market but
services are priced to increase resource usage and influence greater
consumer interest. In the Bargaining model, consumers bargain with
providers on pricing and usage of the services. In Contract-Net, the
consumer announces a request in the form of bid contract to which providers
compete, while in an Auction, a single provider invites bids to which
consumers offer bid responses. The Grid marketplace is unique in its
capacity to offer these economic models across various resource
management systems, which includes database systems and agent-based
systems. This is demonstrated in the Nimrod-G system, a Grid resource
broker that supports the commodity market, and contract-net economic
models. The Nimrod-G system has the responsibility for resource
discovery, resource trading, scheduling, job execution and results
aggregation, and works in concert with Grid middleware to provide uniform
access to Grid resources and services.

A Market-based architecture to alleviate fraud and counter-
speculation that may arise in agent-to-agent negotiation is described in
(Collins, Youngdahl et al. 1998; Collins, Bilot et al. 2001). The architecture
combines a market, an exchange and a market session, and a series of
services that are utilized across the market infrastructure.

24

EMcltBm§s

Umrket

Ms*et

Msitel

''common "^
Services

' ' Regissr/)
Security)

'" Creoit)
'' Bettsr ^

Business
Bufeaj J

^ Oliier
Services

• ^ ^

Aelmlnfrtritor

Figure 2-1. A Market Architecture for Multi-agent Contracting (Collins, Youngdahl et al.
1998)

The exchange (See Fig. 2-1) is a collection of domain specific
markets in which goods and services are traded. The market facilitates trade
in a specific domain, while the market-session maintains the state of agent
interaction. This intermediary (the market-session) in the agent interaction
provides the aforementioned controls against counter-speculation and fraud.
Agents initiate bids which are submitted to the market-session. The market-
session registers and timestamps the bid, and queries the registry of agents
providing services. Interested agents submit responses back to the market-
session which redirects the responses to the initiating client. A bid
acceptance is issued to the winning bidder. The market-session enforces the
rules of the market, for example, whether trade is by auction; it provides the
registry of agents providing services such that no exhaustive search of the
market needs to be undertaken; and, a common schema for services
description. Since the market-session registers all messages in the agent
interaction, it retains the state of the interaction even over periods of time. It
removes the opportunity for agents to misrepresent bids, rules and
timestamps essentially removing the chance for fraud and counter-
speculation.

ObjectGIobe (Braumandl, Keidl et ai. 2001) provides an open
marketplace where queries are distributed and processed by unrelated
Internet applications, although no particular economic model drives this
interaction. These Internet applications are manifested as data, function and
cycle providers, which can be hosted at a single site, and which offer or sell
services to facilitate distributed query processing, ObjectGIobe provides a
distributed, open and secure environment for query processing. A query is

25

processed by identifying relevant providers using the ObjectGlobe loolcup
service, optimizing tliis plan according to the capabilities of the providers
and user requirements, distributing the plans to the relevant providers, which
will then execute the query. Security and privacy in the infrastructure are
enforced by Java and popular encryption technologies, in addition to
enforcing user and application policies across the distributed resources.

Computational economies have long been apart of the artificial
intelligence (AI) domain, particularly multi-agent systems (MAS). The
interaction of software agents in various MAS's is guided by the electronic
models to facilitate interaction (Maes, Guttman et al. 1999), although other
Multi-Agent Systems (MAS) (Sycara, Paolucci et al. 2003) also employ an
agent communication language (ACL) that aids communication and
interoperation between agents. Software agents are intelligent, autonomous
and persistent and perform tasks on behalf of their owners; decision and
negotiation strategies may differ from agent to agent, but the context of the
interaction (or ontology) must be shared. For example, Kasbah (Maes,
Guttman et al. 1999) is a multi-agent transaction system where buyer and
seller agents negotiate, on behalf of their users, in a centralized marketplace.
Buyer agents bid to seller agents with no restrictions on time or price,
although a utility function is employed to manipulate bid amounts over time.
Likewise, seller agents also benefit from utility functions in their
transactions. See (Maes, Guttman et al. 1999) for a survey of agent systems.
Intelligent agents also have the capability to locate themselves to more
profitable areas of the market (Want, Fiddian et al. 2001). Doing so affords
the agent the opportunity to increase its value in the market, while not doing
so may force the removal of the agent from the market.

Manufacturing enterprises also benefit from the use of market-based
control or economic models for resource management. A modified
Contract-Net protocol is employed in (Heragu, Graves et al. 2002) as the
negotiation protocol for real-time task/job allocation. Intelligent agents
representing manufacturing systems and manufacturing components bid and
negotiate for jobs. The price set for jobs depend on multiple factors
including required processing time (e.g., processing time required for a part),
the utilization of resources (e.g., a material handling device), whether or not
the resource is already committed, as well as system-wide factors.

Business-to-Business (B2B) commerce has been largely aided by
large private trading exchanges, e.g, CommerceOne (CommerceOne 2006).
These are companies that provide a framework to facilitate interoperability
between businesses. The framework may contain a catalog of services
offered by participating companies, a unified view of products that can be
traded, as well as automated trading mechanisms (Sairamesh, Mohan et al.
2002). The exchanges are largely aided by standards (Sundaram and Shim

26

2001; Tsalgatidou and Pilioura 2002) that define a common framework to
which all participating members must subscribe, in order to facilitate trade.

ClfBtAppHcatioB

Ql»«)- |5«l«rt • fKm EKP;|

iidCer-it IS, •: ! • * , . . .
.teier

SQL Parser

, :

Siiifle-Sitf Optimizer

sTrse

Qmiy Impnmttf

; . - IS-;- . I

CMrdimator

£

f
EiKitor

, BBIArj Biddfr

Bid

*• Broker

Kw|MU Ferliii

[K t l WW!] I f

m.

Local
Execution

Componeiit

Middletvare
Laver

Figure 2-2. The Mariposa Architecture (Stonebraker, Aoki et al. 1996)

Mariposa (Stonebraker, Aoki et al. 1996) is a market-based wide-
area distributed database management system (See Fig. 2-2). A primary
problem of the distributed database management approach has been the
complexity of integrating databases distributed over wide-area networks.

27

The market-based approach reduces the complexity to a function of price
and time. Cooperating databases bid in this framework to process queries
initiated by a client application. Each database possesses a client application
that enables the construction of queries, a middleware layer that performs
query preparation and brokering capabilities, and a local execution
component that responds to and executes bids and queries respectively. At
the core of the framework is the concept of budgets. When a query is
submitted by the client application, a budget represented as a non-increasing
function of time, is allocated to the query that represents the value of the
query to the client, that is, the amount that will be paid for the query to be
answered in a specified amount of time. The query and the budget are both
submitted to the Mariposa middleware layer, where it is processed. The
resulting query plans (which may be decomposed into multiple queries
plans) are passed on to the broker, which sends out bids to other Mariposa
sites (the bids consist of the query along with the budget). The bidding
process is facilitated by an advertising system consisting of name servers
that store advertisements from cooperating databases. These databases post
advertisements describing the services offered and brokers read the
advertisements to locate databases willing to execute the bid.

Mariposa utilizes two economic models as the underlying bid
protocol, (1) expensive bid, and (2) purchase order. In the expensive bid
protocol, the broker first submits the bid request to other Mariposa sites.
Interested bidders respond to the broker with a bid that defines the cost for
processing, the expiration date of the bid and the delay to start processing the
bid. The broker assembles all bid responses, chooses the winning bid and
notifies the winning bidder of acceptance. It may or may not inform the
losing bidders. The purchase order protocol is "cheaper" than the expensive
bid due to the lower number of messages required in the bidding process.
Here the broker submits queries to other Mariposa sites without an
expectation that the bid will be processed, and without knowledge of the
costs and delay of the service. Capable and interested bidders process the
query and return the results, along with a bill for services.

The term matchmaking is used within the multi-agent systems
domain to define the entire agent interaction process, from the match on
search terms, to negotiation and then agreement.

The matchmaking process in (Sim and Chan 2000; Sim and Wong
2001) involves the comparison of requests from buyers with advertisements
from sellers that are stored in a Blackboard database. A broker agent is
responsible for identifying matches between requests and advertisements,
which are represented by multi-attribute sets. The matching algorithm is
enabled by a series of conditional loops that compare the attributes of the
requests and advertisements. (Sycara, Lu et al. 1999) on the other hand

28

utilizes an agent capability description language called LARKS (Language
for Advertisement and Request for Knowledge-Sharing) to describe the
requests and advertisements of agents. LARKS supports multiple stages of
matching (or filtering, as described in the (Sycara, Lu et al. 1999)) that span
context matching, similarity matching and constraint matching among
others. The matchmaking process qualifies the type of match; it is an exact
match, plug-in match or relaxed match, where each type of match is derived
from various combinations of the aforementioned filters.

In (Rahwan, Kowalczyk et al. 2002; Kurbel and Loutchko 2003) the
authors delineate between concerns that arise in multi-player negotiations,
such as, one-to-one, one-to-many, and many-to-many agent interactions.
One-to-many and many-to-many interactions are realized through the use of
a coordinating agent that manages (coordinates) the individual one-to-one
agent negotiations (Rahwan, Kowalczyk et al. 2002). Many-to-many
negotiations are achieved by the negotiation of multiple one-to-many
interactions (Kurbel and Loutchko 2003).

In (Di Noia, Di Sciascio et al. 2000) the authors deviate from
negotiation and focus on the search process and the evaluation (ranking) of
matches. They offer two interesting properties of the matchmaking process;
first, the absence of information in a demand or supply should imply
opportunity for refinement rather than rejection. Second, depending on the
perspective taken in the matchmaking process, different evaluations may
arise. If a supply appears to be a subset of a demand, then it would rank
highly as a match, whereas the converse may not be true.

3. GLOBAL QUERY SYSTEMS

Traditional Global Query methods require varying degrees of
control over participating databases, for example, a specific query language
must be shared, or a common data model is necessary to integrate large
numbers of databases. The following literature review explores data
integration in three particular areas, Global Query Systems which is further
classified as Federated Database Systems and other Multidatabase
approaches. Global Schema Integration, and Multidatabase Languages. The
review culminates in a comparative analysis of the related literature with the
Two-Stage Collaboration Model (TSCM).

Global Schema Integration methods (Batini, Lenzerini et al. 1986;
Beynon-Davies, Bonde et al. 1997; Rahm and Bernstein 2001) consolidate
the schemas of multiple distributed databases into a single global schema,
which avails the enterprise user with a unified view of enterprise data.

29

providing system transparency (the user need not be knowledgeable about
system configuration), in addition to resolving semantic conflicts that may
exist among the multiple systems. Federated Database Systems (FDSs)
(Sheth and Larson 1990) provide greater autonomy for local systems,
although a global schema may still be employed for data integration.
Whereas a single global schema is required for data integration in the
aforementioned global schema approach, multiple schemas are allowed in
the federated approach. These multiple schemas vary by control and
complexity, for example, a global federation administrator can define a
global schema, through which all federated databases interact (single
controller, high complexity), or local administrators can define their own
integrated schemas (multiple controllers, low complexity). Multidatabase
Languages (Litwin 1985) are applied to pre-existing heterogeneous database
environments that lack a global controller or integrated schema. No
integration measures are taken to consolidate the distributed databases;
rather, the multidatabase language incorporates the necessary constructs to
query the participating databases. In Multidatabase Languages, knowledge
of the overall database environment is necessary for operation, such that,
users must know where specific data reside in order to perform, joins or
scans on database relations, and so on.

These three aforementioned methods differ in the autonomy and
heterogeneity of the participant distributed databases, which subsequently
affect the scalability of the integration environment. Sheth and Larson
(Sheth and Larson 1990) classify databases with respect to autonomy, which
includes: (1) Design, (2) Communication, (3) Execution, and (4) Association
autonomy. Heterogeneity in distributed databases systems may arise as a
result of either differences in hardware, software or communication
capabilities; or differences in data semantics. (See (Sheth and Larson 1990)
for further details on this subject). For the purposes of this research,
scalability pertains to the ability of the data integration solution to add
increasingly large numbers of databases without compromising functionality
and performance, but rather embracing full advantage of the available
resources. Kossmann (Kossmann 2000) provides a survey of the recent
developments in query processing architectures.

Garlic (Carey, Haas et al. 1995; Haas, Miller et al. 1999) provides
the integration and management of heterogeneous multimedia information
repositories, using an object-oriented modeling paradigm. Multimedia data
include text, images, CAD drawings, and medical objects. The Garlic
architecture consists of data repositories which are independent of the
centralized controller, and are integrated into the Garlic framework via
wrappers that perform query and data transformations (See Fig. 2-3). Each
wrapper translates information about the schemas and queries between

30

Garlic internal protocols and the repositories native protocols. Query
processing is provided by the Query Services and Runtime System
components which avails applications and end users with a unified schema
of the Garlic database through which queries, updates and method
invocation requests are issued. Queries are expressed in an object-oriented
extension to the SQL query language. The Garlic query browser provides
the end user with a graphical interface that supports interactive browsing,
navigation and querying of the Garlic databases.

C++

Application
Oucry/BTOwsfr

Repository
Wrapjiftr

Complex
Object
Repository

Garlic

Query Scivices &

Run! I me System

Rqxjsilory
WrafficT

Repository
Wrafiper

Data

Rqwsitory
Data

Repository

Garlic

Metuclala

Repository

.ilTX:-.
Repository

Wrapper

rxTii
Data

Repository

Figure 2-3. Garlic Architecture (Carey, Haas et al. 1995)

The IBM DB2 (Haas, Lin et al. 2002) architecture is rooted in Garlic
mentioned above, and integrates federated data sources with user defined
functions and wrappers. The simplest approaches to data integration in DB2
is the scalar User-Defined Function (UDF) that returns a scalar result, and
the table UDF, which returns a table as output. The third and most powerful
is the wrapper, which allows the complete integration of a federated data
source. The wrapper is the mediator between the data source and DB2, and

31

maps the source data model to the DB2 data model while also transforming
operations on DB2 to operations at the source. DB2 facilitates system
transparency, heterogeneity, extensibility and autonomy. The underlying
"idiosyncrasies and implementations" are hidden from the user, which arise
due to the variety in the data source, i.e. hardware and software, and so on.
New data sources can be dynamically added, and the functionality of the
data source is not compromised by its addition to the federation.

InfoSleuth (Bayardo, Bohrer et al. 1997) resembles a market-based
system with its use of cooperating agents within an open and dynamic
architecture, but the absence of a computational economy disqualifies it as
such. The heterogeneity of data sources on the World Wide Web and the
inability to access information based on semantic "concepts" in this
environment are the primary concerns of the InfoSleuth project.
Accordingly, agent technologies and domain ontologies are employed to
facilitate information brokering in a dynamic and open environment. The
InfoSleuth architecture consists of cooperating agents that represent
information resources, from users to databases, communicating via
Knowledge Query and Manipulation Language (KQML) (Finin, Fritzson et
al. 1994), which encapsulates queries and requests represented in SQL and
Knowledge Interchange Format (KIF), respectively. User agents represent
users, which interact with the network of agents via a Java applet. The user
agent facilitates the formulation of queries using domain ontologies, and
presents the user with the results. Other agents in the network, including
ontology, broker, resource, task execution, and others, all interact to support
the interoperation of distributed data and services. In particular, the
ontology agent serves as the overall knowledge base of ontologies, providing
all agents in the architecture with an agreed upon terminology of agent
contexts as well as the ontology for the information handled by agents.

The Observer system (Mena, Illarramendi et al. 2000) is concerned
with the loss of semantic information when a query is translated from one
domain to another. Accordingly, Observer's vocabulary sharing translates
queries into a target ontologies given pre-defined mappings defined in an
inter-ontology relationship manager. Observer accounts for inexact matches
in the translation of queries from one domain to another; regarded as partial
translation, by measuring the loss of information given alternative
translations and chooses the one with the least loss of information.

The Carnot project (Collet, Huhns et al. 1991; Singh, Cannata et al.
1997) utilizes the Cyc knowledge base as the basis of a global schema
(Lenat 1995) to facilitate resource integration. Resource integration is
achieved by translating individual resource schemas to the global schema via
articulation axioms that describe the equivalence between components of
different domains. Consequently, queries issued at an individual resource

32

are first translated into the global context language (GCL), both semantically
and syntactically, and then to the local database manipulation languages.
These queries can also be issued against the global view which is then
distributed to the individual resources, although this requires knowledge of
the GCL. The Camot approach avoids the traditional global schema
management problem by merging individual schemas with the global
schema, as opposed to with each other. This not only retains the integrity of
individual and global schemas, but provides for simpler construction and
management of the global schema.

Pegasus (Ahmed, DeSmedt et al, 1991; Ahmed, Albert et al. 1993)
is a heterogeneous, multidatabase management system, based on the object-
oriented data modeling paradigm, that provides native access to
heterogeneous and autonomous databases, and database management
systems. The data abstraction and encapsulation facilities of the object-
oriented paradigm, creates an extensible framework for dealing with the
heterogeneities common in traditional database systems.

Query processing is made more efficient by deploying necessary
application functionality (for example, query operators) to remote sites, as
opposed to consolidating and processing data at a global site. MOCHA
(Rodriguez-Martinez and Roussopoulos 2000) is database middleware,
developed in JAVA, that provides such functionality. In traditional systems,
tremendous effort would be undertaken to deploy the operators throughout
the distributed computer network, or to interconnect multiple data sites, due
to heterogeneities that may exist in the hardware and software, as well as the
overhead realized in data shipping and query shipping. MOCHA deploys
JAVA code dynamically to remote sites, dubbed code shipping, resulting in
improved and efficient query optimization and subsequently reduced query
execution times. The Query Processing Coordinator (QPC) provides the
query processing functionality and deploys all necessary application
functionality to clients and remote sites. The Data Access Provider
interfaces with the data sources, providing an execution engine that
processes the specific application functionality, and so differs from wrappers
found in traditional systems.

The MDV system (Keidl, Kreutz et al. 2002) is a distributed
metadatabase management systems that speeds up access to distributed data
sources by replicating and caching metadata about participating resources
and services in the middle-tier of its three-tier architecture. The architecture
is comprised of Metadata Providers (MDP), Local Metadata Repositories
(LMR) and MDV clients. MDP's synchronize metadata amongst themselves
to provide uniform access to metadata by LMR's; while LMR's cache and
replicate metadata relevant to local users and applications (MDV clients),
using a publish and subscribe algorithm.

33

4. EMERGING INTEGRATION TECHNOLOGIES:
WEB SERVICES, P2P AND THE SEMANTIC WEB

Peer-to-Peer (P2P) networks and Web Services are emerging as de
facto standards for data integration and information sharing. Data providers
and consumers participate in ad-hoc data siiaring arrangements on their own
terms, in real-time, and on-demand. These technologies are inherently
scalable and heterogeneous; however the data sources are partially
autonomous as the data providers typically must subscribe to some global
information sharing standard or proprietary data format of a facilitating
application. It is also important to note that these technologies are
applications that sit a layer above data sources, not core technologies such as
databases and query languages, such that the data sources or database
facilitate data sharing but are typically passive functions of the application.

4.1 Web Services

Business Process Management (Dayal, Hsu et al. 2001) provides for
the automation and integration of business processes, and is presently
manifested as a system of Web Services, that foster a services-oriented
paradigm. As described in (Fremantle, Weerawarana et al. 2002;
Tsalgatidou and Pilioura 2002), the underlying Web Services technology
include SOAP, UDDI, WSDL and WSIL. SOAP, Simple Object Access
Protocol, provides messaging capabilities; while UDDI, Universal
Description, Discovery and Integration protocol, provides directory or
lookup services, which categorize businesses according to industry and so
on. WSIL, Web Services Inspection Language, provides the method to
determine what services are located at a particular site; and WSDL, Web
Services Description Language, offers the ability to describe a Web Service.
The attractive feature of the BPM approach is software and applications can
be componentized and deployed as Web Services, without disruption of their
original functionality. Furthermore, any application or data source can be
deployed as a Web Service as long as they can be described using the open
and standards based WSDL and its associated technologies.

4.2 Peer-to-Peer Networks

In P2P networks, individual nodes connecting to the Internet can
access real-time index of files shared by other active nodes (Parameswaran,
Susarla et al. 2001). P2P networks provide various advantages, most
importantly, improved search capabilities relative to web-based search
engines. Here, data shared is current, since the node refreshes its content

34

whenever connected to the network. Load balancing, redundancy and fauU
tolerance, though typically found in more advanced P2P implementations,
are additional benefits of the P2P architecture, such that content is
distributed throughout the network, and most likely will not be lost if parts
of the network were to fail. However, the downsides of P2P include noise in
resulting query results since there is no standard to describe shared
resources, as well as the semantic heterogeneities that will arise due to
individual naming conventions and content representation.

JXTA on the other hand, is a suite of protocols that facilitate P2P
communication (Waterhouse, Doolin et al. 2002). The protocols are XML-
derived, which provides platform independence and network transparency.
JXTA peers can exist as providers and consumers as well as hubs that
redirect query requests to other peers.

Freenet (Clarke, Miller et al, 2002) is a self-organizing and
decentralized P2P global information storage system, which promotes the
autonomy of system participants. It provides stability and fault tolerance by
automatically replicating and relocating files according to user demand.

4.3 The Semantic Web

As the World Wide Web continues to evolve, it is necessary for
information providers to describe their content with terms that are
universally shared. Hendler (Hendler 2001) posits that ontologies fill this
need by providing a set of terms, including a vocabulary and simple rules of
inference and logic, for some particular topic such as shopping for pets. In
these situations, information providers define and markup content in terms
derived from a central ontology, such as the DARPA Agent Markup
Language (DAML) (Mcllraith, Son et al. 2001). The nature of ontologies
however, allows them to be extended such that information providers can
create a derived ontology which can in turn be used by other providers. The
challenge therefore to achieve widespread use of ontologies, is to develop
tools to simplify these procedures for the average user, and make it trivial to
create semantically defined content.

4.4 XML

XML (W3C 2004) provides the foundation for a number of the
nascent technologies used for data integration and sharing. The ubiquity of
XML stems from its acceptance as an open standard, and the simplicity with
which XML content can be created and exchanged between heterogeneous
systems. XQuery (Chamberlin 2002) provides the opportunity to query an
XML document, akin to SQL and relational databases. Associated

35

technologies, XML Path Language (XPath) (W3C 2004), Extensible
Stylesheet Language Transformations (XSLT) (W3C 2004) facilitate the
selection of elements in an XML document as well as the transformation of
XML documents from one format to another, respectively.

5. METADATABASE AND ROPE

The Metadatabase project at Rensselaer Polytechnic Institute
explores information integration in the enterprise. The results, after a decade
of research, include the Metadatabase - an information resource
management system for distributed, autonomous and heterogeneous
environments; and ROPE - a programming environment that extends the
interoperability and adaptiveness of the Metadatabase, through the use of
extensible software shells.

36

Application

' ' llemin V

/\ i \

<^Namedasj>

^ Administer _̂ -—'

User

Subject

^Mapped t o N < [Describes

EntRel

^ 'ERExis l 'V

Integrity

Item

• Subjectin \ - ^

Maintain

Context

I — ' ' Convert V

Contains

Rule

I ' ' Condof V

Condition
Action

' Bind-Fact ~-

Hardware
Resources

Figure 2-4. Global Information Resources Dictionary (GIRD)

The role of traditional distributed systems has been to integrate
distributed data sources, without regard for the context in which the data is
used. Conversely, the Metadatabase approaches this integration problem

37

from a holistic perspective, that is, how the applications / systems / databases
interact and contribute to intra-enterprise synergies. This is regarded as
enterprise intelligence, or enterprise knowledge, expressed in the form of
business rules which include triggers, integrity constraints, and decision
knowledge that describe information workflows between applications /
systems / databases; as well as, control knowledge that delineate global
equivalence knowledge and data transfer rules between the information
resources. This enterprise knowledge is metadata, and is regarded as the
basis of database integration in the Metadatabase architecture.

5.1 Two Stage Entity Relationship Method (TSER)

The Metadatabase architecture is comprised of three elements, a
conceptual model of the enterprise, which includes all knowledge and
information resources; a physical representation method that any capable
relational database management system (RDBMS) can provide; and the
Metadatabase management system, a management framework that provides
query and metadata management and modeling facilities. The first element,
the conceptual model, is manifested in the Global Information Resources
Dictionary (GIRD) (See Fig. 2-4), a unified representational model of
enterprise metadata. The GIRD model is created using the Two-Stage
Entity-Relationship (TSER) approach (Hsu, Bouziane et al. 1991; Hsu, Tao
et al. 1993; Hsu 1996), a modeling methodology that provides a
representation method for the contextual knowledge of the enterprise as well
as its data objects. TSER encompasses a multi-stage modeling methodology
that begins with the system analysis and representation of the application /
information system / user level (or functional layer). Two constructs are
used to model this functional layer, SUBJECTS which describe the data
objects and CONTEXT which is used to describe the intended context of the
data objects. The functional layer is recursively decomposed, to produce
additional functional views representing components of the enterprise
information system. Dependency theory-based algorithms are then applied
to the completed functional model to map the functional layer to a
normalized structural model - described using four general constructs,
ENTITY (OE) and three classes of integrity RELATIONSHIPS: functional
(PR), plural (PR) and mandatory (MR) - which guarantees the model to be
at least in third normal form. A subsequent phase of the TSER methodology
generates an import schema that is amenable to input into an RDBMS (See
(Hsu, Bouziane et al. 1991; Hsu, Tao et al. 1993; Hsu 1996) for a complete
description of the TSER approach).

38

5.2 Metadatabase Management System (MDBMS)

The Metadatabase Management System (Bouziane 1991) provides
basic metadata management capabilities, that is, insert, delete, update and
retrieve similar to traditional relational database manipulation language
constructs, however, these actions are performed on metadata. An additional
management tool provided by the MDBMS is the Model-Assisted Global
Query System (MGQS) (Cheung and Hsu 1996) that provides syntax-free
online assistance for query formulation and processing, supports local
autonomy, local system transparency and local systems interoperation.
Users interact with MGQS through a graphical user interface (GUI) that
accommodates model traversal and subsequent query formulation. The user
selects metadata items relevant to his/her interest or perspective, which may
correspond with application, functional, structural views, or actual metadata
items, and MGQS produces a completely formulated and optimized global
query (additional metadata items, if necessary, are included by the system -
hence online assistance). Global query formulation capabilities are provided
by the non-procedural Metadatabase Query Language (MQL) (Cheung and
Hsu 1996), a global query language that supports queries across distributed
and heterogeneous local systems with different schemata as well as different
data semantics.

As is, the Metadatabase is a stand-alone, semi-active knowledge
base. The global system administrator creates a global data model using the
individual schemata of the distributed applications using the TSER
methodologies mentioned earlier. Global queries can then be executed
against the Metadatabase via MQGS or MQL (Cheung and Hsu 1996) from
the global or local perspective. Local users within the enterprise interact
directly with the Metadatabase, or through an interface deployed at the local
application site. It is important to note that users of the Metadatabase need
not be knowledgeable about the underlying distributed architecture; the
Metadatabase avails the enterprise user of full system transparency. Global
queries are decomposed and transformed into the local query format by the
global query processor and translator of the MGQS. Local queries are sent
to the relevant local applications via the communication network and
executed at the local application. Local results are returned to the MGQS,
merged into a global result by the result integrator of the MGQS, and then
presented to the enterprise user (Hsu, Babin et al. 1992).

5.3 ROPE

ROPE (Babin 1993) transforms the Metadatabase into an active and
adaptive integration architecture. Here, the operating and decision rules are

39

instead located at the local sites, and reside there, as opposed to being
completely referenced in the Metadatabase architecture. This adds the
functionality for local sites to actively respond to rule-based changes in the
local architecture, without consideration of the Metadatabase (hence, an
increase in local autonomy). Thus, if changes to the local application takes
place, through temporal or event-based triggers, and these changes affect the
global architecture (the Metadatabase and other local sites) then ROPE
provides the functionality to distribute these changes. This is facilitated by
software shells that surround, and enhance the functionality of the local
applications (Hsu and Babin 1993). The software shells are identical for all
local applications; however, the knowledge possessed by the shells
(represented as operating rules) are tailored to each application. ROPE is a
programming environment that defines (1) how the software are created, (2)
how the shells behave, and (3) how the shells are managed (Hsu and Babin
1993). It also integrates with the Metadatabase to push rule-based changes
from the Metadatabase, downstream to the local applications, and for the
local applications to push new knowledge upstream to the Metadatabase, or
across to other local applications.

6. A COMPARATIVE ANALYSIS OF THE TWO-
STAGE COLLABORATION MODEL WITH THE
RELATED LITERATURE

A critical and required feature required of collaboration on the
Internet is the resolution of semantic and structural heterogeneities that exist
as a result of heterogeneous data models. The proposed Two-Stage
Collaboration Model (TSCM) offers a solution for semantic heterogeneity in
the global equivalence feature of the TSER modeling methodology (See
Chapter 5). Semantically equivalent data items or objects that exist
throughout the enterprise, in the disparate data models are made equivalent
to each other during the TSER modeling process. An item with the same
semantics, which is determined by the designer, is "mapped" to the global
model, such that queries against the Metadatabase or a participating local
database will retrieve the variants of the data items and present these in
global query results. On the contrary, the Carnot project (Collet, Huhns et
al. 1991) maps local data models to the CYC knowledge-base, but the
scalability of this architecture is limited, as it is a manual effort to define the
knowledge-base. Also, various other integration architectures, for example,
Mariposa (Stonebraker, Aoki et al. 1996) and ObjectGlobe (Braumandl,
Keidl et al. 2001) assume homogeneous semantics, where participant
databases speak the same language and data items and objects share the

40

same meaning throughout the integration framework. Ontologies (Hendler
2001) offer improved classification of data semantics; however, the rigorous
modeling and representation method of the Metadatabase supersedes any
offering currently provided in this area.

Structural heterogeneities are addressed using the TSER modeling
process (See Chapter 5). Relational, object-oriented, and object-relational
databases represent a sample of the data models that can be modeled using
TSER methodologies. Each data model is first represented using TSER
functional constructs, then structural constructs, and then finally transformed
into a comprehensive physical model corresponding to the relational
paradigm. The process is repeated for each database to be integrated into the
global data model. Conversely, for new databases to be added to Garlic
(Carey, Haas et al. 1995) and DB2 (Haas, Lin et al. 2002) a wrapper must be
created, and extensive work is required if the data model is entirely new. In
Pegasus (Ahmed, DeSmedt et al. 1991; Ahmed, Albert et al. 1993), an
import schema is generated for each external database, which span object,
relational, and hierarchical data models - although the complexity of
importation increases moving from object to hierarchical - and these are
imported into the Pegasus schema to form a unified schema. Agent-based
systems such as InfoSleuth (Bayardo, Bohrer et al. 1997) address semantic
and structural heterogeneities in ontologies and agent modeling respectively.
Typically, the agent architecture is homogeneous, with respect to
architecture, such that integration across heterogeneous agent architectures
requires manual intervention to resolve differences between agent
communication languages, and so on.

Market-based systems in general, address the traditional global
query problem with respect to integration scalability, given various degrees
of database autonomy and heterogeneity, by regarding the member databases
as buyers and sellers of information that trade resources for financial benefit.
This approach offers numerous advantages: because of the market
paradigm, member databases are not tied to a specific architecture and are
free to join and disjoin the integration. Moreover, the integration and global
query can span increasingly greater numbers of databases than that found in
traditional approaches to database integration and global query. In fact, the
scalability of traditional distributed database management systems are
compromised by the optimization phase (Ozsu and Valduriez 1991) of the
query processor. Traditional approaches (Ribeiro, Ribeiro et al. 1997)
generate query execution plans through algorithmic searches or heuristics,
and measure these based on various costs: inter-site
communications/network cost, response times, CPU and I/O costs.
Consequently, as the search space grows (that is, the number of databases
participating in the integration increases to a very large number), then the

41

evaluation becomes exponentially complex or intractable. ObjectGlobe
(Braumandl, Keidl et al. 2001) employs a lookup service to identify
unrelated data sources, query operators and servers on which to execute a
query, but, the resources must register beforehand to participate in query
operations. ObjectGlobe also requires that query operators be created using
JAVA, which compromises heterogeneity within the architecture.

