
1 General Introduction

We use the following notation: the working space is R
n, where the scalar

product will be denoted indifferently by (x, y) or 〈x, y〉 or x>y (actually, it
will be the usual dot-product: (x, y) =

∑n
i=1 x

iyi); | · | or ‖ · ‖ will denote the
associated norm. The gradient (vector of partial derivatives) of a function
f : R

n → R will be denoted by ∇f or f ′; the Hessian (matrix of second
derivatives) by ∇2f or f ′′. We will also use continually the notation g(x) =
f ′(x).

1.1 Generalities on Optimization

1.1.1 The Problem

Given a set X and a function f : X → R (the objective function), we want to
find x∗ ∈ X such that, for all x ∈ X , there holds f(x) > f(x∗). The variable
x is usually called decision or control variable.

We will consider only the case where X is a subset of R
n, defined by

constraints , i.e., given a number mI + mE of functions cj : R
n → R for

j = 1, . . . ,mI +mE , the problem is

min f(x) x ∈ R
n

cj(x) 6 0 j ∈ I
cj(x) = 0 j ∈ E .

(P)

Here, I and E are two disjoint sets of integers, of cardinalities mI and mE

respectively. We thus have mI inequality constraints, indexed in I , and mE

equality constraints, indexed in E.

Remark 1.1. We do not consider problems of combinatorial optimization,
where the set X is discrete, or even finite. They could be covered by our
formalism via constraints of the type xi(1− xi) = 0 (to express xi ∈ {0, 1})
but this is very artificial – and not at all efficient in general. Actually, combi-
natorial optimization problems call for methods totally different from those
presented in this book. Their intersection is not totally empty, though: §8.2
will mention the use of continuous optimization to bound the optimal value
in combinatorial problems. Section 1.2.4 will give an illustrative example.

4 1 General Introduction

In another class of problems, the vector-variable x ∈ R
n becomes a func-

tion of time x(t), t ∈ [0, T]: these are optimal control problems. They are
close to our formalism, possibly after discretizing [0, T]; in fact, examples are
given in §1.2.2 and 1.2.3.

Perhaps rather paradoxically, the methods in this book extend easily to
optimal control problems, while they fit very badly to combinatorial opti-
mization. ut

1.1.2 Classification

Among the various possible classifications, the following is made according
to the difficulty of the problem to solve.

1. Unconstrained problems (mI = mE = 0, I = E = ∅)
1.1 Quadratic problems: f(x) = 1

2 (x,Mx)− (b, x) (M symmetric n× n)
1.2 Nonlinear problems: f neither linear nor quadratic.

2. Linearly constrained problems (the functions cj are affine)
2.1. Problems with equality constraints only (mI = 0, I = ∅)

2.1.1 Linear-quadratic problems: f quadratic
2.1.2 Nonlinear problems: f neither linear nor quadratic

2.2 Problems with inequality constraints
2.2.1 Linear programming: f linear (needs mI > n−mE)
2.2.2 Linear-quadratic problems: f quadratic
2.2.3 Linearly constrained nonlinear problems.

3. Nonlinear programming
3.1 With equality constraints only
3.2 General nonlinear programming.

Observe that

– in optimization, the word “linear” is frequently (mis)used, instead of affine
(see 2; recall that an affine function is the sum of a linear function and a
constant term);

– 2.1 is the minimization in a hyperplane, isomorphic to a subspace of di-
mension n−mE , so that 2.1 is equivalent to 1, at least theoretically;

– 1.1 reduces to solving a linear system (Ax = b – at least if A is positive
definite); 2.1.1 as well, in view of the preceding remark;

– 2.2 minimizes f in a convex polyhedron, the simplest being a parallelotope,
defined by simple bounds: ai 6 xi 6 bi, for i = 1, . . . , n;

– 2.2 is considerably more complicated than 2.1, simply because one does not
know in advance which inequalities will play a role at the optimal point.
Said otherwise, there are 2mI ways of putting a problem 2.2 into the form
2.1; the question is: which is the correct one? An inequality constraint is
said to be active at x (not necessarily optimal) when cj(x) = 0. To put 2.2
into the form 2.1, one needs to know which constraints will be active at the
(unknown!) optimum point.

1.2 Motivation and Examples 5

1.2 Motivation and Examples

In this section, we show with some examples the variety of domains where one
finds optimization problems considered in the present book. Since problems
of the linear type (categories 2.2.1 and 2.2.2 in §1.1.2, described in the fourth
part) have existed for a long time, and are well known, it is not necessary
to motivate this branch. This is why the four examples below are of the
“general” nonlinear type.

1.2.1 Molecular Biology

An important problem in biochemistry, for example in pharmacology, is to
determine the geometry of a molecule. Various techniques are possible (X-ray
crystallography, nuclear magnetic resonance,. . .) one of these is convenient
when

– the chemical formula of the molecule is known,

– the molecule is not available, making it impossible to conduct any experi-
ment,

– one has some knowledge of its shape and one wants to refine it.

The idea is then to compute the positions of the atoms in the space
that minimize the associated potential energy. Let N be the number of
atoms and call xi ∈ R

3 the spatial position of the ith atom. To the vec-
tor X = (x1, . . . , xN) ∈ R

3N is associated a potential energy f(X) (the
“conformational energy”), which is the sum of several terms. For example:

– Bond length: between two atoms i and j at distance |xi −xj |, there is first
an energy of the type

Lij(xi, xj) = λij(|xi − xj | − dij)
2 .

– There is also a Van der Waals energy, say

Vij(xi, xj) = vij

(δij
|xi − xj |

)6

− wij

(δij
|xi − xj |

)12

.

Here, the λij , vij , wij , dij , δij ’s are known constants, depending on the pair
of atoms involved (carbon-carbon, carbon-nitrogen, etc.)

– Valence angle: between three atoms i, j, k forming an angle θijk (writing
down the value of θijk , as a function of xi, xj , xk, is left as an exercise!),
there is an energy

Aijk(xi, xj , xk) = αijk(θijk − θ̄ijk)2 ,

where, here again, αijk and θ̄ijk are known constants.

6 1 General Introduction

Other types of energies may also be considered: electrostatic, torsion an-
gles, etc. The total energy is then the sum of all these terms, over all pairs/-
triples/quadruples of atoms. The important thing to understand here, is that
this energy can be computed (as well as its derivatives) for any numerical
values taken by the variables xi. And this is true even if these values do not
correspond to any reasonable configuration; simply, the resulting energy will
then be unreasonably large (if the model is reasonable!); the optimization
process, precisely, will aim at eliminating these values.

This is obviously a problem from category 1.2 in §1.1.2. Note that the
objective function is disagreeable:

– With its many terms, it is long to compute.

– With its strong nonlinearities, it does not enjoy the properties useful for
optimization: it is definitely not quadratic, and not even convex. Actually,
in most examples there are many equilibrium points X∗ (local minima);
this is why the only hope is to refine a specific one: by assumption, some
estimate X0 is available, close to the sought “optimal” X∗. Otherwise the
optimization algorithm could only find some uncontrolled equilibrium, “by
chance”.

Such a problem will call for methods from the first part of this book,
more precisely §4.4. Actually, since nowaday’s “interesting” molecules have
103 atoms and more, this problem is also large-scale; as a result, it will rather
be necessary to use methods from Sections 5.6, 6.3, or also 6.4.

1.2.2 Meteorology

To forecast the weather is to know the state of the atmosphere in the fu-
ture. This is quite possible, at least theoretically (and within limits due to
the chaotic character of phenomena involved). Let p(z, t) be the state of the
atmosphere at point z ∈ R

3 and time t ∈ [0, 7] (assuming a forecast over one
week, say); p is actually a vector made up of pressure, wind speed, humid-
ity . . . The evolution of p along time can be modeled: avoiding technicalities,
fluid mechanics tells us that

∂p

∂t
(z, t) = Φ(p(z, t)) , (1.1)

where Φ is a certain differential operator. For example, (1.1) could be the
Navier-Stokes equation, but approximations are generally introduced.

To forecast the weather once our model Φ is chosen, it “suffices” to inte-
grate (1.1). For this, initial conditions are needed (the question of boundary
conditions is neglected here; for example, we shall say that they are peri-
odicity conditions, (1.1) being integrated on the whole earth). Here comes
optimization, in charge of estimating p(·, 0) via an identification process,
which we roughly explain.

In fact, the available information also contains all the meteorological ob-
servations collected in the past, say during the preceding day. Let us denote

1.2 Motivation and Examples 7

by Ω = {ωi}i∈I these observations. To fix ideas, we could say that each ωi

represents the value of p at a certain point (zi, ti) (but actually, only some
coordinates of the vector p(zi, ti) are observed). To take these – noisy – data
into account, a natural and well-known idea is to consider the problem

minp ‖p−Ω‖ , (1.2)

(1.1) being considered as a constraint (called in this context the state equa-
tion).

– Observe here that our optimization problem is not posed with respect to
some x ∈ R

n but to p, varying in a functional, infinite-dimensional, space.
See Remark1.1; we are dealing with an optimal control problem. Notwith-
standing, any numerical implementation implies first a discretization, which
reduces the problem to the framework of this book.

– Note also that (1.1) is a priori valid on the whole interval [−1,+7], but
(1.2) concerns [−1, 0] only. Actually, optimization just deals with this latter
interval; it is only for the forecast itself, after optimization is finished, that
the interval [0, 7] will come into play.

– Since p and Ω do not live in the same space (the number |I | of observations,
possibly very large, is certainly finite), Ω must first be embedded in the
same function space as p. Besides, the norm ‖ · ‖ in (1.2) must be carefully
chosen. These aspects, which concern modeling only, have a big influence
on the behaviour of solution algorithms.

At this point, it is a good idea not to view (1.1), (1.2) as a nonlinearly
constrained optimization problem (category 3.2 in §1.1.2), but rather as an
unconstrained one (category 1.2). In fact, call u(z) = p(z,−1) the state of
the atmosphere at z, at initial time t = −1. A fundamental remark is then:
assuming u to be known, (1.1) gives unambiguously p(z, t) = pu(z, t) for all
z and all t > −1: the unknown pu depends on the variable u only. Hence, the
objective value in (1.2) also depends on u only. Our problem can therefore
be formulated as minu ‖pu −Ω‖, which means:
– to minimize with respect to u (unconstrained variable)
– the function defined by (1.2),
– where p = pu is obtained from (1.1)
– via the initial condition p(·,−1) = u.

The actual decision variable in this formulation is u indeed: p plays only
the role of a parameter, called state variable, while the terminology control
variable is here reserved to u. The objective function will be denoted by
J(u), rather than f(x). Thus, the number of variables is reduced (drastically:
passing from about 109 for p, to about 107 for u alone) and, more importantly,
any form of constraint is eliminated.

Remark 1.2. The “normal”, direct , problem is to compute p(z, t) from
p(z, 0) via (1.1). Here we solve the inverse problem: to compute p(z, 0) from
(a partial knowledge of) p(z, t).

8 1 General Introduction

The above description is of course very sketchy and does not reveal all the
difficulty of the problem. For instance: the number of observations is about
105, which is by far insufficient to identify the 107 unknowns. To orient the
search toward reasonable pu’s, any a priori information on the stationary
solutions to (1.1) is an important element, which is taken into account in
actual implementations. ut

Here again, the methods from the first part of this book will be used. The
problem is more than ever large-scale: after discretization, u ∈ R

107

; calling
for §6.3 therefore becomes a must.

1.2.3 Trajectory of a Deepwater Vehicle

Most optimal control problems consist in optimizing a trajectory; an example
is towing a submarine vehicle. Consider a deepwater observation device (the
“fish”), moving close to the sea bottom, and pulled from the surface by a tug.
The problem is to control the tug so that the fish makes a given maneuver,
while avoiding obstacles. For example, one may ask to make a U-turn in
minimal time.

Let L be the length of the pulling cable. One may assume that L is a
known constant, or that the cable is inextensible; anywayL is for this problem
several kilometers long, and one cannot assume that the cable behaves like
a rigid rod. As a result, the fish’s trajectory is a rather complicated function
of the tug’s. A possible model is as follows.

– Let y(s, t) ∈ R
3 be the position in the sea of a point at time t and (curvi-

linear) coordinate s ∈ [0, L] along the cable.

– Then y(0, t) is the tug’s position, it is the control variable; y(L, t) is the
fish’s, it is the variable to be controlled.

– These two variables are not independent: from inextensibility, we have

∥∥∥∂y
∂s

∥∥∥ = 1 (1.3)

and y obeys the state equation

∂2y

∂t2
− ∂

∂t

(
T (s, t)

∂y

∂s

)
+ τ
(∂y
∂t

)
= w . (1.4)

Here T is the cable’s tension (unknown), w its linear weight rate and τ
models the drag.

– In addition to this system of equations, there are appropriate initial and
boundary conditions, among which y(0, t) = u(t), which simply expresses
that y(0, ·) plays a special role (the control!).

Just as in §1.2.2, we are again faced with an optimal control problem: the
objective function (for example the time needed to make a U-turn) depends

1.2 Motivation and Examples 9

on the control u implicitly, via a state (yu, Tu), solution to a state equation.
However, the situation is no longer as “simple”(!) as in §1.2.2: we still have
to express that the fish must evolve above the sea bottom, which yields
constraints on the state: if ϕ(z1, z2) is the height of free water at z ∈ R

2, one
must impose

y3(L, t) > ϕ(y1(L, t), y2(L, t)) , for all t . (1.5)

These constraints in turn depend implicitly on u, and they are actually in-
finitely many (i.e. many, after discretization). As a result, it is hardly possible
to “reduce” the problem with respect to u only. We now have to call for the
third part of this book (constrained nonlinear optimization): the distinction
between control and state variables is no longer relevant. In the sense of
§1.1.1, the decision variables are now the couple (y, T), with respect to which
one must

– minimize a certain function f(y) (for example the time of the U-turn)

– under equality constraints cj(y, T) = 0, j ∈ E, which symbolize the state
equations (1.3), (1.4) (here E is big)

– and inequality constraints cj(y) 6 0, j ∈ I , which symbolize constraints on
the state (1.5) (and I is just as big).

This example illustrates, among other things, the ambiguity which can
exist concerning the decision variables: in the sense of optimal control, the
control variable is u; however, the optimization algorithm “sees” as decision
variable the whole of (y, T). Of course, the algorithm designer is allowed –
and even strongly advised – to remember the origin of the problem, and to let
y(0, ·) play a particular role in the complete set of variables {(y, T)(s, t)}s,t.

1.2.4 Optimization of Power Management

We complete this list of examples with a problem having nothing to do with
the preceding : to optimize the production of electrical power plants. The
following constitutes a simplest instance among realistic models. Consider a
set I of power plants (hydro-electrical, thermal, nuclear or not). One wishes
to optimize their production over a horizon {1, . . . , T}, for example T = 48
half-hours; the demand is supposed to be known, call it d1, . . . , dT . If pi

t

denotes the energy produced by the production unit i ∈ I during the period
t, one must first satisfy the demand constraints

∑
i∈I p

i
t > dt , for t = 1, . . . , T . (1.6)

Use the notation pi = {pi
1, . . . , p

i
T } for the production-vector of unit i. To

each unit is associated a production cost ci : R
T → R: one wishes to solve

min
∑

i∈I c
i(pi) . (1.7)

Besides, each unit has its own technological constraints describing the set Di

of possible production vectors:

10 1 General Introduction

pi ∈ Di , for i ∈ I . (1.8)

Describing the ci’s and Di’s may not be a simple task, which goes beyond our
framework. We just note here their disparity : nuclear and hydro plants have
nothing to do with each other, neither in their operation costs, nor in their
constraints. For one thing, a hydro plant has basically linear characteristics
(category 2.2.1 in §1.1.2), although it becomes nonlinear (category 3.2) in
accurate models. By contrast, thermal plants have an important combina-
torial aspect, owing to a 0 − 1 behaviour: it is not possible to change their
production level continuously, neither at any time.

The crude problem is to minimize (1.7) under constraints (1.6), (1.8).
This problem is large-scale: as an example, the French power mix has about
200 plants working every day, which gives birth to 200× 48 = 104 variables
pi

t (and even many more, due to combinatorics; actually, each unit i is an
optimal control system, with its own additional state variables). Yet, the
real difficulty of the problem is not its size but its heterogeneity: nonlinear
methods of this book will fail, just as combinatorial methods.

This is why it is suitable to transform this problem. The key is to ob-
serve that, if constraints (1.6) were not present, each plant could be treated
separately: one would have to solve, for each i ∈ I

min ci(q) , q ∈ Di . (1.9)

Here, the dummy variable q represents the production-vector pi. Each of
the latter problems becomes solvable, by a method tailored to each case,
depending on i. Starting from this remark, a particular heuristic technique
is rather well-suited for (1.6)–(1.8). More precisely, Lagrangian relaxation
(§8.2) approximates a solution by minimizing a convex nonsmooth function,
to be seen in Chap. 10.

1.3 General Principles of Resolution

The problems of interest here – such as those of §1.2 – are solved via an
algorithm which constructs iteratively x1, x2, . . . , xk , . . . To obtain the next
iterate, the algorithm needs to know some information concerning the original
problem (P) of §1.1.1: essentially, the numerical value of f and c for each value
of x; often, their derivatives as well.

– If there are only linear or quadratic functions, this information is globally
and explicitly available in the data: a linear [resp. quadratic] function (b, x)
[resp. (x,Ax)] is completely characterized by the vector b [resp. the matrix
A]. As a result, categories 1.1, 2.1.1, 2.2.1, 2.2.2 of § 1.1.2 make up a very
particular class, and call for very particular methods, studied in the fourth
part of this volume.

1.3 General Principles of Resolution 11

– By contrast, as soon as really general functions are involved, this infor-
mation is computed in a black box (subprogram) characterizing (P), and
independent of the selected algorithm. This subprogram can be called sim-
ulator , since it simulates the behaviour of the problem under the action of
the decision variables (optimal or not).

Hence (and it is important to convince oneself with this truth), a computer
program solving an optimization problem is made up of two distinct parts :

– One is in charge of managing x and is the algorithm proper; call it (A),
as Algorithm; it is generally written by a mathematician, specialized in
optimization.

– The other, the simulator, depending on (P), performs the required calcu-
lations for each x decided by (A); it is generally written by a practitioner
(engineer, physicist, economist, etc.), the one who wishes to solve the spe-
cific optimization problem.

The distinction between (A) and (P) is not always straightforward, ac-
tually it depends on the modeling. Consider the examples of the preceding
section:

§1.2.1. There is no ambiguity in the biochemistry problem: (A) places the
atoms in the space, (P) computes the resulting energy, and perhaps
its derivatives as well: they are very useful for (A).

§1.2.2. The case of meteorology is also relatively clear: (A) decides the ini-
tial conditions (denoted by u or p(·,−1) rather than x); (P) inte-
grates the state equation over [−1, 0], which allows the computation
of the objective function (1.2); call J(u) this objective. Note that
differentiating J is now far from trivial; yet, it is certainly possible
(at least after discretization, in case of theoretical difficulties for the
continuous version). More is given on this topic in §1.6 below.

§1.2.3. In the cable problem the situation is no longer so clear-cut. In a
control-like formulation as in §1.2.2, (A) would decide the tug’s tra-
jectory, and (P) would integrate (1.3), (1.4) to obtain the fish’s
trajectory; the objective value and the constraint value (1.5) would
ensue.

In the suggested “general-constrained” formulation, (A) fixes the
trajectory and tension of every point on the cable. The job of (P)
is now much more elementary: it knows the values of (y, T)(s, t)
for each (s, t) – they have been fixed by (A) – and it just have to
compute the values (and derivatives) of the objective, of the equality
constraints (1.3), (1.4), and of the inequality constraints (1.5).

§1.2.4. A complication appears in production optimization because the
problem is not really (1.6)–(1.8), but rather an auxiliary abstract
problem, which will be seen in §8.3.2. The objective is actually a
perturbation of (1.7), namely a Lagrange function incorporating the
term

∑
t λt

(∑
i p

i
t−dt

)
; the decision variables are no longer the pi

t’s

12 1 General Introduction

but the λt’s, i.e. the multipliers associated with (1.6). Thus, (A) fixes
the λt’s, while (P) solves for each i a perturbation of (1.9), namely

min
q∈Di

ci(q) +
∑

t

λtqt .

Remark 1.3. In addition to the (A)–(P) distinction, another fundamental
thing to understand here is the following: for any problem considered, the only
information available for (P) is the result of a numerical calculation, generally
complicated; for example, the resolution of a partial differential equation, or
the optimization of a number of nuclear plants, etc. Hence, (A) has to proceed
by “trial and error”: it assigns trial values to the decision variables x, and it
corrects these values upon observation of the answer from (P); and this will
repeatedly make up the iterations of the optimization process. ut

Now the current iteration of an optimization algorithm is made up of two
phases: to compute a direction, and to perform a line-search.

– Computing a direction: (P) is replaced by a model (Pk), which is simpler;
then (Pk) is solved to yield a new approximation xk + d.

– Line-search: a stepsize t > 0 is computed so that xk + td is “better” than
xk in terms of (P).

– The new iterate is then xk+1 = xk + td.

Remark 1.4. The direction is computed by solving (usually accurately) an
approximation (Pk) of (P). By contrast, the stepsize is computed by observing
the true (P) on the restriction of x ∈ R

n to the half-line {xk + td}t∈R+
(xk

and d fixed).
Replacing the given problem (P) by a simpler (Pk) is a common technique

in numerical analysis. By contrast, the second phase which corrects xk +d, is
a technique specific to optimization. Its motivation is stabilization. All this
will be seen in detail in the next chapters. ut

The next two subsections are devoted to some convergence theory tailored
to optimization algorithms.

1.4 Convergence: Global Aspects

Let an optimization algorithm generate some sequence {xk}. This algorithm
is said to converge globally when

{xk} converges to “what is wished” for any initial iterate x1.

Caution: this terminology is ambiguous because “what is wished” does not
mean a solution to the initial problem (P), often called global optimum. Here,
one rather stresses the fact that the initial iterate can be arbitrarily far from

1.4 Convergence: Global Aspects 13

“what is wished”, without impairing convergence; actually, “what is wished”
generally means an x satisfying what is called the necessary optimality con-
ditions (see below and the sections involved: §§2.2 and 13.3).

In connection with Remark 1.4, one generally has a merit function Θ :
R

n → R, which is minimal at “what is whished”: (P) is thus equivalent to
minimizing Θ over the whole of R

n. The simplest example is unconstrained
optimization: one must minimize f over R

n, so one naturally takes Θ = f .
The word “better” introduced in §1.3 can then be given the meaning

Θ(xk+1) < Θ(xk) . (1.10)

Then let us review the various convergence properties that an optimiza-
tion algorithm may enjoy. First, a direct consequence of (1.10) is that

{Θ(xk)} has a limit, possibly −∞
– of course, Θ(xk)→ −∞ reveals an ill-posed problem (P).

Minimal requirement To make things simple, let us assume that Θ is a
continuously differentiable function and consider its first-order development
around a given x:

Θ(x + h) ' Θ(x) + (∇Θ(x), h) .

Assuming ∇Θ(x) 6= 0 and taking h = −t∇Θ(x) with a small t > 0, we obtain
Θ(x + h) − Θ(x) ' −t|∇Θ(x)|2 < 0; as a result, x cannot minimize Θ. We
say that ∇Θ(x) = 0 is an optimality condition for x to minimize Θ. The least
property that should be satisfied by a sequence {xk} constructed as in §1.3
is then1

lim inf |∇Θ(xk)| = 0 ; (1.11)

this means that the gradient ∇Θ(xk) will certainly have a norm smaller than
ε for some finite k, no matter how ε > 0 is chosen. Thus, in this context, a
globally convergent algorithm has to satisfy (1.11) for any starting point x1.

It should be noted that (1.11), or even the property lim |∇Θ(xk)| = 0,
is fairly weak indeed: it does not tell much unless {xk} itself has some limit
point. For example, it does not imply that {xk} is a minimizing sequence, i.e.
that Θ(xk)→ inf Θ.

Boundedness If the original minimization problem (P) is reasonably well-
posed, a reasonable merit function satisfies

Θ(x) → +∞ when |x| → +∞
(for example, minimizing ex over x ∈ R is an ill-posed optimization problem:
it has no solution). Together with (1.10), this property automatically guar-
antees that {xk} is a bounded sequence. As a result, {xk} has a cluster point;
and every subsequence {xk}k∈K is also bounded.

1 The lim inf [resp. lim sup] of a numerical sequence is its smallest [resp. largest]
cluster point.

14 1 General Introduction

Convergent sequences Assume boundedness of {xk}. Then (1.11) guar-
antees the existence of a subsequence {xk}k∈K satisfying

xk
k∈K−→ x∗ and ∇Θ(xk)

k∈K−→ 0 ,

from wich continuity of ∇Θ implies ∇Θ(x∗) = 0.
On the other hand, the monotonicity property (1.10) implies that the

whole sequence {Θ(xk)} tends to Θ(x∗): all cluster points of {xk} have the
same Θ-value. Whether this value is the minimum value of Θ is more delicate.

When Θ is a convex function, the optimality condition ∇Θ(x∗) = 0 is
(necessary and) sufficient for x∗ to minimize Θ (use for example the well-
known property Θ(y) > Θ(x∗)+(∇Θ(x∗), y−x∗) for all y). In this situation,
we conclude that all the cluster points of {xk} minimize Θ; and finally, the
whole of {xk} converges to the same limit x∗ if Θ has a single minimum point
x∗ (for example if Θ is strictly convex).

Let us summarize our considerations: admitting that (P) can be formulated
as minimizing a differentiable function Θ, the key property to be satisfied
by an algorithm is (1.11). If Θ enjoys appropriate additional properties, then
the limit points of {xk} will minimize Θ, and hence solve (P).

1.5 Convergence: Local Aspects

Now {xk} is assumed to have a limit x∗ – which may or may not be “what
is wished” – and one wants to know at what speed xk − x∗ tends to 0; in
particular, one tries to compare this error to an exponential function. This
study is limited to large values of k (hence xk is already close to x∗): it
is only a local study. First recall some notation: s = o(t) means that s is
“infinitely smaller” than t; more precisely s

t → 0. Here t and s are two
variables (depending on a parameter x, on an iteration number k, etc.); t
is scalar-valued and positive; strictly speaking, s as well; when s is vector-
valued, the correct and complete notation should be |s| = o(t). In practice,
it is implicitly understood that t ↓ 0 (say when x → x∗, or k → +∞) and
s = o(t) means that s tends to 0 infinitely faster than t. The notation s = O(t)
means that s is not infinitely bigger than t: there exists a constant C such
that s 6 Ct.

Consider now a sequence {xk} converging to x∗; two types of convergence
are relevant:

Q-convergence : this is a study of the quotient qk := |xk+1 − x∗|/|xk − x∗|.
– Q-linear convergence is said to hold when lim sup qk < 1.

– Q-superlinear convergence when lim qk = 0.

– Particular case: Q-quadratic convergence when qk = O(|xk−x∗|); or equiv-
alently: |xk+1 − x∗| = O(|xk − x∗|2); roughly, the number of exact digits
doubles at each iteration.

1.5 Convergence: Local Aspects 15

Often, “Q” is omitted: superlinear convergence implicitly meansQ-superlinear
convergence.

R-convergence : even though Theorems 1.7 and 1.8 below give a more natural
definition, R-convergence is originally a study of the rate rk := |xk −x∗|1/k.

– lim sup rk < 1: R-linear convergence,

– lim rk = 0: R-superlinear convergence.

Remark 1.5. A sequence converging sublinearly to its limit (qk or rk tends
to 1) is in practice considered as not converging at all, because convergence is
so slow; an algorithm with sublinear convergence must simply be forgotten.

ut

R-linear convergence means geometric or exponential convergence: setting
r := lim sup rk, we have rk 6 r + ε for all ε > 0 and k large enough; this is
equivalent to |xk − x∗| 6 (r + ε)k (and note: r + ε can be made < 1).

Q-convergence is more powerful, in that the error at iteration k + 1 can
be bounded in terms of the error at iteration k: if q = lim sup qk,

|xk+1 − x∗| 6 (q + ε)|xk − x∗| , for all ε > 0 and k large enough.

In a way, Q-convergence is a Markovian concept: it only involves what hap-
pens at the present iteration. In the above writing, “iteration k [resp. k+1]”
can be replaced by “current iterate x [resp. next iterate x+]” and “k large
enough” by “x close enough to x∗”. In plain words, Q-superlinear conver-
gence is expressed by: if the current iterate is close to the limit, then the next
iterate is infinitely closer. This is not true for R-convergence, since k plays
its role in the definition of rk , which has to be a kth root. The next result
confirms that Q-linear convergence implies geometric convergence:

Theorem 1.6. If xk tends Q-linearly to x∗, then: for all q > lim sup qk, there
exists k0 and C > 0 such that

|xk − x∗| 6 Cqk for all k > k0.

Proof. Fix q as announced, k0 such that

|xi+1 − x∗| 6 q|xi − x∗| for i > k0,

which gives (multiplying out for i = k0, . . . , k − 1)

|xk − x∗| 6 |xk0
− x∗|qk−k0 =

|xk0
− x∗|
qk0

qk

and the result is obtained with C := |xk0
− x∗|/qk0 . ut

16 1 General Introduction

Once again, this theorem does not contain all the power of Q-convergence,
since it does not say that the error decreases at the rate q < 1 at each
iteration.

Quite often, convergence speed is established via a study of an upper
bound of the error. Q-convergence of an upper bound of |xk − x∗| becomes
R-convergence for {xk}. For example:

Theorem 1.7. If |xk − x∗| 6 sk where sk converges Q-superlinearly to 0,
then {xk} converges R-superlinearly to x∗.

Proof. Fix ε > 0. From Theorem 1.6, there is C such that sk 6 Cεk for k
large enough. Hence, by assumption,

|xk − x∗|1/k
6 s

1/k
k 6 C1/kε .

Pass to the limit on k: C1/k → 1 and lim sup |xk − x∗|1/k 6 ε. ut

Actually, the converse is also true. To show it, we give a last result, stated
in terms of linear convergence, to make a change:

Theorem 1.8. Let xk tend to x∗ R-linearly. Then |xk −x∗| is bounded from
above by a sequence sk tending to 0 Q-linearly.

Proof. Call r < 1 the limsup of |xk−x∗|1/k and take ε ∈]0, 1− r[. For k large
enough, |xk − x∗| 6 (r + ε)k. The sequence sk := max{|xk − x∗|, (r + ε)k} is
indeed an upper bound of {|xk − x∗|} and, for k large enough, sk = (r+ ε)k;
hence sk answers the question. ut

These two theorems establish the equivalence between R-convergence of
a nonnegative sequence tending to 0, and Q-convergence of an upper bound.
This gives another definition of R-convergence, perhaps more natural than
the original one; namely: xk → x∗ R-superlinearly when |xk − x∗| 6 sk, for
some {sk} tending to 0 Q-superlinearly.

1.6 Computing the Gradient

As seen in §1.3, the main duty of the user of an optimization algorithm is to
write a simulator computing information needed by the algorithm. It has also
been said (and it will be confirmed all along this book) that the simulator
should compute not only function- but also derivatives-values. This is not
always a trivial task, especially in optimal control problems. Take for example
the case of meteorology in §1.2.2: it is easy to understand how the objective
function of (1.2) (call it f) can be computed via (1.1), for given values of the
control variable u(·) = p(·,−1); but how about the total derivative of f with
respect to u? Since f is given implicitly by (1.1), one must somehow invoke
the implicit function theorem, which may be tricky. Indeed, computing the

1.6 Computing the Gradient 17

Jacobian of the operator “control variable 7→ state variable” is often out of
question, and useless anyway. Here we demonstrate a technique commonly
used, which involves the adjoint equation. For reasons to be explained in
Remark 1.9 below, we do this computation in a finite-dimensional setting,
even though optimal control problems are usually set in some function space.

So we consider the following situation. The control variables are {ut}Tt=1

where ut ∈ R
n for each t. The state variables are likewise {yt}t with yt ∈ R

m,
given by the state equation

{
yt = Ft(yt−1, ut) , for t = 1, . . . , T ,
y0 given.

(1.12)

Here, for each t, Ft is a function (possibly nonlinear) from R
m × R

n to R
m.

Besides, a function is given, say

f =
T∑

t=1

ft(yt, ut) ,

where, for each t, ft sends R
m × R

n to R. It is purposedly that we do not
specify formally which variables f depends on. Incidentally, note that f can
be the objective function of our optimal control problem; but it can equally be
a constraint, involving the state variables; for example a final-time constraint
c(yT) (imposed to be 0, or nonnegative, etc.)

Call v = du ∈ R
nT a differential of u; it induces from (1.12) a differential

z = dy ∈ R
mT , and finally a differential df . To be specific, we assume the

usual dot product in each of the spaces involved and we use the notation (·, ·)n

[resp. (·, ·)m] for the dot-product in R
n [resp. R

m]. In the control space, the
scalar product is therefore

(g, v) =
T∑

j=1

(gt, vt)n .

Our problem is then as follows: find {gt}Tt=1 such that the differential of f
is given by df = (g, v). This will yield {gt}t ∈ R

nT as the gradient of f ,
considered as a function of the control variable u alone.

To solve this problem, we have from (1.12) (assuming appropriate smooth-
ness of the data)
{
zt = (Ft)

′
y(yt−1, ut)zt−1 + (Ft)

′
u(yt−1, ut)vt for t = 1, . . . , T ,

z0 = 0
(1.13)

(z0 = 0 because y0 is fixed!). In this writing, the Jacobian (Ft)
′
y(yt−1, ut) is

an m×m matrix and (Ft)
′
u(yt−1, ut) is m× n. We have also

df =
T∑

t=1

(∇yft(yt, ut), zt)m +
T∑

t=1

(∇uft(yt, ut), vt)n ;

here ∇yft(yt, ut) ∈ R
m and ∇uft(yt, ut) ∈ R

n. We need to eliminate z be-
tween these various relations; this is done by a series of tricks:

18 1 General Introduction

Trick 1. Multiply the tth linearized state equation in (1.13) by a vector pt ∈
R

m (unspecified for the moment) and sum up. Setting Gt := (Ft)
′
y(yt−1, ut)

and Ht := (Ft)
′
u(yt−1, ut), we obtain

T∑

t=1

(pt, zt)m =

T∑

t=1

(pt, Gtzt−1)m +

T∑

t=1

(pt, Htvt)m .

Single out (pT , zT)m in the lefthand side, transpose Gt and Ht, and re-index
the sum in z; remembering that z0 = 0, this gives

0 = −(pT , zT)m −
T−1∑

t=1

(pt, zt)m +

T−1∑

t=1

(G>
t+1pt+1, zt)m +

T∑

t=1

(H>
t pt, vt)n .

Trick 2. Add to the expression of df and identify with respect to the zt’s.
Setting γt := ∇yft(yt, ut) and ht := ∇uft(yt, ut):

df = (−pT +γT , zT)m +

T−1∑

t=1

(−pt +G
>
t+1pt+1+γt, zt)m +

T∑

t=1

(H>
t pt +ht, vt)n .

Trick 3. Now it suffices to choose p so as to cancel out the coefficient of each
zt: requiring

{
pT = γT ,
pt = G>

t+1pt+1 + γt for t = T − 1, . . . , 1 ,
(1.14)

we obtain the gradient in the desired form:

gt = H>
t pt + ht for t = 1, . . . , T .

The (backward) recurrence relations (1.14) form the so-called adjoint
equation, whose solution p is the adjoint state.

Remark 1.9. In optimal control problems, the state variable is often given
by a differential equation, say

{
ẏ(t) = F (y(t), u(t), t) , for t ∈]0, T [,
y(0) given,

instead of the recurrence relations (1.12). Then the “adjoint trick” can nev-
ertheless be reproduced: multiply the above equation by a function p(t) (the
continuous adjoint state), integrate from 0 to T , and integrate the lefthand
side by parts. The resulting adjoint equation is another differential equation,
instead of (1.14).

However, the actual minimization algorithm, implemented on the com-
puter, certainly does not solve this original problem; it can but solve some
discretized form of it (a computer can hardly work in infinite dimension). Us-
ing a subscript δ to connote such a discretization, we are eventually faced with

1.6 Computing the Gradient 19

minimizing a certain function fδ(uδ), with respect to some finite-dimensional
variable uδ. For numerical efficiency of the minimization algorithm, it is im-
portant that the simulator computes the exact gradient of fδ, and not some
discretized form of the continuous gradient ∇f . One way of achieving this is
to carefully select the discretization scheme of the adjoint equation. But the
safest approach is to discretize first the problem (and in particular the state
equation), and then only to construct the adjoint equation of the discretized
problem.

This is why we bothered to demonstrate the mechanism for the tedious
discrete case; after this, reproducing the calculations in the continuous case
is an easy exercise (only formal, though: differentiability properties of the
infinite-dimensional problem must still be carefully analyzed; otherwise, dif-
ficulties may occur for δ → 0). ut
Remark 1.10. The adjoint technique opens the way to the so-called au-
tomatic or computational differentiation. Indeed, consider a computer code
which, taking an input u, computes an output f . Such a code can be viewed
as a “control process” of the type (1.12):

– The tth line of this code is the tth equation in (1.12).

– The intermediate results of this code (the lefthand sides of the assignment
statements) form altogether a “state” y, which is a function of the “control”
u.

– Forming the righthand side of the adjoint equations then amounts to dif-
ferentiating one by one each line of the code.

– Afterwards, solving the adjoint equations – to obtain finally the gradient
∇f – amounts to writing these “linearized lines” bottom up.

These operations are all purely mechanical and lend themselves to au-
tomatization. Thus, one can conceive the existence of a software which

– takes as input a computer code able to calculate f(u) (for given u),

– and produces as output another computer code able to calculate ∇f(u)
(again for given u).

It is worth mentioning that such software do not need to know anything
about the problem. They do not even need mathematical formulae represent-
ing the computation of f . What they need is just the first half of a simulator;
and then they write down its second half. ut

Bibliographical Comments

Among other monographs devoted to optimization algorithms, [107, 27, 277,
86] can be suggested. See also [128, 160] for a style very close to users’ con-
cerns, while [239] insists more on theorems.

A function Θ for which a stationary sequence (∇Θ(xk) → 0) is not nec-
essarily minimizing (Θ(xk) 6→ inf Θ) is given in [350]. The various types of
local convergence are defined and studied in [278].

20 1 General Introduction

As for available optimization software, the situation is rapidly evolving.
First, there is the monograph [267], which reviews most individual codes and
organized libraries existing in the beginning of the 90’s. Generally speak-
ing, the Harwell library has well-considered optimization codes. In fact, this
library goes far beyond optimization, as it covers the whole of numerical
analysis, from linear algebra to differential equations:

http://www.cse.clrc.ac.uk/Activity/HSL.

On the other hand, the Galahad software is exclusively devoted to optimiza-
tion and can normally be used for free:

http://galahad.rl.ac.uk/galahad-www.

The Scilab environment and the Modulopt library include implementations
of some of the algorithms presented in this book:

http://www-rocq.inria.fr/scilab/scilab.html

http://www-rocq.inria.fr/estime/modulopt.

The internet address

http://www-neos.mcs.anl.gov/neos

collects and updates, under the name NEOS, the vast majority of software
existing throughout the world, even allowing a “push-button” use of some of
them.

For computational differentiation, see for example [181], [88], [151] (but
the idea is much older, going back to [339, 208] and others). We mention
Adolc, Adifor, Tapenade as available software; the addresses are as follows:

http://www.math.tu-dresden.de/wir/project/adolc

http://www-unix.mcs.anl.gov/autodiff/ADIFOR

http://www-sop.inria.fr/tropics/tapenade/tutorial

http://www-unix.mcs.anl.gov/autodiff/AD Tools

