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1. INTRODUCTION AND HISTORY 

Previous reviews of the area of CT ligand structure activity relationships 
have covered most of the early ligands, but many of the pharmacological 
conclusions based on early ligands were confusing due to the ligands 
interacting with several other biological systems. This chapter attempts to 
briefly discuss the history behind the development of early CT ligands, but 
maintains a greater focus on the more recent o-selective ligands, which have 
been developed over the past decade. For a more detailed discussion of the 
earlier ligands the reader is directed to these excellent reviews (1-3). 

a Receptors were initially described by Martin as a subtype of opioid 
receptors based on the actions of the benzomorphans, specifically racemic 
SKF-10,047 (1) (4). This was a confusing birth for the a receptor system, as 
the actions attributed to the effects of SKF-10,047 at a receptors were 
probably due to the interaction of the (+)-isomer of the benzomorphan with 
a receptors, whereas the (-)-isomer was the agent responsible for the opioid 
effects (5). The situation was further confused when a sites were believed to 
be part of the phencyclidine binding site (ionophore site) or polyamine site 
of the NMDA receptor complex. 
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Figure 2-1. Benzomorphan-based o ligands 

1.1 Benzomorphans 

As discussed above, the a activity of the benzomorphan SKF-10,047 was 
probably due to the actions of the (+)-enantiomer, and this led to the 
discovery of (+)-pentazocine (2) as a selective a ligand. Through the use of 
this ligand, and others including 3-PPP (3-(3-hydroxyphenyl)-N-(l-
propyl)piperidine) and DTG (di-o-tolylguanidine), the a receptor system was 
finally characterized as unique (6-10). Additional ligands of the 
benzomorphan class have also been found to possess affinity for the a 
system, and are covered in the review by Walker et al. (2). 

Since the initial cloning of the ai receptor (11), studies have concentrated 
on the development of ligands to further characterize and purify these 
receptors. A recent investigation into the development of selective a\ 
receptor probes has led to a (+)-benzomorphan-based irreversible ligand. 
Ronsisvalle et al. (12) showed that the introduction of an isothiocyanate into 
the (+)-N-benzyl benzomorphan derivative gave a ligand (3) (Figure 2-1) 
which appears to show promise as such an agent (see review by Ronsisvalle 
on irreversible ligands in Chapter 3). 

1.2 Oi and 02 receptors 

It was eventually found that a receptors consisted of a heterogeneous 
population of sites, now termed <3\ and 02 (13-15). The discovery of the 
heterogeneity of a receptors prompted concentrated efforts into the search 
for compounds with selectivity for each a receptor subtype. 
(+)-Benzomorphans display selectivity for 0\ receptors, and indeed tritiated 
(+)-benzomorphans are used in <3\ receptor binding assays (16). 
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02 Receptor-selective ligands have proven less common, with the 
currently accepted radioligand being the subtype nonselective [^H]DTG in 
the presence of a (+)-benzomorphan to block binding to a\ sites. The 
pharmacological effects of activating both subtypes are described elsewhere 
in this volume. Briefly, 0\ receptors have been associated with numerous 
conditions including cognitive effects, neuroprotection, and may be involved 
in the actions of cocaine (see Chapters 12, 15). Oi Receptors have been less 
well studied, but activation of Oj receptors appears to affect movement and 
posture and has been associated with inhibition of cell proliferation and 
induction of apoptotic cell death (see Chapter 11). 

Many of the ligands discovered prior to about 1992 were only evaluated 
using binding assays against [^H](+)-pentazocine, which is primarily an 
assay for 0] receptor binding affinity (17). Thus, little can be stated about 
the activity of these compounds for 02 receptors. This review will 
concentrate on the compounds where affinity at both receptors has been 
established. 

2. ENDOGENOUS LIGANDS 

The endogenous ligand for a receptors remains elusive. Several 
laboratories have identified brain extracts, which show affinity for a 
receptors (18,19). Furthermore, physiological studies have suggested 
depolarization- and calcium-dependent release of a-active substances from 
brain slices (20,21). To date, however, none of the substances have been 
identified. 

The search for an endogenous ligand for a receptors did, however, lead 
to the discovery that certain neurosteroids possess affinity for a\ receptors, 
notably progesterone (22). From a chemical point of view, this is an 
interesting finding as the majority of ligands with affinity for a receptors 
contain a basic nitrogen. Indeed, most models of ligand recognition include 
the requirement of a basic nitrogen, yet progesterone is a lipophilic steroid 
lacking any basic or acidic groups. This finding, along with information 
gleaned from cloning, lead to the hypothesis that ai receptors are distantly 
related to enzymes of steroid biosynthesis (23). The merits of this 
hypothesis are discussed elsewhere in this volume. 
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Figure 2-2. Phenylethylene diamine-based a ligands 

3. a SELECTIVE AGENTS 

Initial studies with early a ligands were limited due to the effects on 
other systems influencing the pharmacology of the ligand. Obviously, what 
was needed were compounds that did not interact with other biological 
systems. One of the most widely studied class of compounds are the 
phenylethylene diamines: the protypical member of this class is BD1008 (4) 
(Figure 2-2) (24). BD1008 contains 3,4-dichloro substitution on the 
aromatic ring, a substitution pattern which leads to high affinity at both a\ 
and 02 receptors. Numerous other substituents have been introduced, but it 
appears that lipophilic substituents are preferred for high affinity agents (25). 
A range of substitutions that have been investigated on phenylethylene 
diamines (5) are shown in Figure 2-2. 

In order to exploit the activity of the (+)-benzomorphans and 
phenylethylene diamines, hybrid structures were prepared where the basic 
amine and aromatic ring of the benzomorphan skeleton was taken as the 
"phenethyl" group of the phenylethylene diamines (26). Compounds such as 
6 and 7 (Figure 2-3) did indeed display excellent affinity at a\ receptors (Ki 
< 10 nM), lower affinity at 02 receptors, and little activity at opioid 
receptors. 
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6 7 

Figure 2-3. Hybrids of the benzomorphans and the pheny [ethylene diamines 

A class of compounds that share structural similarities to the 
phenylethylene diamines are the phenylpentylamines (such as 8 and 9, 
Figure 2-4), which show high a receptor affinity against 
[''H](+)-pentazocine, with a Kj of about 1 nM (27) (further discussed by 
Ablordeppey and Glennon elsewhere in this volume). This class can be 
viewed as phenylethylene diamine analogs that lack one of the basic 
nitrogens, and suggests that the second basic nitrogen is not essential for Oi 
affinity. As binding was only performed in assays to measure O] affinity, 
little can be concluded about their affinity for Oi receptors. However, the 
recent report that AC915 (10) (Figure 2-4), an ester derivative of the 
phenylpentylamines, is a CTI ligand with excellent selectivity over 02 
receptors (2000-fold), suggests that this is a class where additional Oi 
selective agents may be developed (28). Indeed, this compound may find 
use as a masking agent in 02 binding assays replacing the 
(+)-benzomorphans. Recently, a related class of phenoxyalkyl amines (11) 
have also been reported to possess excellent affinity for both a\ and 02 
receptors, and the introduction of stereochemistry onto the alkyl chain was 
interestingly shown to influence affinity and selectivity (12) (29). 
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Figure 2-4. Phenyl pentyl amines, AC915, and phenoxyalkylamines 

a SUBTYPE SELECTIVE AGENTS 

4.1 <S\ ligands 

4.1.1 Haloperidol derivatives 

Compounds related to haloperidol are shown in Figure 2-5. Haloperidol 
(13) has been shown to possess high affinity for a-receptors, with a slight 
preference for CTI over QI (30). When the ketone was reduced to give 
reduced haloperidol (14), the dopamine D2 affinity of haloperidol was 
greatly decreased, to give a compound relatively selective for a receptors 
over other systems. These studies led to the development of the related 
E-5842 (15) as a <3\ agent, with excellent selectivity over a range of other 
biological systems. E-5842 has been shown to possess promise as an 
antipsychotic agent (31). 
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16 

Figure 2-5. a Ligands based on haloperidol 

4.1.2 Phenylacetamides 

N-(l-Benzylpiperidin-4-yl)phenylacetamides (such as 16, Figure 2-5) 
share a similar skeleton to E-5842 discussed above. These compounds have 
been shown to possess excellent selectivity for a, receptors, with affinities in 
the low nanomolar range, and selectivities over 02 up to 200-fold (32). 
Further studies into the structure-activity relationships of this series of 
compounds showed that replacing the aromatic ring with heterocyclic rings 
led to compounds with reduced affinity, but that the introduction of a 
halogen on both aromatic rings led to an increase in selectivity for O] 
receptors over oj (33). 

4.1.3 NE-100 

NE-100 (N,N-di-isopropyI-2-[4-methoxy-3-(2-phenylethoxy)phenyl] 
ethyl-amine (17) (Figure 2-6) is a simple amine with only two carbons 
between the amine and the aromatic ring. This compound shows high 
affinity for a\ receptors, and moderate selectivity over CT2 receptors (34). 
Studies of this interesting class of compound have shown that both propyl 
groups are not necessary for affinity at CT receptors, and that the mono-propyl 
analog 18 possesses significant affinity (34). Further studies showed that the 
introduction of alkyl groups alpha to such a secondary amine (to give 19) 
actually led to increases in affinity and selectivity for aj receptors (Figure 
2-6) (35). 
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Figure 2-6. NE-100 and secondary amine analogs 

4.2 (32 ligands 

4.2.1 Benzylidine phenyltnorphans 

Perhaps the most widely studied 02 selective agents are the benzylidene 
phenylmorphans (Figure 2-7), typified by CB-64D (20) and CB-184 (21) 
(36). Both compounds show high affinity and excellent selectivity for 02 
receptors over GX receptors, with CB-184 showing the greater selectivity. 
Both contain the aryl morphinan skeleton present in a class of opioids, but 
with an additional benzylidene group. It has been suggested that this 
dichlorinated ring may occupy similar space on the receptor as the 
equivalent ring in BD1008 (37). These compounds have shown excellent 
activity in functional assays (38-40) and have indeed proved to be valuable 
tools in delineating 02 Hgand pharmacology and the possible role of 02 
receptors in regulation of cell growth and survival (reviewed by Bowen in 
Chapter 11). Even so, this class of compounds suffers from the major 
problem of their interaction with opioid receptors, as they display potent mu 
opioid agonism in vivo. Hence, further study of this class is required in 
order to develop analogs lacking the opioid component, but which maintain 
<32 receptor selectivity. 
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Figure 2- 7. a Ligands based on phenylmorphans and ibogaine 

4.2.2 Ibogaine 

Another compound that demonstrates relative selectivity for <J2 receptors 
over Oi receptors is ibogaine (22) (Figure 2-7), although its affinity for aj 
receptors is modest (41). Ibogaine gained notoriety due to its reported 
actions as an anti-addiction agent and has been useful as a tool to study the 
cytotoxicity mediated by 02 receptors in vitro (42). However, it interacts 
with a variety of biological systems in addition to 02 receptors and therefore 
cannot be used to study the actions of 02 receptors in in vivo assays. 

4.2.3 Arylpropylamines 

A recent report discussed the fact that ibogaine and CB-184 contain 
arylpropyl amines and display 02 selectivity, whereas compounds with 
affinity for a\ sites (such as NE-100) tend to possess a phenylethylamine 
moiety (37). Based on this observation, a simple range of phenethyl and 
phenylpropyl amines were studied. It was shown that phenylpropyl-
piperidine (23) (Figure 2-8) demonstrated a preference for a2 sites (four­
fold) and that the preference could be increased with other substituents to 
give 24 as a high affinity ligand for 02 receptors with moderate selectivity 
(Figure 2-8) (37). It is anticipated that this finding may lead the way to 
agents optimized for <J2 receptors. 
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Figure 2-8. Simple phenylalkylamines 

4.2.4 Tropane analogs 

A recent report by Mach et al. (43) described a novel tropane-based 
ligand (25) (Figure 2-9) which is reported to possess an affinity at 02 
receptors of 5 nM, and a selectivity over GI receptors of greater than 
500-fold. The para-amine substitution was shown to aid in the selectivity, as 
the unsubstituted phenyl analog demonstrated much reduced selectivity for 
02 receptors. 

The related tropane-containing ligand (+)-SM-21 (26) (Figure 2-9) has 
been shown to posses significant affinity for 02 receptors (44) and is 
currently used as a 02 preferring antagonist in behavioral assays (45). 

Figure 2-9. Tropane-based CT ligands 
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Figure 2-10. Rimcazole and other piperazine analogs 

GBR 12909 

DUAL PROBES FOR CTI RECEPTORS AND THE 
DOPAMINE TRANSPORTERS 

5.1 Rimcazole analogues 

Over the past decade, several lines of evidence have linked a receptors 
and cocaine. For example, cocaine was reported to bind with low to 
moderate affinity to a receptors and these concentrations were shown to be 
achievable in vivo (46). In addition, several a ligands such as rimcazole and 
BMY 14802 (Figure 2-10) have been shown to attenuate locomotor and 
rewarding effects of cocaine (47,48). Recently, the a\ receptor antagonists 
NE-100 and BD1047 showed significant attenuation of cocaine-induced 
place preference (48). Other studies showed that a receptor antagonists 
block the development of sensitization to cocaine in rats (49). Furthermore, 
attenuation of cocaine's convulsive and lethal effects by the selective a 
antagonists BD1047, LR172 and N-alkyl substituted and conformationally 
restricted analogues of BD1008 has also been reported (50-53). 

Curiously, there also seems to be a structural linkage to the cocaine 
binding site on the dopamine transporter (DAT) and the 0 antagonist binding 
site, despite no apparent homology between the DAT and a\ receptor protein 
structures. Namely, an iodoazido-analogue of cocaine was reported to 
photolabel a 26 kDa polypeptide in rat brain that displayed the 
pharmacology of a a receptor (54,55). Furthermore, the potent DAT 
inhibitor GBR 12909 was reported to potently displace [^H]3-PPP from a 
receptors in rat brain (IC50 = 48 nM) (56). More recently, an isothiocyanato 
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analogue of the a antagonist rimcazole has been shown to bind irreversibly 
to the DAT, in rat caudate-putamen (57). 

These early linkages prompted an experiment evaluating nine structurally 
diverse CT ligands for displacement of [ ' 'HJWIN 35,428 binding at DAT and 
inhibition of dopamine uptake, in rat caudate-putamen (58). Although most 
of these compounds did not bind with high affinity to DAT, rimcazole 
displaced [^H]WIN 35,428 from DAT with an affinity of 103 nM. 
Rimcazole had previously been reported to attenuate the locomotor stimulant 
effects of cocaine at doses that were not themselves behaviorally active (47). 
These discoveries lead to the design and synthesis of a series of rimcazole 
analogues as potential dopamine uptake inhibitors and structure-activity 
relationships at DAT, serotonin transporter (SERT), norepinephrine 
transporter (NET), and <3\ receptors were determined. It was discovered that 
in general, substitutions on the carbazole ring system of rimcazole served to 
decrease binding affinities at both CTI receptors and the DAT (57,59). Data 
for other rimcazole analogues is shown in Table 2-1. N-methylation of the 
terminal piperazine nitrogen (SH 1-73) resulted in a small increase in 
binding affinity at (5\ receptors (Kj = 552 nM) but in a slightly less active 
DAT compound (Kj = 436 nM) (59). Alternatively, placing a propylphenyl 
group, on the terminal piperazine nitrogen (SH 3-28), as seen with GBR 
12909, served to improve and restore ai receptor and DAT binding 
affinities, respectively. Likewise, when the carbazole ring system was 
replaced with a diphenylamine, coupled with the N-propylphenyl 
substituent, a moderately potent rimcazole analogue SH 3-24 resulted (K; = 
97 nM at ai and 61 nM at DAT) (59). Adding fluoro-groups to the para-
positions of the diphenylamine moiety (JJC 1 -059) served to significantly 
improve both ai receptor and DAT binding (Ki =11.1 nM and 22.8 nM, 
respectively) (60,61). Removal of the 2,6-dimethyl groups on the piperazine 
ring (JJC 2-008) served to reduce lipophilicity and also reduced <3\ receptor 
binding affinity (Kj = 66.2 nM) while retaining high affinity for DAT (Kj = 
18 nM). Interestingly, the N-benzyl analogue (JJC 2-006) showed the 
highest affinity for <3\ receptors in the demethylated series (Kj = 13.1 nM) 
(61). 

Rice's laboratory synthesized analogues of GBR 12909 and showed that 
GBR 12935 and several analogues displaced [^H](+)-pentazocine from ai 
receptors with high affinity (Ki range = 8.6 - 231 nM) (62). Many of these 
compounds show structural similarity to the rimcazole analogues and bind 
with high affinity to both G] receptors and DAT (62,63). The most potent ai 
ligand in these series was the trans 2,5-dimethylpiperazinyl analogue of 
GBR 12909 (62). Comparing the SAR derived from the rimcazole 
analogues to these compounds, the presence of a dimethylated piperazine, 
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regardless of position and stereochemistry, appears to improve binding 
affinity at a\ receptors as compared to the unsubstituted piperazines. 

Behavioral evaluation of rimcazole, SH 1-73, SH 3-24, and SH 3-28 has 
shown that all of these ligands produced dose-related decreases in locomotor 
activity and decreased cocaine-induced locomotor activity. Furthermore, 
rimcazole and its analogues did not generalize to the cocaine discriminative 
stimulus in rats trained to discriminate 10 mg/kg of cocaine from saline (64). 
Interestingly, SH 3-28 decreased cocaine-appropriate responding as well. 
Another preliminary study with JJC 1-059, in comparison to cocaine, GBR 
12909 and rimcazole demonstrated that, like its parent compound, JJC 1-059 
did not produce locomotor stimulation in mice (61,65). Furthermore, 
rimcazole and its analogues attenuated cocaine-induced convulsions in mice 
(66). In total, these results are curious, as all of these compounds bind to the 
dopamine transporter, some with higher affinity than cocaine. Hence, it has 
been hypothesized that despite their actions at DAT, perhaps ai receptor 
antagonism is involved in the blockade of cocaine's actions demonstrated by 
rimcazole and its analogues. The recent proposal that DAT-mediated 
cocaine-like actions, including reinforcement, might be modulated by 0\ 
receptors (67,68) further supports the development of dual DAT/ai probes to 
investigate whether or not these combined actions might provide a novel 
approach to cocaine-abuse medication discovery. 

Table 2-1. Binding Results at CT] Receptors and Dopamine Transporters (DAT) 

Compound 

Cocaine 
GBR 12909 
Rimcazole 

SH 3-24 

SH 1-73 

SH 3-28 

JJC 1-059 

JJC 2-008 

JJC 2-006 

JJC 2-010 

[^H](+)-Pentazocine (oO 

8830 ± 860'' 
318± 18" 
908 ± 99'' 

97.2*14.0" 

552*110" 

104*0.4" 

l l . l i O . 8 ' ' 

66.2*3.6'' 

13.1*1.2'' 

372*21 ' ' 

[ 'H ]WIN 35,428 (DAT) 

187*19" 
11.9* 1.9" 
224*16" 

61.0*6.1" 

436*44" 

263*34" 

22.8*2.0" 

18.1*2.7'' 

27.6*3.9' ' 

8.5*0.8'' 

o,/DAT 

47 
27 
4.1 

1.6 

1.3 

0.4 

0.5 

3.7 

0.5 

44 

Ki in nM, Data from ref. (59)" and ref. (61)^ 
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Figure 2-11. The CoMFA Contour Graphs for the Activity on the a\ Receptor (61). The 
sterically favored and unfavored (contribution at 80% and 20%, respectively) are shown as 
green and yellow fields and positive charges favorable and unfavorable (contribution at 80% 
and 20%, respectively) are shown as blue and red fields respectively. 

5.2 Molecular models 

Several CoMFA models were derived for CTI receptor binding of the 
rimcazole analogues and have been recently reported (61). Figure 2-11 
shows the steric and electrostatic contour maps derived using ai binding 
affinities. A sterically favored green region was observed near the terminal 
piperazine nitrogen substituent, supporting a strong steric interaction in this 
region of the molecule. Also, the scattered yellow regions around the 
molecule define the limits for size and shape of the substituents. Positive 
charge favoring regions shown as blue contours were observed in the 
vicinity of the para-position of the diaryl ring system. Hence small electron-
withdrawing substituents, e.g. F, are predicted to improve <3\ binding 
affinities. Putative binding site characteristics for the 0\ receptor have been 
proposed (33,69,70) and are reviewed elsewhere in this volume by 
Ablordeppey and Glennon (Chapter 4). The CoMFA results describing 
optimal binding features of the rimcazole analogues were interpreted to be 
comparable to those previously described (61). As such, the substituent on 
the terminal piperazine nitrogen of the rimcazole analogues could be binding 
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in the described primary hydrophobic site and the diaryl amine could be 
accessing the secondary binding site, which seems to tolerate bulk in this 
region. The region between the terminal piperazine nitrogen and the 
terminal phenyl ring is less tolerant to electron releasing or hydrophilic 
substituents as the 3-OH group of JJC 2-010 overlaps in the blue contour, 
which is unfavorable for activity. Likewise, comparison with the previously 
proposed o model (70) would suggest that hydrophilic interactions in this 
region would reduce affinity towards the a] receptor. 

6. SUMMARY 

Over the past decade, advances have been made in discovering novel a 
receptor probes and developing structure-activity relationships for aj and aa 
receptor selectivity. These compounds have provided useful tools to further 
investigate the physiological role that central and peripheral a receptors 
play. Furthermore, many of these compounds have been investigated for 
their in vivo actions, and particularly promising is their ability to attenuate 
cocaine-induced behaviors such as locomotor stimulation and conditioned 
place preference, as well as cocaine-induced toxicities. These in vivo studies 
are described in other chapters in this book and the interested reader is 
referred to these. Compounds that have dual actions at both 0\ receptors and 
the dopamine transporter may prove to be a novel strategy for the 
development of a cocaine-abuse medication and is being investigated toward 
this goal. Compounds selective at 02 receptors may be useful as 
antineoplastic agents or for control of cell survival in neurodegenerative 
disease. The design and synthesis of novel and selective <j\ and 02 receptor 
selective agonists and antagonists will undoubtedly provide the required 
molecular tools to elucidate both structure and function of these receptors. 
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