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Fourier Series

One of the most useful tools of mathematical analysis is Fourier series,
named after the French mathematical physicist Jean Baptiste Joseph Fourier
(1768–1830). Fourier analysis is ubiquitous in almost all fields of physical
sciences.

In 1822, Fourier in his work on heat flow made a remarkable assertion that
every function f(x) with period 2π can be represented by a trigonometric
infinite series of the form

f(x) =
1
2
a0 +

∞∑

n=1

(an cos nx + bn sinnx). (1.1)

We now know that, with very little restrictions on the function, this is indeed
the case. An infinite series of this form is called a Fourier series. The series
was originally proposed for the solutions of partial differential equations with
boundary (and/or initial) conditions. While it is still one of the most powerful
methods for such problems, as we shall see in later chapters, its usefulness has
been extended far beyond the problem of heat conduction. Fourier series is
now an essential tool for the analysis of all kinds of wave forms, ranging from
signal processing to quantum particle waves.

1.1 Fourier Series of Functions with Periodicity 2π

1.1.1 Orthogonality of Trigonotric Functions

To discuss Fourier series, we need the following integrals. If m and n are
integers, then ∫ π

−π

cos mxdx = 0, (1.2)

∫ π

−π

sin mxdx = 0, (1.3)
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∫ π

−π

cos mx sin nx dx = 0, (1.4)

∫ π

−π

cos mx cos nx dx =

⎧
⎨

⎩

0 m �= n,
π m = n �= 0,
2π m = n = 0,

(1.5)

∫ π

−π

sin mx sin nx dx =
{

0 m �= n,
π m = n.

(1.6)

The first two integrals are trivial, either by direct integration or by noting that
any trigonometric function integrated over a whole period will give zero since
the positive part will cancel the negative part. The rest of the integrals can be
shown by using the trigonometry formulas for products and then integrating.
An easier way is to use the complex forms

∫ π

−π

cos mx sin nx dx =
∫ π

−π

eimx + e−imx

2
einx − e−inx

2i
dx.

We can see the results without actually multiplying out. All terms in the
product are of the form eikx, where k is an integer. Since

∫ π

−π

eikxdx =
1
ik
[
eikx

]π
−π

= 0,

it follows that all integrals in the product are zero. Similarly
∫ π

−π

cos mx cos nx dx =
∫ π

−π

eimx + e−imx

2
einx + e−inx

2
dx

is identically zero except n = m, in that case
∫ π

−π

cos mx cos mxdx =
∫ π

−π

ei2mx + 2 + e−i2mx

4
dx

=
∫ π

−π

1
2

[1 + cos 2mx] dx =
{

π m �= 0,
2π m = 0.

In the same way we can show that if n �= m,

∫ π

−π

sinmx sin nx dx = 0

and if n = m,

∫ π

−π

sinmx sin mxdx =
∫ π

−π

1
2

[1 − cos 2mx] dx = π.

This concludes the proof of (1.2)–(1.6).
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In general, if any two members ψn, ψm of a set of functions {ψi} satisfy
the condition ∫ b

a

ψn(x)ψm(x)dx = 0 if n �= m, (1.7)

then ψn and ψm are said to be orthogonal, and (1.7) is known as the orthog-
onal condition in the interval between a and b. The set {ψi} is an orthogonal
set over the same interval.

Thus if the members of the set of trigonometric functions are

1, cos x, sinx, cos 2x, sin 2x, cos 3x, sin 3x, . . . ,

then this is an orthogonal set in the interval from −π to π.

1.1.2 The Fourier Coefficients

If f(x) is a periodic function of period 2π, i.e.,

f(x + 2π) = f(x)

and it is represented by the Fourier series of the form (1.1), the coefficients
an and bn can be found in the following way.

We multiply both sides of (1.1) by cosmx, where m is an positive integer

f(x) cos mx =
1
2
a0 cos mx +

∞∑

n=1

(an cos nx cos mx + bn sin nx cos mx).

This series can be integrated term by term

∫ π

−π

f(x) cos mxdx =
1
2
a0

∫ π

−π

cos mxdx +
∞∑

n=1

an

∫ π

−π

cos nx cos mxdx

+
∞∑

n=1

bn

∫ π

−π

sin nx cos mxdx.

From the integrals we have discussed, we see that all terms associated
with bn will vanish and all terms associated with an will also vanish except
the term with n = m, and that term is given by

∫ π

−π

f(x) cos mxdx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2
a0

∫ π

−π

dx = a0π for m = 0,

am

∫ π

−π

cos2 mxdx = amπ for m �= 0.

These relations permit us to calculate any desired coefficient am including a0

when the function f(x) is known.
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The coefficients bm can be similarly obtained. The expansion is multiplied
by sinmx and then integrated term by term. Orthogonality relations yield

∫ π

−π

f(x) sin mxdx = bmπ.

Since m can be any integer, it follows that an(including a0) and bn are given by

an =
1
π

∫ π

−π

f(x) cos nx dx, (1.8)

bn =
1
π

∫ π

−π

f(x) sin nx dx. (1.9)

These coefficients are known as the Euler formulas for Fourier coefficients, or
simply as the Fourier coefficients.

In essence, Fourier series decomposes the periodic function into cosine and
sine waves. From the procedure, it can be observed that:

– The first term 1
2a0 represents the average value of f(x) over a period 2π.

– The term an cos nx represents the cosine wave with amplitude an. Within
one period 2π, there are n complete cosine waves.

– The term bn sinnx represents the sine wave with amplitude bn, and n is
the number of complete sine wave in one period 2π.

– In general an and bn can be expected to decrease as n increases.

1.1.3 Expansion of Functions in Fourier Series

Before we discuss the validity of the Fourier series, let us use the following
example to show that it is possible to represent a periodic function with period
2π by a Fourier series, provided enough terms are taken.

Suppose we want to expand the square-wave function, shown in Fig. 1.1,
into a Fourier series.

−π−2π 2π0 π

f(x)

x

−k

k

Fig. 1.1. A square-wave function
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This function is periodic with period 2π. It can be defined as

f(x) =
{
−k −π < x < 0
k 0 < x < π

, f(x + 2π) = f(x).

To find the coefficients of the Fourier series of this function

f(x) =
1
2
a0 +

∞∑

n=1

(an cos nx + bn sin nx)

it is always a good idea to calculate a0 separately, since it is given by simple
integral. In this case

a0 =
1
π

∫ π

−π

f(x)dx = 0

can be seen without integration, since the area under the curve of f(x) between
−π and π is zero. For the rest of the coefficients, they are given by (1.8) and
(1.9). To carry out these integrations, we have to split each of them into two
integrals because f(x) is defined by two different formulas on the intervals
(−π, 0) and (0, π). From (1.8)

an =
1
π

∫ π

−π

f(x) cos nx dx =
1
π

[∫ 0

−π

(−k) cos nx dx +
∫ π

0

k cos nx dx

]

=
1
π

{[
−k

sinnx

n

]0

−π

+
[
k

sin nx

n

]π

0

}
= 0.

From (1.9)

bn =
1
π

∫ π

−π

f(x) sin nx dx =
1
π

[∫ 0

−π

(−k) sin nx dx +
∫ π

0

k sin nx dx

]

=
1
π

{[
k

cos nx

n

]0
−π

+
[
−k

cos nx

n

]π

0

}
=

2k

nπ
(1 − cos nπ)

=
2k

nπ
(1 − (−1)n) =

{ 4k

nπ
if n is odd,

0 if n is even.

With these coefficients, the Fourier series becomes

f(x) =
4k

π

∑

n odd

1
n

sinnx

=
4k

π

(
sin x +

1
3

sin 3x +
1
5

sin 5x + · · ·
)

. (1.10)

Alternatively this series can be written as

f(x) =
4k

π

∑

n=1

1
2n − 1

sin(2n − 1)x.
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To examine the convergence of this series, let us define the partial sums as

SN =
4k

π

N∑

n=1

1
2n − 1

sin(2n − 1)x.

In other words, SN is the sum the first N terms of the Fourier series. S1 is
simply the first term 4k

π sin x, S2 is the sum of the first two terms 4k
π (sin x +

1
3 sin 3x), etc.

In Fig. 1.2a, the first three partial sums are shown in the right column,
the individual terms in these sums are shown in the left column. It is seen
that SN gets closer to f(x) as N increases, although the contributions of the
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Fig. 1.2. The convergence of a Fourier series expansion of a square-wave function.
(a) The first three partial sums are shown in the right; the individual terms in these
sums are shown in the left. (b) The sum of the first eight terms of the Fourier series
of the function
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individual terms are steadily decreasing as n gets larger. In Fig. 1.2b, we show
the result of S8. With eight terms, the partial sum already looks very similar
to the square-wave function. We notice that at the points of discontinuity
x = −π, x = 0, and x = π, all the partial sums have the value zero, which
is the average of the values of k and −k of the function. Note also that as x
approaches a discontinuity of f(x) from either side, the value of SN (x) tends
to overshoot the value of f(x), in this case −k or +k. As N increases, the
overshoots (about 9% of the discontinuity) are pushed closer to the points of
discontinuity, but they will not disappear even if N goes to infinity. This beha-
vior of a Fourier series near a point of discontinuity of its function is known
as Gibbs’ phenomenon.

1.2 Convergence of Fourier Series

1.2.1 Dirichlet Conditions

The conditions imposed on f(x) to make (1.1) valid are stated in the following
theorem.

Theorem 1.2.1. If a periodic function f(x) of period 2π is bounded and piece-
wise continuous, and has a finite number of maxima and minima in each
period, then the trigonometric series

1
2
a0 +

∞∑

n=1

(an cos nx + bn sin nx)

with

an =
1
π

∫ π

−π

f(x) cos nx dx, n = 0, 1, 2, . . .

bn =
1
π

∫ π

−π

f(x) sin nx dx, n = 1, 2, . . .

converges to f(x) where f(x) is continuous, and it converges to the average
of the left- and right-hand limits of f(x) at points of discontinuity.

A proof of this theorem may be found in G.P. Tolstov, Fourier Series,
Dover, New York, 1976.

As long as f(t) is periodic, the choice of the symmetric upper and
lower integration limits (−π, π) is not essential. Any interval of 2π, such as
(x0, x0 + 2π) will give the same result.

The conditions of convergence were first proved by the German mathemati-
cian P.G. Lejeune Dirichlet (1805–1859), and therefore known as Dirichlet
conditions. These conditions impose very little restrictions on the function.
Furthermore, these are only sufficient conditions. It is known that certain
function that does not satisfy these conditions can also be represented by the
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Fourier series. The minimum necessary conditions for its convergence are not
known. In any case, it can be safely assumed that functions of interests in
physical problems can all be represented by their Fourier series.

1.2.2 Fourier Series and Delta Function

(For those who have not yet studied complex contour integration, this section
can be skipped.)

Instead of proving the convergence theorem, we will use a delta function
to explicitly demonstrate that the Fourier series

S∞(x) =
1
2
a0 +

∞∑

n=1

(an cos nx + bn sin nx)

converges to f(x).
With an and bn given by (1.8) and (1.9), S∞(x) can be written as

S∞(x) =
1
2π

∫ π

−π

f(x′)dx′ +
1
π

∞∑

n=1

(∫ π

−π

f(x′) cos nx′dx′
)

cos nx

+
1
π

∞∑

n=1

(∫ π

−π

f(x′) sin nx′dx′
)

sin nx

=
∫ π

−π

f(x′)

[
1
2π

+
1
π

∞∑

n=1

(cos nx′ cos nx + sinnx′ sin nx)

]
dx′

=
∫ π

−π

f(x′)

[
1
2π

+
1
π

∞∑

n=1

cos n(x′ − x)

]
dx′.

If the cosine series

D(x′ − x) =
1
2π

+
1
π

∞∑

n=1

cos n(x′ − x)

behaves like a delta function δ(x′ − x), then S∞(x) = f(x) because
∫ π

−π

f(x′)δ(x′ − x)dx′ = f(x) for − π < x < π.

Recall that the delta function δ(x′ − x) can be defined as

δ(x′ − x) =
{

0 x′ �= x
∞ x′ = x

,

∫ π

−π

δ(x′ − x)dx′ = 1 for − π < x < π.
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Now we will show that indeed D(x′−x) has these properties. First, to ensure
the convergence, we write the cosine series as

D(x′ − x) = lim
γ→1−

Dγ(x′ − x),

Dγ(x′ − x) =
1
π

[
1
2

+
∞∑

n=1

γn cos n(x′ − x)

]
,

where the limit γ → 1− means that γ approaches one from below, i.e., γ
is infinitely close to 1, but is always less than 1. To sum this series, it is
advantageous to regard Dγ(x′ − x) as the real part of the complex series

Dγ(x′ − x) = Re

[
1
π

(
1
2

+
∞∑

n=1

γnein(x′−x)

)]
.

Since

1
1 − γei(x′−x)

= 1 + γei(x′−x) + γ2ei2(x′−x) + · · · ,

γei(x′−x)

1 − γei(x′−x)
= γei(x′−x) + γ2ei2(x′−x) + γ3ei3(x′−x) + · · · ,

so

1
2

+
∞∑

n=1

γnein(x′−x) =
1
2

+
γei(x′−x)

1 − γei(x′−x)

=
1 + γei(x′−x)

2(1 − γei(x′−x))
=

1 + γei(x′−x)

2(1 − γei(x′−x))
1 − γe−i(x′−x)

1 − γe−i(x′−x)

=
1 − γ2 + γei(x′−x) − γe−i(x′−x)

2[1 − γ(ei(x′−x) + e−i(x′−x)) + γ2]
=

1 − γ2 + i2γ sin(x′ − x)
2[1 − 2γ cos (x′ − x) + γ2]

.

Thus

Dγ(x′ − x) = Re
[

1 − γ2 + i2γ sin(x′ − x)
2π[1 − 2γ cos(x′ − x) + γ2]

]

=
1 − γ2

2π[1 − 2γ cos(x′ − x) + γ2]
.

Clearly, if x′ �= x,

D(x′ − x) = lim
γ→1

1 − γ2

2π[1 − 2γ cos(x′ − x) + γ2]
= 0.
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If x′ = x, then cos(x′ − x) = 1, and

1 − γ2

2π[1 − 2γ cos(x′ − x) + γ2]
=

1 − γ2

2π[1 − 2γ + γ2]

=
(1 − γ)(1 + γ)

2π[1 − γ]2
=

1 + γ

2π(1 − γ)
.

It follows that

D(x′ − x) = lim
γ→1

1 + γ

2π(1 − γ)
→ ∞, x′ = x.

Furthermore
∫ π

−π

Dγ(x′ − x)dx′ =
1 − γ2

2π

∫ π

−π

dx′

(1 + γ2) − 2γ cos(x′ − x)
.

We have shown in the chapter on the theory of residue (see Example 3.5.2 of
Volume 1) that ∮

dθ

a − b cos θ
=

2π√
a2 − b2

, a > b.

With a substitution x′ − x = θ,

∫ π

−π

dx′

(1 + γ2) − 2γ cos(x′ − x)
=
∮

dθ

(1 + γ2) − 2γ cos θ
.

As long as γ is not exactly one, 1 + γ2 > 2γ, so
∮

dθ

(1 + γ2) − 2γ cos θ
=

2π√
(1 + γ2)2 − 4γ2

=
2π

1 − γ2
.

Therefore ∫ π

−π

Dγ(x′ − x)dx′ =
1 − γ2

2π

2π

1 − γ2
= 1.

This concludes our proof that D(x′ − x) behaves like the delta function
δ(x′−x). Therefore if f(x) is continuous, then the Fourier series converges to
f(x),

S∞(x) =
∫ π

−π

f(x′)D(x′ − x)dx′ = f(x).

Suppose that f(x) is discontinuous at some point x, and that f(x+) and
f(x−) are the limiting values as we approach x from the right and from the
left. Then in evaluating the last integral, half of D(x′ − x) is multiplied by
f(x+) and half by f(x−), as shown in the following figure.



1.3 Fourier Series of Functions of any Period 13

f(x +)

f(x −)

Therefore the last equation becomes

S∞(x) =
1
2
[f(x+) + f(x−)].

Thus at points where f(x) is continuous, the Fourier series gives the value of
f(x), and at points where f(x) is discontinuous, the Fourier series gives the
mean value of the right and left limits of f(x).

1.3 Fourier Series of Functions of any Period

1.3.1 Change of Interval

So far attention has been restricted to functions of period 2π. This restriction
may easily be relaxed. If f(t) is periodic with a period 2L, we can make a
change of variable

t =
L

π
x

and let
f(t) = f

(
L

π
x

)
≡ F (x).

By this definition,

f(t + 2L) = f

(
L

π
x + 2L

)
= f

(
L

π
[x + 2π]

)
= F (x + 2π).

Since f(t) is a periodic function with a period 2L

f(t + 2L) = f(t)

it follows that:
F (x + 2π) = F (x).

So F (x) is periodic with a period 2π.
We can expand F (x) into a Fourier series, then transform back to a func-

tion of t
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F (x) =
1
2
a0 +

∞∑

n=1

(an cos nx + bn sinnx) (1.11)

with

an =
1
π

∫ π

−π

F (x) cos nx dx,

bn =
1
π

∫ π

−π

F (x) sin nx dx.

Since x =
π

L
t and F (x) = f(t), (1.11) can be written as

f(t) =
1
2
a0 +

∞∑

n=1

(
an cos

nπ

L
t + bn sin

nπ

L
t
)

(1.12)

and the coefficients can also be expressed as integrals over t. Changing the
integration variable from x to t with dx =

π

L
dt, we have

an =
1
L

∫ L

−L

f(t) cos
(nπ

L
t
)

dt, (1.13)

bn =
1
L

∫ L

−L

f(t) sin
(nπ

L
t
)

dt. (1.14)

Kronecker’s method. As a practical matter, very often f(t) is in the form
of tk, sin kt, cos kt, or ekt for various integer values of k. We will have to
carry out the integrations of the type

∫
tk cos

nπt

L
dt,

∫
sin kt cos

nπt

L
dt.

These integrals can be evaluated by repeated integration by parts. The fol-
lowing systematic approach is helpful in reducing the tedious details inherent
in such computation. Consider the integral

∫
f(t)g(t)dt

and let
g(t)dt = dG(t), then G(t) =

∫
g(t)dt.

With integration by parts, one gets
∫

f(t)g(t)dt = f(t)G(t) −
∫

f ′(t)G(t)dt.

Continuing this process, with

G1(t) =
∫

G(t)dt, G2(t) =
∫

G1(t)dt, . . . , Gn(t) =
∫

Gn−1(t)dt,
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we have
∫

f(t)g(t)dt = f(t)G(t) − f ′(t)G1(t) +
∫

f ′′(t)G1(t)dt (1.15)

= f(t)G(t) − f ′(t)G1(t) + f ′′(t)G2(t) − f ′′′(t)G3(t) + · · · . (1.16)

This procedure is known as Kronecker’s method.
Now if f(t) = tk, then

f ′(t) = ktk−1, . . . , fk(t) = k!, fk+1(t) = 0,

the above expression will terminate. Furthermore, if g(t) = cos nπt
L , then

G(t) =
∫

cos
nπt

L
dt =

(
L

nπ

)
sin

nπt

L
,

G1(t) =
(

L

nπ

)∫
sin

nπt

L
dt = −

(
L

nπ

)2

cos
nπt

L
,

G2 (t) = −
(

L

nπ

)3

sin
nπt

L
, G3 (t) =

(
L

nπ

)4

cos
nπt

L
, . . . .

Similarly, if g(t) = sin nπt
L , then

G(t) =
∫

sin
nπt

L
dt = −

(
L

nπ

)
cos

nπt

L
, G1(t) = −

(
L

nπ

)2

sin
nπt

L
,

G2(t) =
(

L

nπ

)3

cos
nπt

L
, G3(t) =

(
L

nπ

)4

sin
nπt

L
, . . . .

Thus
∫ b

a

tk cos
nπt

L
dt =

[
L

nπ
tk sin

nπt

L
+
(

L

nπ

)2

ktk−1 cos
nπt

L

−
(

L

nπ

)3

k(k − 1)tk−2 sin
nπt

L
+ · · ·

]b

a

(1.17)

and
∫ b

a

tk sin
nπt

L
dt =

[
− L

nπ
tk cos

nπt

L
+
(

L

nπ

)2

ktk−1 sin
nπt

L

+
(

L

nπ

)3

k(k − 1)tk−2 cos
nπt

L
+ · · ·

]b

a

. (1.18)

If f(t) = sin kt, then

f ′(t) = k cos kt, f ′′(t) = −k2 sin kt.
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we can use (1.15) to write

∫ b

a

sin kt cos
nπ

L
t dt =

[
L

nπ
sin kt sin

nπt

L
+ k

(
L

nπ

)2

cos kt cos
nπt

L

]b

a

+k2

(
L

nπ

)2 ∫ b

a

sin kt cos
nπ

L
t dt.

Combining the last term with the left-hand side, we have
[
1 − k2

(
L

nπ

)2
]∫ b

a

sin kt cos
nπ

L
t dt

=

[
L

nπ
sin kt sin

nπt

L
+ k

(
L

nπ

)2

cos kt cos
nπt

L

]b

a

or
∫ b

a

sin kt cos
nπ

L
t dt

=
(nπ)2

(nπ)2 − (kL)2

[
L

nπ
sin kt sin

nπt

L
+ k

(
L

nπ

)2

cos kt cos
nπt

L

]b

a

.

Clearly, integrals such as
∫ b

a

sin kt sin
nπ

L
t dt,

∫ b

a

cos kt cos
nπ

L
t dt,

∫ b

a

cos kt sin
nπ

L
t dt,

∫ b

a

ekt cos
nπ

L
t dt,

∫ b

a

ekt sin
nπ

L
t dt

can similarly be integrated.

Example 1.3.1. Find the Fourier series for f(t) which is defined as

f(t) = t for − L < t ≤ L, and f(t + 2L) = f(t).

Solution 1.3.1.

f(t) =
1
2
a0 +

∞∑

n=1

(
an cos

nπt

L
+ bn sin

nπt

L

)
,

a0 =
1
L

∫ L

−L

t dt = 0,

an =
1
L

∫ L

−L

t cos
nπt

L
dt =

1
L

[
L

nπ
t sin

nπt

L
+
(

L

nπ

)2

cos
nπt

L

]L

−L

= 0,
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bn =
1
L

∫ L

−L

t sin
nπt

L
dt

=
1
L

[
− L

nπ
t cos

nπt

L
+
(

L

nπ

)2

sin
nπt

L

]L

−L

= −2L

nπ
cos nπ.

Thus

f(t) =
2L

π

∞∑

n=1

− 1
n

cos nπ sin
nπt

L
=

2L

π

∞∑

n=1

(−1)n+1

n
sin

nπt

L

=
2L

π

(
sin

πt

L
− 1

2
sin

2πt

L
+

1
3

sin
3πt

L
− · · ·

)
. (1.19)

The convergence of this series is shown in Fig. 1.3, where SN is the partial
sum defined as

L−  L 2L−2L−3L 3L0

L−L 2L−2L−3L 3L0

L−L 2L−2L−3L 3L0

S3

S6

S9

Fig. 1.3. The convergence of the Fourier series for the periodic function whose
definition in one period is f(t) = t, −L < t < L. The first N terms approximations
are shown as SN
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SN =
2L

π

N∑

n=1

(−1)n+1

n
sin

nπt

L
.

Note the increasing accuracy with which the terms approximate the function.
With three terms, S3 already looks like the function. Except for the Gibbs’
phenomenon, a very good approximation is obtained with S9.

Example 1.3.2. Find the Fourier series of the periodic function whose defini-
tion in one period is

f(t) = t2 for − L < t ≤ L, and f(t + 2L) = f(t).

Solution 1.3.2. The Fourier coefficients are given by

a0 =
1
L

∫ L

−L

t2dt =
1
L

1
3
[L3 − (−L)3] =

2
3
L2.

an =
1
L

∫ L

−L

t2 cos
nπt

L
dt, n �= 0

=
1
L

[
L

nπ
t2 sin

nπt

L
+
(

L

nπ

)2

2t cos
nπt

L
−
(

L

nπ

)3

2 sin
nπt

L

]L

−L

=
2L

(nπ)2
[L cos nπ + L cos(−nπ)] =

4L2

n2π2
(−1)n

.

bn =
1
L

∫ L

−L

t2 sin
nπt

L
dt = 0.

Therefore the Fourier expansion is

f(t) =
L2

3
+

4L2

π2

∞∑

n=1

(−1)n

n2
cos

nπt

L

=
L2

3
− 4L2

π2

(
cos

π

L
t − 1

4
cos

2π

L
t +

1
9

cos
3π

L
t + · · ·

)
. (1.20)

With the partial sum defined as

SN =
L2

3
+

4L2

π2

N∑

n=1

(−1)n

n2
cos

nπt

L
,

we compare S3 and S6 with f(t) in Fig. 1.4.
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S3

S6

L−L 2L−2L−3L 3L0

L−L 2L−2L−3L 3L0

Fig. 1.4. The convergence of the Fourier expansion of the periodic function whose
definition in one period is f(t) = t2,−L < t ≤ L. The partial sum of S3 is already
a very good approximation

It is seen that S3 is already a very good approximation of f(t). The differ-
ence between S6 and f(t) is hardly noticeable. This Fourier series converges
much faster than that of the previous example. The difference is that f(t) in
this problem is continuous not only within the period but also in the extended
range, whereas f(t) in the previous example is discontinuous in the extended
range.

Example 1.3.3. Find the Fourier series of the periodic function whose defini-
tion in one period is

f(t) =
{

0 −1 < t < 0
t 0 < t < 1 , f(t + 2) = f(t). (1.21)

Solution 1.3.3. The periodicity 2L of this function is 2, so L = 1, and the
Fourier series is given by

f(t) =
1
2
a0 +

∞∑

n=1

[an cos(nπt) + bn sin(nπt)]

with

a0 =
∫ 1

−1

f(t)dt =
∫ 1

0

t dt =
1
2
,

an =
∫ 1

−1

f(t) cos(nπt)dt =
∫ 1

0

t cos(nπt)dt,

bn =
∫ 1

−1

f(t) sin(nπt)dt =
∫ 1

0

t sin(nπt)dt.
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Using (1.17) and (1.18), we have

an =

[
1

nπ
t sinnπt +

(
1

nπ

)2

cos nπt

]1

0

=
(

1
nπ

)2

cos nπ −
(

1
nπ

)2

=
(−1)n − 1

(nπ)2
,

bn =

[
− 1

nπ
t cos nπt +

(
1

nπ

)2

sinnπt

]1

0

= − 1
nπ

cos nπ = − (−1)n

nπ
.

Thus the Fourier series for this function is f(t) = S∞, where

SN =
1
4

+
N∑

n=1

[
(−1)n − 1

(nπ)2
cos nπt − (−1)n

nπ
sinnπt

]
.

0 1 2 3−1−2−3
t

f (t )

Fig. 1.5. The periodic function of (1.21) is shown together with the partial sum
S5 of its Fourier series. The function is shown as the solid line and S5 as a line of
circles

In Fig. 1.5 this function (shown as the solid line) is approximated with S5

which is given by

S5 =
1
4
− 2

π2
cos πt − 2

9π2
cos 3πt − 2

25π2
cos 5πt

+
1
π

sinπt − 1
2π

sin 2πt +
1
3π

sin 3πt − 1
4π

sin 4πt +
1
5π

sin 5πt.

While the convergence in this case is not very fast, but it is clear that with suf-
ficient number of terms, the Fourier series can give an accurate representation
of this function.
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1.3.2 Fourier Series of Even and Odd Functions

If f(t) is a even function, such that

f(−t) = f(t),

then its Fourier series contains cosine terms only. This can be seen as follows.
The bn coefficients can be written as

bn =
1
L

∫ 0

−L

f(s) sin
(

nπ

L
s

)
ds +

1
L

∫ L

0

f(t) sin
(

nπ

L
t

)
dt. (1.22)

If we make a change of variable and let s = −t, the first integral on the
right-hand side becomes

1
L

∫ 0

−L

f(s) sin
(

nπ

L
s

)
ds =

1
L

∫ 0

L

f(−t) sin
(
−nπ

L
t

)
d(−t)

=
1
L

∫ 0

L

f(t) sin
(

nπ

L
t

)
dt,

since sin(−x) = − sin(x) and f(−x) = f(x). But

1
L

∫ 0

L

f(t) sin
(

nπ

L
t

)
dt = − 1

L

∫ L

0

f(t) sin
(

nπ

L
t

)
dt,

which is the negative of the second integral on the right-hand side of (1.22).
Therefore bn = 0 for all n.

Following the same procedure and using the fact that cos(−x) = cos(x),
we find

an =
1
L

∫ 0

−L

f(s) cos
(

nπ

L
s

)
ds +

1
L

∫ L

0

f(t) cos
(

nπ

L
t

)
dt

=
1
L

∫ 0

L

f(−t) cos
(
−nπ

L

)
d(−t) +

1
L

∫ L

0

f(t) cos
(

nπ

L
t

)
dt

= − 1
L

∫ 0

L

f(t) cos
(

nπ

L
t

)
dt +

1
L

∫ L

0

f(t) cos
(

nπ

L
t

)
dt

=
2
L

∫ L

0

f(t) cos
(

nπ

L
t

)
dt. (1.23)

Hence

f(t) =
1
L

∫ L

0

f(t′)dt′ +
∞∑

n=1

[
2
L

∫ L

0

f(t′) cos
(

nπ

L
t′
)

dt′

]
cos

nπ

L
t. (1.24)
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Similarly, if f(t) is an odd function

f(−t) = −f(t),

then

f(t) =
∞∑

n=1

[
2
L

∫ L

0

f(t′) sin
(

nπ

L
t′
)

dt′

]
sin

nπ

L
t. (1.25)

In the previous examples, the periodic function in Fig. 1.3 is an odd func-
tion, therefore its Fourier expansion is a sine series. In Fig. 1.4, the function
is an even function, so its Fourier series is a cosine series. In Fig. 1.5, the
periodic function has no symmetry, therefore its Fourier series contains both
cosine and sine terms.

Example 1.3.4. Find the Fourier series of the function shown in Fig. 1.6.

2k

f (t)

1 2 3−1−2−3−4−5 0 54

Fig. 1.6. An even square-wave function

Solution 1.3.4. The function shown in Fig. 1.6 can be defined as

f(t) =

⎧
⎨

⎩

0 if −2 < t < −1
2k if −1 < t < 1
0 if 1 < t < 2

, f(t) = f(t + 4).

The period of the function 2L is equal to 4, therefore L = 2. Furthermore, the
function is even, so the Fourier expansion is a cosine series, all coefficients for
the sine terms are equal to zero

bn = 0.

The coefficients for the cosine series are given by

a0 =
2
2

∫ 2

0

f(t)dt =
∫ 1

0

2k dt = 2k,
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an =
2
2

∫ 2

0

f(t) cos
nπt

2
dt =

∫ 1

0

2k cos
nπt

2
dt =

4k

nπ
sin

nπ

2
.

Thus the Fourier series of f(t) is

f(t) = k +
4k

π

(
cos

π

2
t − 1

3
cos

3π

2
t +

1
5

cos
5π

2
t − · · ·

)
. (1.26)

It is instructive to compare Fig. 1.6 with Fig. 1.1. Figure 1.6 represents an
even function whose Fourier expansion is a cosine series, whereas the function
associated with Fig. 1.1 is an odd function and its Fourier series contains only
sine terms. Yet they are clearly related. The two figures can be brought to
coincide with each other if (a) we move y-axis in Fig. 1.6 one unit to the left
(from t = 0 to t = −1), (b) make a change of variable so that the periodicity
is changed from 4 to 2π, (c) shift Fig. 1.6 downward by an amount of k.

The changes in the Fourier series due to these operations are as follows.
First let t′ = t + 1, so that t = t′ − 1 in (1.26),

f(t) = k +
4k

π

(
cos

π

2
(t′ − 1) − 1

3
cos

3π

2
(t′ − 1) +

1
5

cos
5π

2
(t′ − 1) − · · ·

)
.

Since

cos
nπ

2
(t′ − 1) = cos

(nπ

2
t′ − nπ

2

)
=

⎧
⎨

⎩
sin

nπ

2
t′ n = 1, 5, 9, . . .

− sin
nπ

2
t′ n = 3, 7, 11, . . .

,

f(t) expressed in terms of t′ becomes

f(t) = k +
4k

π

(
sin

π

2
t′ +

1
3

sin
3π

2
t′ +

1
5

sin
5π

2
t′ − · · ·

)
= g(t′).

We call this expression g(t′), it still has a periodicity of 4. Next let us make
a change of variable t′ = 2x/π, so that the function expressed in terms of x
will have a period of 2π,

g(t′) = k +
4k

π

(
sin

π

2

(
2x

π

)
+

1
3

sin
3π

2

(
2x

π

)
+

1
5

sin
5π

2

(
2x

π

)
− · · ·

)

= k +
4k

π

(
sinx +

1
3

sin 3x +
1
5

sin 5x − · · ·
)

= h(x).

Finally, shifting it down by k, we have

h(x) − k =
4k

π

(
sin x +

1
3

sin 3x +
1
5

sin 5x − · · ·
)

.

This is the Fourier series (1.10) for the odd function shown in Fig. 1.1.
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1.4 Fourier Series of Nonperiodic Functions
in Limited Range

So far we have considered only periodic functions extending from −∞ to +∞.
In physical applications, often we are interested in the values of a function only
in a limited interval. Within that interval the function may not be periodic.
For example, in the study of a vibrating string fixed at both ends. There
is no condition of periodicity as far as the physical problem is concerned,
but there is also no interest in the function beyond the length of the string.
Fourier analysis can still be applied to such problem, since we may continue
the function outside the desired range so as to make it periodic.

Suppose that the interval of interest in the the function f(t) shown in
Fig. 1.7a is between 0 and L. We can extend the function between −L and 0
any way we want. If we extend it first symmetrically as in part (b), then to
the entire real line by the periodicity condition f(t + 2L) = f(t), a Fourier
series consisting of only cosine terms can be found for the even function. An
extension as in part (c) will enable us to find a Fourier sine series for the odd
function. Both series would converge to the given f(t) in the interval from 0 to
L. Such series expansions are known as half-range expansions. The following
examples will illustrate such expansions.

L LL−L −L 000

f (t ) f (t ) f (t )

ttt

(a) (b) (c)

Fig. 1.7. Extension of a function. (a) The function is defined only between 0
and L. (b) A symmetrical extension yields an even function with a periodicity of 2L.
(c) An antisymmetrical extension yields an odd function with a periodicity of 2L

Example 1.4.1. The function f(t) is defined only over the range 0 < t < 1 to
be

f(t) = t − t2.

Find the half-range cosine and sine Fourier expansions of f(t).

Solution 1.4.1. (a) Let the interval (0,1) be half period of the symmetrically
extended function, so that 2L = 2 or L = 1. A half-range expansion of this
even function is a cosine series
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f(t) =
1
2
a0 +

∑

n=1

an cos nπt

with

a0 = 2
∫ 1

0

(t − t2)dt =
1
3
,

an = 2
∫ 1

0

(t − t2) cos nπt dt, n �= 0.

Using the Kronecker’s method, we have

∫ 1

0

t cos nπt dt =

[
1

nπ
t sin nπt +

(
1

nπ

)2

cos nπt

]1

0

=
(

1
nπ

)2

(cos nπ − 1) ,

∫ 1

0

t2 cos nπt dt =

[
1

nπ
t2 sin nπt +

(
1

nπ

)2

2t cos nπt −
(

1
nπ

)3

2 sin nπt

]1

0

= 2
(

1
nπ

)2

cos nπ,

so

an = 2
∫ 1

0

(t − t2) cos nπt dt = −2
(

1
nπ

)2

(cos nπ + 1).

With these coefficients, the half-range Fourier cosine expansion is given by
Seven
∞ , where

Seven
N =

1
6
− 2

π2

N∑

n=1

(cos nπ + 1)
n2

cos nπt

=
1
6
− 1

π2

(
cos 2πt +

1
4

cos 4πt +
1
9

cos 6πt + · · ·
)

.

The convergence of this series is shown in Fig. 1.8a.

(b) A half-range sine expansion would be found by forming an anti-
symmetric extension. Since it is an odd function, the Fourier expansion is
a sine series

f(t) =
∑

n=1

bn sin πt

with

bn = 2
∫ 1

0

(t − t2) sin nπt dt.
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210−1−2

0.3

0.25

0.2

0.15

0.1

0.05
0

(a)

(b)

t

t

f (t )

f (t )S2
even

S6
even

S1
odd

S3
odd

Fig. 1.8. Convergence of the half-range expansion series. The function f(t) = t− t2

is given between 0 and 1. Both cosine and sine series converge to the function
within this range. But outside this range, cosine series converges to an even function
shown in (a) and sine series converges to an odd function shown in (b). Seven

2 and
Seven

6 are two- and four-term approximations of the cosine series. Sodd
1 and Sodd

3 are
one- and two-term approximations of the sine series

Now
∫ 1

0

t sin nπt dt =

[
− 1

nπ
t cos nπt +

(
1

nπ

)2

sin nπt

]1

0

= − 1
nπ

cos nπ,

∫ 1

0

t2 sin nπt dt =

[
− 1

nπ
t2 cos nπt +

(
1

nπ

)2

2t sin nπt +
(

1
nπ

)3

2 cos nπt

]1

0

= − 1
nπ

cos nπ + 2
(

1
nπ

)3

cos nπ − 2
(

1
nπ

)3

,

so

bn = 2
∫ 1

0

(t − t2) sin nπt dt = 4
(

1
nπ

)3

(1 − cos nπ).

Therefore the half-range sine expansion is given by Sodd
∞ , with
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Sodd
N =

4
π3

N∑

n=1

(1 − cos nπ)
n3

sinnπt

=
8
π3

(
sin πt +

1
27

sin 3πt +
1

125
sin 5πt + · · ·

)
.

The convergence of this series is shown in Fig. 1.8b.
It is seen that both the cosine and sine series converge to t − t2 in the

range between 0 and 1. Outside this range, the cosine series converges to an
even function, and the sine series converges to an odd function. The rate of
convergence is also different. For the sine series in (b), with only one term,
Sodd

1 is already very close to f(t). With only two terms, Sodd
3 (three terms

if we include the n = 2 term that is equal to zero) is indistinguishable from
f(t) in the range of interest. The convergence of the cosine series in (a) is
much slower. Although the four-term approximation Seven

6 is much closer to
f(t) than the two-term approximation Seven

2 , the difference between Seven
6 and

f(t) in the range of interest is still noticeable.
This is generally the case that if we make extension smooth, greater

accuracy results for a particular number of terms.

Example 1.4.2. A function f(t) is defined only over the range 0 ≤ t ≤ 2 to be
f(t) = t. Find a Fourier series with only sine terms for this function.

Solution 1.4.2. One can obtain a half-range sine expansion by antisymmet-
rically extending the function. Such a function is described by

f(t) = t for − 2 < t ≤ 2, and f(t + 4) = f(t).

The Fourier series for this function is given by (1.19) with L = 2

f(t) =
4
π

∞∑

n=1

(−1)n+1

n
sin

nπt

2
.

However, this series does not converge to 2, the value of the function at t = 2.
It converges to 0, the average value of the right- and left-hand limit of the
function at t = 2, as shown in Fig. 1.3.

We can find a Fourier sine series that converges to the correct value at the
end points, if we consider the function

f(t) =
{

t for 0 < t ≤ 2,
4 − t for 2 < t ≤ 4.

An antisymmetrical extension will give us an odd function with a periodicity
of 8 (2L = 8, L = 4). The Fourier expansion for this function is a sine series

f(t) =
∞∑

n=1

bn sin
nπt

4
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with

bn =
2
4

∫ 4

0

f(t) sin
nπt

4
dt

=
2
4

∫ 2

0

t sin
nπt

4
dt +

2
4

∫ 4

2

(4 − t) sin
nπt

4
dt.

Using the Kronecker’s method, we have

bn =
1
2

[
− 4

nπ
t cos

nπt

4
+
(

4
nπ

)2

sin
nπt

4

]2

0

+ 2
[
− 4

nπ
cos

nπt

4

]4

2

−1
2

[
− 4

nπ
t cos

nπt

4
+
(

4
nπ

)2

sin
nπt

4

]4

2

=
(

4
nπ

)2

sin
nπ

2
.

Thus

f(t) =
∞∑

n=1

(
4

nπ

)2

sin
nπ

2
sin

nπt

4

=
16
π2

[
sin

πt

4
− 1

9
sin

3πt

4
+

1
25

sin
5πt

4
− · · ·

]
. (1.27)

86420−2−4−6−8

Fig. 1.9. Fourier series for a function defined in a limited range. Within the range
0 ≤ t ≤ 2, the series (1.27) converges to f(t) = t. Outside this range the series
converges to a odd periodic function with a periodicity of 8

Within the range of 0 ≤ t ≤ 2, this sine series converges to f(t) = t.
Outside this range, this series converges to an odd periodic function shown
in Fig. 1.9. It converges much faster than the series in (1.19). The first term,
shown as dashed line, already provides a reasonable approximation. The differ-
ence between the three-term approximation and the given function is hardly
noticeable.
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As we have seen, for a function that is defined only in a limited range, it is
possible to have many different Fourier series. They all converge to the func-
tion in the given range, although their rate of convergence may be different.
Fortunately, in physical applications, the question of which series we should
use for the description the function is usually determined automatically by
the boundary conditions.

From all the examples so far, we make the following observations:

– If the function is discontinuous at some point, the Fourier coefficients are
decreasing as 1/n.

– If the function is continuous but its first derivative is discontinuous at
some point, the Fourier coefficients are decreasing as 1/n2.

– If the function and its first derivative are continuous, the Fourier coeffi-
cients are decreasing as 1/n3.

Although these comments are based on a few examples, they are generally
valid (see the Method of Jumps for the Fourier Coefficients). It is useful to
keep them in mind when calculating Fourier coefficients.

1.5 Complex Fourier Series

The Fourier series

f(t) =
1
2
a0 +

∞∑

n=1

(
an cos

nπ

p
t + bn sin

nπ

p
t

)

can be put in the complex form. Since

cos
nπ

p
t =

1
2

(
ei(nπ/p)t + e−i(nπ/p)t

)
,

sin
nπ

p
t =

1
2i

(
ei(nπ/p)t − e−i(nπ/p)t

)
,

it follows:

f(t) =
1
2
a0 +

∞∑

n=1

[(
1
2
an +

1
2i

bn

)
ei(nπ/p)t +

(
1
2
an − 1

2i
bn

)
e−i(nπ/p)t

]
.

Now if we define cn as

cn =
1
2
an +

1
2i

bn

=
1
2

1
p

∫ p

−p

f(t) cos
(

nπ

p
t

)
dt +

1
2i

1
p

∫ p

−p

f(t) sin
(

nπ

p
t

)
dt
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=
1
2p

∫ p

−p

f(t)
[
cos

(
nπ

p
t

)
− i sin

(
nπ

p
t

)]
dt

=
1
2p

∫ p

−p

f(t)e−i(nπ/p)tdt,

c−n =
1
2
an − 1

2i
bn

=
1
2

1
p

∫ p

−p

f(t) cos
(

nπ

p
t

)
dt − 1

2i
1
p

∫ p

−p

f(t) sin
(

nπ

p
t

)
dt

=
1
2p

∫ p

−p

f(t)ei(nπ/p)tdt

and
c0 =

1
2
a0 =

1
2

1
p

∫ p

−p

f(t)dt,

then the series can be written as

f(t) = c0 +
∞∑

n=1

[
cnei(nπ/p)t + c−nei(nπ/p)t

]

=
∞∑

n=−∞
cnei(nπ/p)t (1.28)

with
cn =

1
2p

∫ p

−p

f(t)e−i(nπ/p)tdt (1.29)

for positive n, negative n, or n = 0.
Now the Fourier series appears in complex form. If f(t) is a complex func-

tion of real variable t, then the complex Fourier series is a natural one. If f(t)
is a real function, it can still be represented by the complex series (1.28). In
that case, c−n is the complex conjugate of cn (c−n = c∗n).

Since
cn =

1
2
(an − ibn), c−n =

1
2
(an + ibn),

if follows that:
an = cn + c−n, bn = i(cn − c−n).

Thus if f(t) is an even function, then c−n = cn. If f(t) is an odd function,
then c−n = −cn.

Example 1.5.1. Find the complex Fourier series of the function

f(t) =
{

0 −π < t < 0,
1 0 < t < π.
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Solution 1.5.1. Since the period is 2π, so p = π, and the complex Fourier
series is given by

f(t) =
∞∑

n=−∞
cneint

with

c0 =
1
2π

∫ π

0

dt =
1
2
,

cn =
1
2π

∫ π

0

e−intdt =
1 − e−inπ

2πni
=
{

0 n = even,
1

πni n = odd.

Therefore the complex series is

f(t) =
1
2

+
1
iπ

(
· · · − 1

3
e−i3t − e−it + eit +

1
3
ei3t + · · ·

)
.

It is clear that
c−n =

1
π(−n)i

=
1

πn(−i)
= c∗n

as we expect, sine f(t) is real. Furthermore, since

eint − e−int = 2i sin nt,

the Fourier series can be written as

f(t) =
1
2

+
2
π

(
sin t +

1
3

sin 3t +
1
5

sin 5t + · · ·
)

.

This is also what we expected, since f(t) − 1
2 is an odd function, and

an = cn + c−n =
1

πni
+

1
π(−n)i

= 0,

bn = i(cn − c−n) = i
(

1
πni

− 1
π(−n)i

)
=

2
πn

.

Example 1.5.2. Find the Fourier series of the function defined as

f(t) = et for − π < t < π, f(t + 2π) = f(t).

Solution 1.5.2. This periodic function has a period of 2π. We can express it
as the Fourier series

f(t) =
1
2
a0 +

∞∑

n=1

(an cos nt + bn sin nt).
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However, the complex Fourier coefficients are easier to compute, so we first
express it as a complex Fourier series

f(t) =
∞∑

n=−∞
cneint

with

cn =
1
2π

∫ π

−π

ete−intdt =
1
2π

[
1

1 − in
e(1−in)t

]π

−π

.

Since

e(1−in)π = eπe−inπ = (−1)neπ,

e−(1−in)π = e−πeinπ = (−1)ne−π,

eπ − e−π = 2 sinh π,

so

cn =
(−1)n

2π(1 − in)
(eπ − e−π) =

(−1)n

π

1 + in
1 + n2

sinhπ.

Now

an = cn + c−n =
(−1)n

π

2
1 + n2

sinhπ,

bn = i(cn − c−n) = − (−1)n

π

2n

1 + n2
sinhπ.

Thus, the Fourier series is given by

ex =
sinhπ

π
+

2 sinh π

π

∞∑

n=1

(−1)n

1 + n2
(cos nt − n sin nt).

1.6 The Method of Jumps

There is an effective way of computing the Fourier coefficients, known as the
method of jumps. As long as the given function is piecewise continuous, this
method enables us to find Fourier coefficients by graphical techniques.

Suppose that f(t), shown in Fig. 1.10, is a periodic function with a period
2p. It is piecewise continuous. The locations of the discontinuity are at
t1, t2, . . . , tN−1, counting from left to right. The two end points t0 and tN
may or may not be points of discontinuity. Let f(t+i ) be the right-hand limit
of the function as t approaches ti from the right, and f(t−i ), the left-hand
limit. At each discontinuity ti, except at two end points t0 and tN = t0 + 2p,
we define a jump Ji as

Ji = f(t+i ) − f(t−i ).
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t
t0 tN = t0 + 2pt  1 t2 tN −1

JN

JN −1

f(t )

J2

J1

J0

Fig. 1.10. One period of a periodic piecewise continuous function f(t) with
period 2p

At t0, the jump J0 is defined as

J0 = f(t+0 ) − 0 = f(t+0 )

and at tN , the jump JN is

JN = 0 − f(t−N ) = −f(t−N ).

These jumps are indicated by the arrows in Fig. 1.10. It is seen that Ji will be
positive if the jump at ti is up and negative if the jump is down. Note that
at t0, the jump is from zero to f

(
t+0
)
, and at tN , the jump is from f

(
t−N
)

to
zero.

We will now show that the coefficients of the Fourier series can be expressed
in terms of these jumps.

The coefficients of the complex Fourier series, as seen in (1.29), is given by

cn =
1
2p

∫ p

−p

f(t)e−i(nπ/p)tdt.

Let us define the integral as
∫ p

−p

f(t)e−i(nπ/p)tdt = In[f(t)].

So cn = 1
2pIn[f(t)].
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Since

d
dt

[
− p

inπ
f(t)e−i(nπ/p)t

]
= − p

inπ

df(t)
dt

e−i(nπ/p)t + f(t)e−i(nπ/p)t,

so

f (t) e−i(nπ/p)tdt = d
[
− p

inπ
f(t)e−i(nπ/p)t

]
+

p

inπ
e−i(nπ/p)tdf (t) ,

it follows that:

In [f (t)] =
∫ p

−p

d
[
− p

inπ
f(t)e−i(nπ/p)t

]
+

p

inπ

∫ p

−p

e−i(nπ/p)tdf(t).

Note that
∫ p

−p

e−i(nπ/p)tdf(t) =
∫ p

−p

e−i(nπ/p)t df(t)
dt

dt = In [f ′ (t)] ,

and
∫ p

−p

d
[
− p

inπ
f(t)e−i(nπ/p)t

]
= − p

inπ

[∫ t1

t0

+
∫ t2

t1

+ · · · +
∫ tN

tN−1

]

× d
[
f(t)e−i(nπ/p)t

]
.

Since
∫ t1

t0

d
[
f(t)e−i(nπ/p)t

]
= f(t−1 )e−i(nπ/p)t1 − f(t+0 )e−i(nπ/p)t0 ,

∫ t2

t1

d
[
f(t)e−i(nπ/p)t

]
= f(t−2 )e−i(nπ/p)t2 − f(t+1 )e−i(nπ/p)t1 ,

∫ tN

tN−1

d
[
f(t)e−i(nπ/p)t

]
= f(t−N )e−i(nπ/p)tN − f(t+N−1)e

−i(nπ/p)tN−1 ,

we have
∫ p

−p

d
[
− p

inπ
f(t)e−i(nπ/p)t

]
=

p

inπ
f(t+0 )e−i(nπ/p)t0

+
p

inπ
[f(t+1 ) − f(t−1 )]e−i(nπ/p)t1

+ · · · · − p

inπ
f(t−N )e−i(nπ/p)tN =

p

inπ

k=N∑

k=0

Jke−i(nπ/p)tk .

Thus

In[f(t)] =
p

inπ

k=N∑

k=0

Jke−i(nπ/p)tk +
p

inπ
In[f ′(t)].
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Clearly, In[f ′(t)] can be evaluated similarly as In[f(t)]. This formula can
be used iteratively to find the Fourier coefficient cn for nonzero n, since
cn = In[f(t)]/2p. Together with c0, which is given by a simple integral, these
coefficients determine all terms of the Fourier series. For many practical func-
tions, their Fourier series can be simply obtained from the jumps at the points
of discontinuity. The following examples will illustrate how quickly this can
be done with the sketches of the function and its derivatives.

Example 1.6.1. Use the method of jumps to find the Fourier series of the
periodic function f(t), one of its periods is defined on the interval of −π <
t < π as

f(t) =
{

k for −π < t < 0
−k for 0 < t < π

.

Solution 1.6.1. The sketch of this function is

t 0 = −π t2 = π 2πt1 = 0−2π

f(t)

t
2k

−k
−k

−k

The period of this function is 2π, therefore p = π. It is clear that all derivatives
of this function are equal to zero, thus we have

cn =
1
2π

In[f(t)] =
1

i2πn

2∑

k=0

Jke−i(nπ/p)tk , n �= 0,

where
t0 = −π, t1 = 0, t2 = π

and
J0 = −k, J1 = 2k, J2 = −k.

Hence

cn =
1

i2πn
[−keinπ + 2k − ke−inπ]

=
k

i2πn
[2 − 2 cos(nπ)] =

{
0 n = even
2k
inπ n = odd

.
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It follows that:

an = cn + c−n = 0,

bn = i(cn − c−n) =
{

0 n = even
4k
nπ n = odd

.

Furthermore,

c0 =
1
2π

∫ π

−π

f(t)dt = 0.

Therefore the Fourier series is given by

f(t) =
4k

π

(
sin t +

1
3

sin 3t +
1
5

sin 5t + · · ·
)

.

Example 1.6.2. Use the method of jumps to find the Fourier series of the
following function:

f(t) =
{

0 −π < t < 0
t 0 < t < π

, f(t + 2π) = f(t).

Solution 1.6.2. The first derivative of this function is

f ′(t) =
{

0 −π < t < 0,
1 0 < t < π

and higher derivatives are all equal to zero. The sketches of f(t) and f ′(t) are
shown as follows:

t

1

t

f (t ) f �(t )

 

π π

π

−π −π

In this case
p = π, t0 = −π, t1 = 0, t2 = π.

Thus

In[f(t)] =
1
in

2∑

k=0

Jke−intk +
1
in

In[f ′(t)],

where
J0 = 0, J1 = 0, J2 = −π,



1.7 Properties of Fourier Series 37

and

In[f ′(t)] =
1
in

2∑

k=0

J ′
ke−intk

with
J ′

0 = 0, J ′
1 = 1, J ′

2 = −1.

It follows that:

In[f(t)] =
1
in

(−π)e−inπ +
1
in

[
1
in

(1 − e−inπ)
]

and
cn =

1
2π

In[f(t)] = − 1
i2n

e−inπ − 1
2πn2

(1 − e−inπ), n �= 0.

In addition
c0 =

1
2π

∫ π

0

t dt =
π

4
.

Therefore the Fourier coefficients an and bn are given by

an = cn + c−n =
1

i2n
(−e−inπ + einπ) +

1
2πn2

(e−inπ + einπ) − 1
πn2

=
1
n

sin nπ +
1

πn2
cos nπ − 1

πn2
=

{
− 2

πn2 n = odd
0 n = even

,

bn = i(cn − c−n) = i
[
− 1

i2n
(e−inπ + einπ) +

1
2πn2

(e−inπ − einπ)
]

= − 1
n

cos nπ +
1

πn2
sin nπ =

{
1
n n = odd

− 1
n n = even

.

So the Fourier series can be written as

f(t) =
π

4
− 2

π

∑

n=1

1
(2n − 1)2

cos(2n − 1)t −
∑

n=1

(−1)n

n
sin nt.

1.7 Properties of Fourier Series

1.7.1 Parseval’s Theorem

If the periodicity of a periodic function f(t) is 2p, the Parseval’s theorem
states that

1
2p

∫ p

−p

[f(t)]2dt =
1
4
a2
0 +

1
2

∞∑

n=1

(a2
n + b2

n),
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where an and bn are the Fourier coefficients. This theorem can be proved by
expressed f(t) as the Fourier series

f(t) =
1
2
a0 +

∞∑

n=1

(
an cos

nπt

p
+ bn sin

nπt

p

)
,

and carrying out the integration. However, the computation is simpler if we
first work with the complex Fourier series

f(t) =
∞∑

n=−∞
cnei(nπ/p)t,

cn =
1
2p

∫ p

−p

f(t)e−i(nπ/p)t.

With these expressions, the integral can be written as

1
2p

∫ p

−p

[f(t)]2dt =
1
2p

∫ p

−p

f(t)
∞∑

n=−∞
cnei(nπ/p)tdt

=
∞∑

n=−∞
cn

1
2p

∫ p

−p

f(t)ei(nπ/p)tdt.

Since
c−n =

1
2p

∫ p

−p

f(t)e−i((−n)π/p)t =
1
2p

∫ p

−p

f(t)ei(nπ/p)tdt,

it follows that:

1
2p

∫ p

−p

[f (t)]2 dt =
∞∑

n=−∞
cnc−n = c2

0 + 2
∞∑

n=1

cnc−n.

If f(t) is a real function, then c−n = c∗n. Since

cn =
1
2
(an − ibn), c∗n =

1
2
(an + ibn),

so
cnc−n = cnc∗n =

1
4
[
a2

n − (ibn)2
]

=
1
4
(a2

n + b2
n).

Therefore

1
2p

∫ p

−p

[f(t)]2dt = c2
0 + 2

∞∑

n=1

cnc−n =
(

1
2
a0

)2

+
1
2

∞∑

n=1

(a2
n + b2

n).

This theorem has an interesting and important interpretation. In physics
we learnt that the energy in a wave is proportional to the square of its
amplitude. For the wave represented by f(t), the energy in one period will be
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proportional to
∫ p

−p
[f(t)]2dt. Since an cos nπt

p also represents a wave, so the
energy in this pure cosine wave is proportional to

∫ p

−p

(
an cos

nπ

p
t

)2

dt = a2
n

∫ p

−p

cos2
nπt

p
dt = pa2

n

so the energy in the pure sine wave is
∫ p

−p

(
bn sin

nπ

p
t

)2

dt = b2
n

∫ p

−p

sin2 nπt

p
dt = pb2

n.

From the Parseval’s theorem, we have
∫ p

−p

[f(t)]2dt = p
1
2
a2
0 + p

∞∑

n=1

(a2
n + b2

n).

This says that the total energy in a wave is just the sum of the energies in
all the Fourier components. For this reason, Parseval’s theorem is also called
“energy theorem.”

1.7.2 Sums of Reciprocal Powers of Integers

An interesting application of Fourier series is that it can be used to sum up a
series of reciprocal powers of integers. For example, we have shown that the
Fourier series of the square-wave

f(x) =
{
−k −π < x < 0
k 0 < x < π

, f(x + 2π) = f(x)

is given by

f(x) =
4k

π

(
sinx +

1
3

sin 3x +
1
5

sin 5x + · · ·
)

.

At x = π/2, we have

f
(π

2

)
= k =

4k

π

(
1 − 1

3
+

1
5
− 1

7
+ · · ·

)
,

thus
π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · · =

∞∑

n=1

(−1)n+1

2n − 1
.

This is a famous result obtained by Leibniz in 1673 from geometrical consid-
erations. It became well known because it was the first series involving π ever
discovered.

The Parseval’s theorem can also be used to give additional results. In this
problem,
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[f(t)]2 = k2, an = 0, bn =

{
4k
πn n = odd

0 n = even
,

1
2π

∫ π

−π

[f(t)]2dt = k2 =
1
2

∞∑

n=1

b2
n =

1
2

(
4k

π

)2(
1 +

1
32

+
1
52

+ · · ·
)

.

So we have
π2

8
= 1 +

1
32

+
1
52

+ · · · =
∞∑

n=1

1
(2n − 1)2

.

In the following example, we will demonstrate that a number of such sums
can be obtained with one Fourier series.

Example 1.7.1. Use the Fourier series for the function whose definition is

f(x) = x2 for − 1 < x < 1, and f(x + 2) = f(x),

to show that

(a)
∞∑

n=1

(−1)n+1

n2
=

π2

12
, (b)

∞∑

n=1

1
n2

=
π2

6
,

(c)
∞∑

n=1

(−1)n+1

(2n − 1)3
=

π3

32
, (d)

∞∑

n=1

1
n4

=
π4

90
.

Solution 1.7.1. The Fourier series for the function is given by (1.20) with
L = 1 :

x2 =
1
3

+
4
π2

∞∑

n=1

(−1)n

n2
cos nπx.

(a) Set x = 0, so we have

x2 = 0, cos nπx = 1.

Thus

0 =
1
3

+
4
π2

∞∑

n=1

(−1)n

n2

or

− 4
π2

∞∑

n=1

(−1)n

n2
=

1
3
.

It follows that:

1 − 1
22

+
1
32

− 1
42

+ · · · =
π2

12
.
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(b) With x = 1, the series becomes

1 =
1
3

+
4
π2

∞∑

n=1

(−1)n

n2
cos nπ.

Since cos nπ = (−1)n, we have

1 − 1
3

=
4
π2

∞∑

n=1

(−1)2n

n2

or
π2

6
= 1 +

1
22

+
1
32

+
1
42

+ · · · .

(c) Integrating both sides from 0 to 1/2,

∫ 1/2

0

x2dx =
∫ 1/2

0

[
1
3

+
4
π2

∞∑

n=1

(−1)n

n2
cos nπx

]
dx

we get
1
3

(
1
2

)3

=
1
3

(
1
2

)
+

4
π2

∞∑

n=1

(−1)n

n2

1
nπ

sin
nπ

2

or

−1
8

=
4
π3

∞∑

n=1

(−1)n

n3
sin

nπ

2
.

Since

sin
nπ

2
=

⎧
⎨

⎩

0 n = even,
1 n = 1, 5, 9, . . . ,

−1 n = 3, 7, 11, . . .

the sum can be written as

−1
8

= − 4
π3

(
1 − 1

33
+

1
53

− 1
73

+ · · ·
)

.

It follows that:
π3

32
=

∞∑

n=1

(−1)n+1

(2n − 1)3
.

(d) Using the Parseval’s theorem, we have

1
2

∫ 1

−1

(
x2
)2

dx =
(

1
3

)2

+
1
2

∞∑

n=1

[
4
π2

(−1)n

n2

]2

.

Thus
1
5

=
1
9

+
8
π4

∞∑

n=1

1
n4

.
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It follows that:
π4

90
=

∞∑

n=1

1
n4

.

This last series played an important role in the theory of black-body radiation,
which was crucial in the development of quantum mechanics.

1.7.3 Integration of Fourier Series

If a Fourier series of f(x) is integrated term-by-term, a factor of 1/n is
introduced into the series. This has the effect of enhancing the convergence.
Therefore we expect the series resulting from term-by-term integration will
converge to the integral of f(x) . For example, we have shown that the Fourier
series for the odd function f(t) = t of period 2L is given by

t =
2L

π

∞∑

n=1

(−1)n+1

n
sin

nπ

L
t.

We expect a term-by-term integration of the right-hand side of this equation
to converge to the integral of t. That is

∫ t

0

xdx =
2L

π

∞∑

n=1

(−1)n+1

n

∫ t

0

sin
nπ

L
xdx.

The result of this integration is

1
2
t2 =

2L

π

∞∑

n=1

(−1)n+1

n

[
− L

nπ
cos

nπ

L
x

]t

0

or

t2 =
4L2

π2

∞∑

n=1

(−1)n+1

n2
− 4L2

π2

∞∑

n=1

(−1)n+1

n2
cos

nπ

L
t.

Since ∞∑

n=1

(−1)n+1

n2
=

π2

12
,

we obtain

t2 =
L2

3
+

4L2

π2

∞∑

n=1

(−1)n

n2
cos

nπ

L
t.

This is indeed the correct Fourier series converging to t2 of period 2L, as seen
in (1.20) .
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Example 1.7.2. Find the Fourier series of the function whose definition in one
period is

f(t) = t3, −L < t < L.

Solution 1.7.2. Integrating the Fourier series for t2 in the required range
term-by-term

∫
t2dt =

∫ [
L2

3
+

4L2

π2

∞∑

n=1

(−1)n

n2
cos

nπ

L
t

]
dt,

we obtain
1
3
t3 =

L2

3
t +

4L2

π2

∞∑

n=1

(−1)n

n2

L

nπ
sin

nπ

L
t + C.

We can find the integration constant C by looking at the values of both sides
of this equation at t = 0. Clearly C = 0. Furthermore, since in the range of
−L < t < L,

t =
2L

π

∞∑

n=1

(−1)n+1

n
sin

nπ

L
t,

therefore the Fourier series of t3 in the required range is

t3 =
2L3

π

∞∑

n=1

(−1)n+1

n
sin

nπ

L
t +

12L3

π3

∞∑

n=1

(−1)n

n3
sin

nπ

L
t.

1.7.4 Differentiation of Fourier Series

In differentiating a Fourier series term-by-term, we have to be more careful.
A term-by-term differentiation will cause the coefficients an and bn to be
multiplied by a factor n. Since it grows linearly, the resulting series may not
even converge. Take, for example

t =
2L

π

∞∑

n=1

(−1)n+1

n
sin

nπ

L
t.

This equation is valid in the range of −L < t < L, as seen in (1.19). The
derivative of t is of course equal to 1. However, a term-by-term differentiation
of the Fourier series on the right-hand side

d
dt

[
2L

π

∞∑

n=1

(−1)n+1

n
sin

nπ

L
t

]
= 2

∞∑

n=1

(−1)n+1 cos
nπ

L
t

does not even converge, let alone equal to 1.
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In order to see under what conditions, if any, that the Fourier series of the
function f(t)

f(t) =
1
2
a0 +

∞∑

n=1

(
an cos

nπ

L
t + bn sin

nπ

L
t
)

can be differentiated term-by-term, let us first assume that f(t) is continuous
within the range −L < t < L, and the derivative of the function f ′(t) can be
expanded in another Fourier series

f ′(t) =
1
2
a′
0 +

∞∑

n=1

(
a′

n cos
nπ

L
t + b′n sin

nπ

L
t
)

.

The coefficients a′
n are given by

a′
n =

1
L

∫ L

−L

f ′(t) cos
nπ

L
t dt

=
1
L

[
f(t) cos

nπ

L
t
]L

−L
+

nπ

L2

∫ L

−L

f(t) sin
nπ

L
t dt

=
1
L

[f(L) − f(−L)] cos nπ +
nπ

L
bn. (1.30)

Similarly

b′n =
1
L

[f(L) − f(−L)] sin nπ − nπ

L
nan. (1.31)

On the other hand, differentiating the Fourier series of the function term-by-
term, we get

d
dt

[
1
2
a0 +

∞∑

n=1

(
an cos

nπ

L
t + bn sin

nπ

L
t
)]

=
∞∑

n=1

(
−an

nπ

L
sin

nπ

L
t + bn

nπ

L
cos

nπ

L
t
)

.

This would simply give coefficients

a′
n =

nπ

L
bn, b′n = −nπ

L
an. (1.32)

Thus we see that the derivative of a function is not, in general, given by
differentiating the Fourier series of the function term-by-term. However, if the
function satisfies the condition

f(L) = f(−L), (1.33)

then a′
n and b′n given by (1.30) and (1.31) are identical to those given by (1.32).

We call (1.33) the “head equals tail” condition. Once this condition is satis-
fied, a term-by-term differentiation of the Fourier series of the function will
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converge to the derivative of the function. Note that if the periodic function
f(t) is continuous everywhere, this condition is automatically satisfied.

Now it is clear why (1.19) cannot be differentiated term-by-term. For this
function

f(L) = L �= −L = f(−L),

the “head equals tail” condition is not satisfied. In the following example, the
function satisfies this condition. Its derivative is indeed given by the result of
the term-by-term differentiation.

Example 1.7.3. The fourier series for t2 in the range −L < t < L is given by
(1.20)

L2

3
+

4L2

π2

∞∑

n=1

(−1)n

n2
cos

nπ

L
t = t2.

It satisfies the “head equals tail” condition, as shown in Fig. 1.4. Show that a
term-by-term differentiation of this series is equal to 2t.

Solution 1.7.3.

d
dt

[
L2

3
+

4L2

π2

∞∑

n=1

(−1)n

n2
cos

nπ

L
t

]
=

4L2

π2

∞∑

n=1

(−1)n

n2

d
dt

cos
nπ

L
t

=
4L

π

∞∑

n=1

(−1)n+1

n
sin

nπ

L
t

which is the Fourier series of 2t in the required range, as seen in (1.19) .

1.8 Fourier Series and Differential Equations

Fourier series play an important role in solving partial differential equations, as
we shall see in many examples in later chapters. In this section, we shall confine
ourselves with some applications of Fourier series in solving nonhomogeneous
ordinary differential equations.

1.8.1 Differential Equation with Boundary Conditions

Let us consider the following nonhomogeneous differential equation:

d2x

dt2
+ 4x = 4t,

x(0) = 0, x(1) = 0.
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We want to find the solution between t = 0 and t = 1. Previously we have
learned that the general solution of this equation is the sum of the comple-
mentary function xc and the particular solution xp. That is

x = xc + xp,

where xc is the solution of the homogeneous equation

d2xc

dt2
+ 4xc = 0

with two arbitrary constants, and xp is the particular solution of

d2xp

dt2
+ 4xp = 4t

with no arbitrary constant. It can be easily verified that in this case

xc = A cos 2t + B sin 2t,

xp = t.

Therefore the general solution is

x(t) = A cos 2t + B sin 2t + t.

The two constants A and B are determined by the boundary conditions. Since

x(0) = A = 0,

x(1) = A cos 2 + B sin 2 + 1 = 0,

Thus
A = 0, B = − 1

sin 2
.

Therefore the exact solution that satisfies the boundary conditions is given by

x(t) = t − 1
sin 2

sin 2t.

This function in the range of 0 ≤ t ≤ 1 can be expanded into a half-range
Fourier sine series

x(t) =
∞∑

n=1

bn sin nπt,

where

bn = 2
∫ 1

0

(
t − 1

sin 2
sin 2t

)
sinnπt dt.

We have already shown that
∫ 1

0

t sin nπt dt =
(−1)n+1

nπ
.
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With integration by parts twice, we find

∫ 1

0

sin 2t sin nπt dt =
[
− 1

nπ
sin 2t cos nπt +

2
(nπ)2

cos 2t sin nπt

]1

0

+
4

(nπ)2

∫ 1

0

sin 2t sin nπt dt.

Combining the last term with left-hand side and putting in the limits, we get
∫ 1

0

sin 2t sin nπt dt =
(−1)n+1nπ

[(nπ)2 − 4]
sin 2.

It follows that:

bn = 2
[
(−1)n+1

nπ
− 1

sin 2
(−1)n+1nπ

[(nπ)2 − 4]
sin 2

]
= (−1)n+1 8

nπ[4 − (nπ)2]
. (1.34)

Therefore the solution that satisfies the boundary conditions can be written
as

x(t) =
8
π

∞∑

n=1

(−1)n+1

n[4 − (nπ)2]
sinnπt.

Now we shall show that this result can be obtained directly from the
following Fourier series method. First we expand the solution, whatever it is,
into a half-range Fourier sine series

x(t) =
∞∑

n=1

bn sin nπt.

This is a valid procedure because no matter what the solution is, we can
always antisymmetrically extend it to the interval −1 < t < 0 and then to
the entire real line by the periodicity condition x(t + 2) = x(t). The Fourier
series representing this odd function with a periodicity of 2 is given by the
above expression. This function is continuous everywhere, therefore it can be
differentiated term-by-term. Furthermore, the boundary conditions, x(0) = 0
and x(1) = 1, are automatically satisfied by this series.

When we put this series into the differential equation, the result is

∞∑

n=1

[
−(nπ)2 + 4

]
bn sin nπt = 4t.

This equation can be regarded as the function 4t expressed in a Fourier sine
series. The coefficients [−(nπ)2 + 4]bn are given by

[−(nπ)2 + 4] bn = 2
∫ 1

0

4t sin nπt dt = 8
(−1)n+1

nπ
.
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It follows that:

bn =
8(−1)n+1

nπ[4 − (nπ)2]
,

which is identical to (1.34). Therefore we will get the exactly same result as
before.

This shows that the Fourier series method is convenient and direct. Not
every boundary value problem can be handled in this way, but many of them
can. When the problem is solved by the Fourier series method, often the
solution is actually in a more useful form.

Example 1.8.1. A horizontal beam of length L, supported at each end is uni-
formly loaded. The deflection of the beam y(x) is known to satisfy the equation

d4y

dx4
=

w

EI
,

where w, E, and I are constants (w is load per unit length, E is the Young’s
modulus, I is the moment of inertia). Furthermore, y(t) satisfies the following
four boundary conditions

y(0) = 0, y(L) = 0,

y′′(0) = 0, y′′(L) = 0.

(This is because there is no deflection and no moment at either end.) Find
the deflection curve of the beam y(x).

Solution 1.8.1. The function may be conveniently expanded in a Fourier sine
series

y(x) =
∞∑

n=1

bn sin
nπ

L
x.

The four boundary conditions are automatically satisfied. This series and
its derivatives are continuous, therefore it can be repeatedly term-by-term
differentiated. Putting it in the equation, we have

∞∑

n=1

bn

(nπ

L

)4

sin
nπ

L
x =

w

EI
.

This means that bn(nπ/L)4 is the coefficients of the Fourier sine series of
w/EI. Therefore

bn

(nπ

L

)4

=
2
L

∫ L

0

w

EI
sin

nπ

L
xdx = − 2

L

w

EI

L

nπ
(cos nπ − 1) .
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It follows that:

bn =

⎧
⎨

⎩

4wL4

EI

1
(nπ)5

n = odd

0 n = even
.

Therefore

y(x) =
4wL4

EIπ5

∞∑

n=1

1
(2n − 1)5

sin
(2n − 1)nπx

L
.

This series is rapidly convergent due to the fifth power of n in the denominator.

1.8.2 Periodically Driven Oscillator

Consider a damped spring–mass system driven by an external periodic forcing
function. The differential equation describing this motion is

m
d2x

dt
+ c

dx

dt
+ kx = F (t). (1.35)

We recall that if the external forcing function F (t) is a sine or cosine function,
then the steady state solution of the system is an oscillatory motion with the
same frequency of the input function. For example, if

F (t) = F0 sinωt,

then
xp(t) =

F0√
(k − mω2)2 + (cω)2

sin(ωt − α), (1.36)

where
α = tan−1 cω

k − mω2
.

However, if F (t) is periodic with frequency ω, but is not a sine or cosine
function, then the steady state solution will contain not only a term with the
input frequency ω, but also other terms of multiples of this frequency. Suppose
that the input forcing function is given by a square-wave

F (t) =
{

1 0 < t < L
−1 −L < t < 0 , F (t + 2L) = F (t). (1.37)

This square-wave repeats itself in the time interval of 2L. The number of times
that it repeats itself in 1 s is called frequency ν. Clearly ν = 1/(2L). Recall
that the angular frequency ω is defined as 2πν. Therefore

ω = 2π
1

2L
=

π

L
.

Often ω is just referred to as frequency.
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Now as we have shown, the Fourier series expansion of F (t) is given by

F (t) =
∞∑

n=1

bn sin
nπ

L
t,

bn =

⎧
⎨

⎩

4
nπ

n = odd,

0 n = even.

It is seen that the first term is a pure sine wave with the same frequency as the
input square-wave. We called it the fundamental frequency ω1(ω1 = ω). The
other terms in the Fourier series have frequencies of multiples of the funda-
mental frequency. They are called harmonics (or overtones). For example, the
second and third harmonics have, respectively, frequencies of ω2 = 2π/L = 2ω
and ω3 = 3π/L = 3ω. (In this terminology, there is no first harmonic.)

With the input square-wave F (t) expressed in terms of its Fourier series
in (1.35), the response of the system is also a superposition of the harmonics,
since (1.35) is a linear differential equation. That is, if xn is the particular
solution of

m
d2xn

dt
+ c

dxn

dt
+ kxn = bn sinωnt,

then the solution to (1.35) is

xp =
∞∑

n=1

xn.

Thus it follows from (1.36) that with the input forcing function given by the
square-wave, the steady state solution of the spring–mass system is given by

xp =
∞∑

n=1

bn sin(ωnt − αn)√
(k − mω2

n)2 + (cωn)2
,

where
ωn =

nπ

L
= nω, αn = tan−1 cωn

k − mω2
n

.

This solution contains not only a term with the same input frequency ω,
but also other terms with multiples of this frequency. If one of these higher
frequencies is close to the natural frequency of the system ω0 (ω0 =

√
k/m),

then the particular term containing that frequency may play the dominant role
in the system response. This is an important problem in vibration analysis.
The input frequency may be considerably lower than the natural frequency
of the system, yet if that input is not purely sinusoidal, it could still lead to
resonance. This is best illustrated with a specific example.
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Example 1.8.2. Suppose that in some consistent set of units, m = 1, c =
0.2, k = 9, and ω = 1, and the input F (t) is given by (1.37). Find the steady
state solution xp(t) of the spring–mass system.

Solution 1.8.2. Since ω = π/L = 1, so L = π and ωn = n. As we have
shown, the Fourier series of F (t) is

F (t) =
4
π

(
sin t +

1
3

sin 3t +
1
5

sin 5t + · · ·
)

.

The steady-state solution is therefore given by

xp(t) =
4
π

∞∑

n=odd

1
n

sin(nt − αn)√
(9 − n2)2 + (0.2n)2

,

αn = tan−1 0.2n

9 − n2
, 0 ≤ αn ≤ π.

Carrying out the calculation, we find

xp(t) = 0.1591 sin(t − 0.0250) + 0.7073 sin(3t − 1.5708)
+0.0159 sin(5t − 3.0792) + · · · .

The following figure shows xp(t) in comparison with the input force function.
In order to have the same dimension of distance, the input force is expressed
in terms of the “static distance” F (t)/k. The term 0.7073 sin(3t − 1.5708) is
shown as the dotted line. It is seen that this term dominates the response of
the system.This is because the term with n = 3 in the Fourier series of F (t)

6.2553.752.51.250

1

0.5

0

−0.5

−1

Input(F (t )/k )

Output(xp)
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has the same frequency as the natural frequency of the system (
√

k/m = 3).
Thus near resonance vibrations occur, with the mass completing essentially
three oscillations for every single oscillation of the external input force.

An interesting demonstration of this phenomenon on a piano is given in
the Feynman Lecture on Physics, Vol. I, Chap. 50.

Let us label the two successive Cs near the middle of the keyboard by
C, C ′, and the Gs just above by G, G′. The fundamentals will have relative
frequencies as follows:

C − 2 G − 3
C ′ − 4 G′ − 6

These harmonic relationships can be demonstrated in the following way. Sup-
pose we press C ′ slowly – so that it does not sound but we cause the damper
to be lifted. If we sound C, it will produce its own fundamental and some
harmonics. The second harmonic will set the strings of C ′ into vibration. If
we now release C (keeping C ′ pressed) the damper will stop the vibration of
the C strings, and we can hear (softly) the note of C ′ as it dies away. In a
similar way, the third harmonic of C can cause a vibration of G′.

This phenomenon is as interesting as important. In a mechanical or electri-
cal system that is forced with a periodic function having a frequency smaller
than the natural frequency of the system, as long as the forcing function is not
purely sinusoidal, one of its overtones may resonate with the system. To avoid
the occurrence of abnormally large and destructive resonance vibrations, one
must not allow any overtone of the input function to dominate the response
of the system.

Exercises

1. Show that if m and n are integers then

(a)
∫ L

0

sin
nπx

L
sin

mπx

L
dx =

{
L

2
n = m,

0 n �= m.

(b)
∫ L

0

cos
nπx

L
cos

mπx

L
dx =

{
L

2
n = m,

0 n �= m.

(c)
∫ L

−L

sin
nπx

L
cos

mπx

L
dx = 0, all n,m.

(d)
∫ L

0

sin
nπx

L
cos

mπx

L
dx

=

{
0 n,m both even or both odd,

L

π

2n

n2 − m2
n even, m odd; or n odd, m even.
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2. Find the Fourier series of the following functions:

(a) f(x) =

{
0 −π < x < 0

2 0 < x < π
, f(x + 2π) = f(x),

(b) f(x) =

⎧
⎪⎨

⎪⎩

1 −π

2
< x <

π

2

−1
π

2
< x <

3π

2

, f(x + 2π) = f(x),

(c) f(x) =

{
0 −π < x < 0

sin x 0 < x < π
, f(x + 2π) = f(x).

Ans. (a) f(x) = 1 +
4
π

[
sinx +

1
3

sin 3x +
1
5

sin 5x − · · · ·
]

,

(b) f(x) =
4
π

[
cos x − 1

3
cos 3x +

1
5

cos 5x − · · ·
]

,

(c) f(x) =
1
π
− 2

π

[
1
3

cos 2x +
1
15

cos 4x +
1
35

cos 6x − · · · ·
]

+
1
2

sin x.

3. Find the Fourier series of the following functions:

(a) f(t) =

{
−1 −2 < t < 0

1 0 < t < 2
, f(t + 4) = f(t),

(b) f(t) = t2, 0 < t < 2, f(t + 2) = f(t).

Ans. (a) f(t) =
4
π

[
sin

πt

2
+

1
3

sin
3πt

2
+

1
5

sin
5πt

2
· · · ·

]
,

(b) f(t) =
4
3

+
4
π2

∑ 1
n2

cos nπt +
4
π

∑ 1
n

sin nπt.

4. Find the half-range Fourier cosine and sine expansions of the following
functions:

(a) f(t) = 1, 0 < t < 2.
(b) f(t) = t, 0 < t < 1.
(c) f(t) = t2, 0 < t < 3.
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Ans. (a) 1;
4
π

∑ 1
2n − 1

sin
(2n − 1)πt

2
,

(b)
1
2
− 4

π2

∑ 1
(2n − 1)2

cos(2n−1)πt;
2
π

∑ (−1)n+1

n
sin nπt,

(c) 3 +
36
π2

∑ (−1)n

n2
cos

nπt

3
;
18
π3

[(
π2

1
− 4

13

)
sin

πt

3

− π2

2
sin

2πt

3
+
(

π2

3
− 4

33

)
sin

3πt

3

− π2

4
sin

4πt

3
+ · · ·

]
.

5. The output from an electronic oscillator takes the form of a sine wave
f (t) = sin t for 0 < t ≤ π/2, it then drops to zero and starts again. Find
the complex Fourier series of this wave form.
Ans. ∞∑

n=−∞

2
π

4ni − 1
16n2 − 1

ei4nt.

6. Use the method of jumps to find the half-range cosine series of the func-
tion g(t) = sin t defined in the interval of 0 < t < π.

Hint: For a cosine series, we need an even extension of the function. Let

f(t) =

{
g(t) = sin t 0 < t < π,

g(−t) = − sin t −π < t < 0.

Its derivatives are

f ′(t) =

{
cos t 0 < t < π

− cos t −π < t < 0
, f ′′(t) = −f(t).

The sketches of the function and its derivatives are shown as follows:

t

f (t ) f�(t ) f �(t )

−1

π−π π−π
π−π

−1 −1

1

t

1

t

1
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Ans.

f(t) =
2
π
− 4

π

(
1
3

cos 2t +
1
15

cos 4t +
1
35

cos 6t + · · ·
)

.

7. Use the method of jumps to find the half range (a) cosine and (b) sine
Fourier expansions of g(t), which is defined only over the range 0 < t < 1
as

g(t) = t − t2, 0 < t < 1.

Hint: (a) For the half-range cosine expansion, the function must be sym-
metrically extended to negative t. That is, we have to expand into a Fourier
series the even function f(t) defined as

f(t) =

{
g(t) = t − t2 0 < t < 1,

g(−t) = −t − t2 −1 < t < 0.

The first and second derivatives of this function are given by

f ′(t) =

{
1 − 2t 0 < t < 1

−1 − 2t −1 < t < 0
, f ′′(t) = −2

and all higher derivatives are zero. The sketches of this function and its
derivatives are as follows:

t

−1

1

−2

2

t

−1

1

−2

2

t

−1

1

−2

2

1−1

1

−1

1−1

f (t ) f�(t ) f �(t )

(b) For the half-range sine expansion, an antisymmetric extension of g(t)
to negative t is needed. Let

f(t) =

{
g(t) = t − t2 0 < t < 1,

−g(−t) = t + t2 −1 < t < 0.



56 1 Fourier Series

The first and second derivatives of this function are given by

f ′(t) =

{
1 − 2t 0 < t < 1,

1 + 2t −1 < t < 0,
f ′′(t) =

{
−2 0 < t < 1,
2 −1 < t < 0

and all higher derivatives are zero. The sketches of these functions are
shown below

t
−1 −1

1

−2

−1 −1

−2

−1

−2

2

t

1

2

t

1

2

1

1 1

−1

f (t ) f �(t ) f�(t )

Ans. (a) f(t) =
1
6
− 1

π2

(
cos 2t +

1
4

cos 4t +
1
9

cos 6t + · · ·
)

.

(b) f(t) =
8
π3

(
sin πt +

1
27

sin 3πt +
1

125
sin 5πt + · · ·

)
.

8. Do problem 3 with the method of jumps.

9. (a) Find the half-range cosine expansion of the following function:

f(t) = t, 0 < t < 2.

(b) Sketch the function (from t = −8 to 8) that this Fourier series repre-
sents.

(c) What is the periodicity of this function.

Ans.

f(t) = 1 +
4
π2

∞∑

1

1
n2

(cos nπ − 1) cos
nπ

2
t; period = 4.
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10. (a) Find the half-range cosine expansion of the following function:

f(t) =

{
t 0 < t ≤ 2

4 − t 2 ≤ t < 4
.

(b) Sketch the function (from t = −8 to 8) this Fourier series represents.

(c) What is the periodicity of this function.

Ans.

f(t) = 1 − 8
π2

∞∑

1

1
n2

(1 + cos nπ − 2 cos
nπ

2
) cos

nπ

4
t; period = 8.

11. (a) Show that the Fourier series in the two preceding problems are iden-
tical to each other.

(b) Compare the two sketches to find out the reason why this is so.
Ans. Since they represent the same function, both Fourier series can be
expressed as

f(t) = 1 − 8
π2

(cos
πt

2
+

1
9

cos
3πt

2
+

1
25

cos
5πt

2
+ · · · ).

12. Use the Fourier series for

f(t) = t for − 1 < t < 1, and f(t + 2) = f(t)

to show that

(a) 1 − 1
3

+
1
5
− 1

7
+ · · · =

π

4
,

(b) 1 +
1
22

+
1
32

+
1
42

+ · · · =
π2

6
.

13. Use the Fourier series shown in Fig. 1.5 to show that

(a) 1 +
1
32

+
1
52

+
1
72

+ · · · =
π2

8
,

(b) 1 +
1
34

+
1
54

+
1
74

+ · · · =
π4

96
.

Hint: (a) Set t = 0. (b) Use Parseval’s theorem and
∑

1/n2 = π2/6.
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14. Use ∞∑

n=1

1
n4

=
π4

90
and

∞∑

n=1

1
(2n − 1)4

=
π4

96

to show that
1 − 1

24
+

1
34

− 1
44

+ · · · =
7π4

720
.

15. An odd function f(t) of period of 2π is to be approximated by a Fourier
series having only N terms. The so called “square deviation” is defined to
be

ε =
∫ π

−π

[
f(t) −

N∑

n=1

bn sin nt

]2

dt.

It is a measure of the error of this approximation. Show that for ε to be
minimum, bn must be given by the Fourier coefficient

bn =
1
π

∫ π

−π

f(t) sin nt dt.

Hint: Set
∂ε

∂bn
= 0.

16. Show that for −π ≤ x ≤ π

(a) cos kx =
sin kπ

kπ
+

∞∑

n=1

(−1)n 2k sin kπ

π(k2 − n2)
cos nx,

(b) cot kπ =
1
π

(
1
k
−

∞∑

n=1

2k

n2 − k2

)
.

17. Find the steady-state solution of

d2x

dt2
+ 2

dx

dt
+ 3x = f(t),

where f(t) = t, −π ≤ t < π, and f(t + 2π) = f(t).

Ans.

xp =
∑ (−1)n2(n2 − 3)

n(n4 − 2n2 + 9)
sinnt +

∑ (−1)n4
n4 − 2n2 + 9

cos nt.

18. Use the Fourier series method to solve the following boundary value
problem

d4y

dx4
=

Px

EIL

y(0) = 0, y(L) = 0,

y′′(0) = 0, y′′(L) = 0.
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(y(x) is the deflection of a beam bearing a linearly increasing load given
by Px/L)
Ans.

y(x) =
2PL4

π4EI

∑ (−1)n+1

n5
sin

nπx

L
.

19. Find the Fourier series for

(a) f(t) = t for − π < t < π, and f(t + 2π) = f(t),
(b) f(t) = |t| for − π < t < π, and f(t + 2π) = f(t).

Show that the series resulting from a term-by-term differentiation of the
series in (a) does not converge to f ′(t), whereas the series resulting from a
term-by-term differentiation of the series in (b) converges to f ′(t). Why?


