
2 Pattern Progressions and Segmentation 
Sequences for ll\/IAGE Intensity IVIodeling and 
Grouped Enhancement 

The foregoing background regarding multiband digital image data pro
vides a basis for pursuing our primary focus on patterns in landscape im
ages. Landscapes are characterized by spatial autocorrelation (Schaben-
berger & Gotway, 2005) whereby things closer together tend to appear 
more alike than things that are further apart with some changes being gra-
dational and others abrupt, which induces implicit perception of pattern. 
However, the indefiniteness of implicit pattern perception limits its utility. 
In landscape ecology, pattern has been most often addressed in terms of 
variously defined mosaics and parameters of patchiness (Forman & 
Godron, 1986; Forman, 1995; McGarigal & Marks, 1995; Turner, Gardner 
& O'Neill, 2001). Furthermore, pattern is a much used but rather varied 
conceptual construct for image analysis, as witness the lineage of literature 
relating to 'pattern recognition' including a journal so named along with 
disparate sources (Tou & Gonzales, 1974; Pavlidis, 1977; Gonzales & 
Thomason, 1978; Fu, 1982; Simon, 1986; Pao, 1989; Jain, Duin & Mao, 
2000; Duda, Hart & Stork, 2001; Webb, 2002) and extensions into the con
temporary topics of clustering, classification, machine learning, data min
ing and knowledge discovery. Therefore, an obvious next task is to resolve 
some of the indefiniteness regarding pattern in the current context. As a 
point of departure, we take the succinct statement of Luger (2002) that pat
tern recognition is identifying structure in data. 

2.1 Pattern Process, Progression, Prominence and 
Potentials 

We designate L as the set of pixel positions comprising the image lattice. 
Let us further reference the pixel position at row i and column j as being 
h{i,j). We likewise designate V as the entire set of different signal vectors. 
Each of these vectors can be considered as a point in the space of signal 
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properties, which we will call signal domain. Let us further reference a 
particular one of these property points as being pp̂^ for the k\h such point 
in some fixed order. It should be intuitively apparent that a notion of land
scape pattern must be a joint construct in the spatial domain L and the sig
nal domain V. Accordingly, we define a pixel pattern or pattern of pixels 
PP^ as being the subset of pixels sharing the same property point pp̂  (sig
nal vector) and indexed by the index of the property point. We proceed to 
consider a process that assigns property points to pixels forming an initial 
image as being a pixel process symbolized by a superscript # resulting in a 
set PP* oi primitive patterns. Image data for landscapes tend to have large 
numbers of primitive patterns each of which encompasses relatively few 
pixels with considerable fragmentation and interspersion. Part of this mul
tiplicity arises from 'edge effects' where pixels span boundaries in the 
landscape. Thus the primitive patterns tend to be visually subtle or weak. 
Our intent is to strengthen these patterns so that they become less numer
ous but more apparent and better segregated. 

Toward this end, we now define a pattern process as one that produces 
sets or subsets from prior patterns to yield either more general or more 
specific posterior patterns. All of the pixels in a particular posterior pat
tern will share the same property point, which serves as proxy for whatever 
property point was applicable in a prior pattern. If a pattern process oper
ates recursively, we call it a progressive pattern process and refer to its re
cursive sequence of pattern sets as a pattern progression. Since it operates 
across the image lattice L, we use the symbol £ to denote a pattern process. 

An important aspect of pattern processes is the strength of the patterns 
that they produce. In order to make these concepts operational, however, 
measures of strength for patterns are needed. As a simple expression of 
pattern strength, we deime. prominence of a pattern to be the proportion p̂  
of non-null pixels for the t̂h pattern in the lattice. This is one formulation 
of what we will call a mass function M(k) for the Ath pattern. 

Continuing with measures of strength for patterns, we emulate physics 
with analogies to ideas of potentials in fields of charged particles. Let the 
potential of a pattern or simply pattern potential, symbolized as Pp, have 
the form of Eq. 2.1 

Vm = [1 + a,M{k) + a2M{n,)] D'^iKn,) (2.1) 

where 
M.{k) is a mass function for the hh pattern; 
D„ is a (weighted) distance function between property points in signal 

space; 
a, and a2 are 'aggregation' parameters; 
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z is a 'zonal' parameter; 
Hk is the nearest neighbor of property point pp̂  by Dw in the signal do

main. 
Note that Ppik) pertains to a definite pattern PP<: relating a particular 

property point ppt to a particular set of pixel positions. In parallel manner 
and with some appeal to the dual ideas of definite and indefinite integrals, 
we define a potential pattern pP(k) pertaining to a property point that is 
decoupled from any particular positions using the same formula as for 
Pp(^) but with a mass function that does not explicitly reference positions 
in the lattice. Intrinsic potential pP'(^) is obtained by setting the aggrega
tion parameters to zero, which inherentiy decouples property points from 
pixel positions since the distance is measured in the signal domain. 

The aggregation parameters and mass functions have an effect of local 
dilation or expansion of signal space. Two patterns effectively have 
greater separation with increase of any parameter. Even when the aggre
gation parameters are equal, a pattern does not necessarily have the same 
potential as its nearest neighbor because that neighbor may have a different 
nearest neighbor. 

2.2 Polypatterns 

In order to strengthen subtle patterns without suppressing them com
pletely, we can work with patterns of patterns as compound patterns or 
polypatterns. This entails multi-level indexing of patterns to form nested 
patterns. Thus, we can have a first (strong) level of numbered patterns 
along with a table of property vectors (points) for those strong patterns. 
Then each of the first-level patterns can be disaggregated into a numbered 
series of second level patterns, each having another more specific property 
vector that differentiates it from others having like index and vector at the 
first level. We designate the aggregated level of a bi-level pattern as the 
A-level, and the disaggregated level as the B-level (base level). Property 
vectors in the A-level serve as proxies for property vectors in the B-level. 
To minimize further complexity of notation, polypatterns can be symbol
ized by prefacing an entire pattern reference with the X (double dagger) 
symbol in the notation previously defined where clarification is required. 
Thus, $pt symbolizes the prominence of the ̂ h polypattern. 

In constructing index numbers as identifiers for polypatterns, the second 
level of numbering can either run across the first levels globally or be con
ditional within the first level. The global approach is more convenient for 
accessing look-up tables of the more detailed (B-level) pattern properties, 
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but the larger sizes of the index values involved also occupies more com
puter media and thus reduces the degree of compression. 

As a compromise, we use conditional numbering but also record the 
cumulative number of finer segments by pattern number in the coarser 
level. Let m^ be the number of disaggregated patterns in the t̂h poly pat
tern, and let these patterns be conditionally numbered 1.. .m .̂ As a glob
ally sequential index ĝ t,; to the ith disaggregated (B-level) pattern in the kth 
polypattern we use Eq. 2.2. 

gk.i = / + E my<t (2.2) 

This index can be computed dynamically from the A-level polypattern 
numbers and the conditionally (nested) numbers of the disaggregated pat
terns coupled with a distributional list of pattern frequencies for the A-
level poly patterns. The only overhead of computer media relative to com
pression is for storing the distributional list of pattern frequencies for A-
level polypatterns. 

The creation of polypatterns allows for exploitation of the ideas underly
ing 'constrictive analysis' as described by Myers, Patil and Taillie (2001). 
Polypatterns should also help to clarify our 'proxy' terminology for prop
erty vectors associated with pattern processes. A property vector at the 
aggregated A-level serves as a proxy for all of the patterns encompassed at 
the disaggregated B-level. 

2.3 Pattern Pictures, Ordered Overtones and Mosaic 
IVIodels of Images 

A set of PP patterns forms a spatial mosaic on the image lattice, regardless 
of whether these are primitive patterns, clustered (proxy) patterns, or poly
patterns. To the degree that the signal values in the pp property points of 
the patterns may be reasonable proxies for the original pixel vectors, it 
should be possible to treat a mosaic of patterns as an approximate model of 
the image data from which they were obtained. Likewise, a pattern pic
ture resembling the original image should be obtainable by using selected 
elements of the pattern properties to portray the patterns as tones in a map
ping mode. 

Such graphic image emulation is facilitated by making it possible to 
treat an A-level pattern mosaic like a simple single band of image data for 
direct display. 

An image-like mosaic can be constructed by making the pattern index 
numbers correspond with the ordering of overall intensity using the signal 



2.3 Pattern Pictures, Ordered Overtones and Mosaic Models of Images 27 

bands comprising the pattern vectors (property points). The patterns hav
ing lesser overall intensity for their signal bands are given lower index 
numbers, and those having greater overall intensity are given higher index 
numbers. In other words, the patterns are ranked according to overall (or 
average) intensity and the rank number becomes the identifying index 
number for the pattern. The pattern index numbers are entered directly in 
an image lattice. The pattern numbers thus become an index image of 
overall signal intensity which can be treated as brightness in a gray-tone 
image. The norm (or length) of the signal vector as distance of the prop
erty point from the origin of signal space is one convenient measure of 
overall intensity, computed as the square root of the sum of squared signal 
values and being a multiple of the quadratic mean of the values across sig
nal bands. Ordered overtones appear in a pattern picture that translates the 
pattern identification numbers directly to gray tones. 

Ordered overtones derived from ASTER sensor data for central Penn
sylvania are shown in Fig. 2.1 as produced by pattern processes described 
subsequently. The ASTER acronym is for Advanced Spacebome Thermal 
Emission and Reflection Radiometer on a Terra satellite operated by 
NASA with Japanese cooperation. The image data used as a basis for Fig. 
2.1 were acquired by the sensors on September 6, 2002. Ten ASTER 
bands were harmonized in 15-meter pixels, with the central wavelengths of 
the spectral bands being as shown in Table 2.1. 

Table 2.1 Center wavelength (|am) of ASTER bands used for Fig. 2.1. 

Band Number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Center wavelength (̂ rni) 
0.556 
0.661 
0.807 
1.656 
2.167 
8.291 
8.634 
9.075 

10.657 
11.318 
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Fig. 2.1 Ordered overtones of ASTER satellite data for central Pennsylvania, Sep
tember 2002. 

Similarly, Fig. 2.2 shows ordered overtones of the six-band vertebrate 
species richness data for Pennsylvania developed in like manner. Since 
signal intensity corresponds to increasing species richness, the lighter 
(brighter) areas in Fig. 2.2 exhibit greater species (habitat) richness as av
eraged over the taxonomic groups being treated in the manner of signal 
bands as described in Chap. 1. 

Despite this quasi-quantitative treatment of identifying indexes for 
polypattems, we should not lose sight of the fact that our patterns are in-
herendy categorical constructs. The properties of a pattern are quantita
tive, but a pattern is a categorical collective. 
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Fig. 2.2 Ordered overtones of habitat richness patterns in Pennsylvania for six 
groups of vertebrate species being treated as signal bands with Ughter as greater. 

2.4 Pattern Processes for Image Compression by Mosaic 
IVIodeling 

The foregoing background and definitions lay the groundwork for using 
segmentation sequences as progressive pattern processes for image com
pression by mosaic modeling for purposes of landscape analysis as ex
plored in subsequent chapters. The overall goal is a parsing of patterns in 
which the proxy properties for the patterns closely approximate the pixel 
primitives of the image while being few enough to record using substan
tially less electronic media than occupied by the original image data. In a 
general sense, this is a problem of strategically segmenting the image. In a 
statistical sense, this falls most directly under the subject of cluster analy
sis. However, our approach involves configurations and combinations of 
processes that are not conventional with regard to either clustering or im
age analysis. 

There are four important aspects of the undertaking. One is to 
strengthen the primary patterns in the image so that landscape structure be-
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comes more evident. A second is to retain substantial information regard
ing subtle patterns in the image, particularly so as not to induce extensive 
areas that are lacking in any detail. A third is to achieve a substantial de
gree of compression within these constraints. Fourth is to accomplish all 
of these in a manner that is computationally practical for large images, 
with this latter being somewhat dependent on the computer configuration. 
Therefore, compromise is inherent - which favors heuristics over optimi
zation. 

The first and second aspects can be accommodated through bi-level 
polypatterns, in which the stronger primary patterns comprise an A-level 
and more subtle pattern variants comprise a B-level. Even with polypat
terns, the fourfold problem is excessively open-ended; which can be reme
died somewhat by adding a fifth aspect of having the primary patterns be 
compatible with geographic information systems (Burrough & McDonnell, 
1997; Chrisman, 2002; DeMers, 2000). The desired compatibility can be 
achieved by allotting one byte per pixel as a GIS raster (cellular grid) 
layer. The layer structure for primary patterns is then complemented by al
lotting a second byte per pixel for the more subde pattern components in 
the B-level of polypatterns. Since it is common practice to record image 
data with one byte per band in each pixel, this structure essentially occu
pies the equivalent of two bands of image data. The degree of compres
sion afforded by the fixed layer structure of polypatterns will thus depend 
on the number of bands, being inapplicable for fewer than three bands. 
The fixed layer structure is also amenable to further content-based com
pression, provided that the requisite layer arrangement is restored by de
compression prior to usage. 

One byte affords a possible 256 pattern distinctions in the A-layer. 
However, zero is needed as a designator for pixels in the lattice that do not 
pertain to the image area of interest - thus leaving a possible 255 pattern 
distinctions. A strategic decision has been made to reserve five designa
tors for special usage in GIS mapping, thus providing for 250 primary pat
terns in the A-layer. Each of the 250 A-level patterns can have 255 B-
level sub-patterns, therefore allowing for a total of 250x255=63,750 pat
terns. The usual number of patterns will be at least an order of magnitude 
less than this due to computational constraints and unequal distribution of 
subtle variants among the 250 primary patterns. 

There are two avenues of analysis toward this sort of polypattem parsi
mony, and both involve several stages of image segmentation and/or clus
tering. One is to segregate 250 segments in the early stages, and then 
segment the segments in later stages. The other is fine segmentation in the 
early stages, and then later stage aggregation of fine segments as primary 
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patterns. Other avenues of alternation in segregations and aggregations are 
also possible. Our approaches entail four phases. 

Since these are compound pattern process scenarios with patterns repre
senting image segments, the idea of a segmentation sequence becomes use
ful. Aside from primitive pixel patterns, the number and type of patterns 
arising from a particular segmentation stage becomes important. There
fore, the notation of Eq. 2.3 for a segmentation sequence is used to sym
bolize a scenario £„ that entails four stages producing 250, 250, 2500 and 
250 patterns, respectively, with the kinds of patterns as explained below. 

£„{#250?|#250*|#2500*|*250$} (2.3) 

As defined previously, the symbol £ is generic for a pattern process. 
The subscript a indicates that this is the particular 'alpha' segmentation 
sequence of pattern processes. The numbers in curly brackets are the 
numbers of patterns produced by the respective stages. The vertical bar | 
symbol separates the stages comprising the sequence. The leading and 
trailing symbols for the numbers indicate the kind of pattern that the stage 
operates upon and the kind of pattern that it produces, respectively. The # 
symbol indicates a primitive pattern, the ? symbol indicates a potential pat
tern, the * symbol indicates a proxy pattern, and the t symbol indicates a 
polypattem. Thus the first stage of this sequence operates on primitive 
patterns and produces 250 potential patterns; the second stage operates on 
primitive patterns and produces 250 proxy patterns; the third operates on 
primitive patterns and produces 2500 proxy patterns; the fourth operates 
on proxy patterns and produces 250 polypatterns. 

2.5 a-Scenario Starting Stages 

Our initial analytical approach to pattern parsing is an a-scenario that has 
been extensively tested on images and provides the point of departure for 
subsequent scenarios. It consists of a four-stage segmentation sequence as 
addressed above. 

This produces bi-level polypatterns that are mapped into two bytes for 
each pixel as two 1-byte lattices with auxiliary tables. The aggregated A-
level of patterns is arranged as ordered overtones that can be rendered di-
rectiy as a gray-scale image. The (finer) B-level of the polypatterns must 
be decompressed with custom software to obtain more generic data for in
put to other software packages having facilities for image analysis. 

The first stage of the a-scenario takes primitive patterns from multi-
band image data in byte-binary BIP format and produces 250 potential pat-
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terns as output. This process is based on intrinsic potentials for property 
points using the square of (weighted) Euclidean distance (zonal parameter 
z=2) as Eq. 2.4. 

pP'(^) = D\(k,n,) (2.4) 

The first 250 non-duplicate pixels in the data file are taken as the initial 
potential patterns, among which the weakest potential will be shared in a 
pair. Each subsequent pixel is considered with regard to intrinsic potential 
among the current set, displacing the first of the weakest pair if it is 
stronger. Since the signal vectors of the pixels are considered condition
ally on their order of occurrence in the file, this does not necessarily yield 
the strongest set of potential patterns; however, it does give a strong set 
encompassing property points that are well distributed in signal space. 
Unequal weighting of the signal bands for computation of squared distance 
is optional, with the defaults being unit weights. 

The second stage of the a-scenario scans the primitive patterns from the 
same multiband image data and produces pixel patterns (PP) by associat
ing each pixel with the potential pattern to which it is closest by (weighted) 
Euclidian distance in signal space (i.e., closest property point). Thus the 
potential patterns from the first stage become the proxies for the pixel pat
terns from the second stage. These pixel patterns are then ranked accord
ing to norm of signal vector for overtone in concluding the second stage. 

2.6 a-Scenario Splitting Stage 

The third stage of the a-scenario partially disaggregates the (proxy) pixel 
patterns from the second stage, but works with primitive patterns from the 
original image in doing so. Disaggregating is accomplished by recursive 
(unequal) bifurcations, thus making a tree of (binary) branching nodes for 
those patterns that are subject to splitting. Not all of the pixel patterns 
from the second stage, however, are subject to splitting. Computational 
constraints also impose practical limits on the number of (nodal) bifurca
tions that can be conducted concurrently. Therefore, (tunable) parameters 
of practicality affect the course of the disaggregating process. The set of 
(primitive) patterns for a node of the tree constitutes a constellation of 
property points in signal space. 

The fundamental mechanism of splitting in the a-scenario is one of po
lar proximity according to Euclidean distance. For each node, the signal 
vector having the largest norm (most intense or 'brightest') and smallest 
norm (least intense or 'darkest') are determined as poles of an axis span-
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ning the constellation of property points. When bifurcation takes place, 
those primitive patterns closest to each of the two poles become pattern 
subsets; and the poles of the subsets are determined in doing the segrega
tion. A synthetic signal vector is calculated as the middle of the polar axis 
by averaging the respective components of bright and dark poles to serve 
as proxy for the new nodal subset. In short, the proxy point is at the mid-
range of intensities. Figure 2.3 is a diagrammatic representation of this 
splitting. 

We extend the idea of potentials to obtain a prioritizing criterion O for 
splitting. This criterion, which we call polar potential, is computed for 
each node by Eq. 2.5 as the product of the inter-polar or axial (Euclidean) 
distance and the number of pixels comprising the node, 

0,,y = (Ay)((py) (2.5) 

where A/^j is the axial or inter-polar distance for theyth node in the hh sec
ond-stage pattern, and (p^j is the number of pixels in that nodal group (sub
set). The polar potential criterion thus reflects both prominence and diver
sity of the parent pattern. 

Concurrent splitting is conducted for the H highest nodes as ordered on 
the polar potential criterion, where H is the computational capacity for 
concurrent splitting. A minimum threshold is also imposed on the crite
rion for a node to be eligible for splitting. The polar potentials are recom
puted after each episode (cycle) of concurrent splitting, with new nodes 
being considered for the queue. Since the number of nodes can only in
crease by H in each cycle, there is effectively a competition for place in the 
splitting queue, with advantage going to prominence and diversity. The 
capacity H for concurrent splitting is one of the factors of the competition, 
with a higher capacity allowing smaller and less diverse nodes to be split. 
As a consequence, lower capacity for splitting gives greater depth in struc
ture of the trees and requires more cycles to reach a given number of nodal 
patterns. An overall limit on number of nodes is also imposed so that the 
ultimate polypattems can be coded in two bytes per pixel. 

2.7 a-Scenario Shifting Stage 

The fourth and final stage in the a-scenario is one of rearranging aggrega
tions that operates on the nodal patterns of the third stage instead of upon 
primitive patterns of the original image data. This process (re)groups the 
nodal patterns of the previous stage into A-level polypattems. Individual 
differences between primitive patterns in a nodal constellation are dis-
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Band 2 

Bandl 

Fig. 2.3 Diagrammatic representation of polar partitioning. Small rectangles are 
property points for 2-band signal vectors. Enclosed property points are poles. 

carded in formulating the final bi-level polypatterns. The primitive pat
terns of the original image can only be approximated with at least some er
ror in at least some of the pixels. The polypatterns thus constitute a 'lossy' 
compression of the original image data (Gonzalez & Woods, 2002). The 
combination of pattern enhancement, compression, mapping and inherent 
inability for exact restoration makes the polypattem image intensity model 
a fundamentally different derivative product from the original image data 
in the same manner as a thematic map would be. Thus, copyright restric
tions on redistribution of the original data should be obviated in most re
spects. 

The fourth-stage (re)aggregation again entails compromise between 
competing practicalities. Overall information content for the A-level is fa
vored by avoiding large discrepancies in prominence between the A-level 
patterns. This follows from information theory, but also from simply 
viewing each pattern as a carrier of information with a view to not having 
available carriers that are nearly empty. On the other hand, relatively re
stricted features of landscape pattern such as roads, streams and smaller 
water bodies tend to be defining features of terrain that should not be lost 
by blending with more ubiquitous pattern elements. By way of compro-
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mise, a target minimum prominence for aggregated patterns is a process 
parameter along with the obligatory maximum of 255 B-level members per 
A-level pattern for two-byte encoding. The target minimum prominence 
incorporated in the algorithm is p=0.00025, which is one-fortieth of one 
percent of the pixels. 

The nodal trees for the second-stage A-level patterns provide an orga
nizing template for the ultimate polypatterns. Preference is given to retain
ing such a tree as an A-level unit provided that it encompasses minimum 
prominence and does not exceed 255 nodes. If a tree does not attain 
minimum prominence, it is preferentially augmented by shifting nearest 
(by Euclidean distance) nodes from neighboring trees on a single-linkage 
(Podani, 2000; Mirkin, 2005) basis according to proxy signal vectors. 
Since the nodal splitting mechanism can segregate some very sparse pat
terns, a minimum prominence is also operative in this regard and similar 
single-linkage nodal shifts made accordingly. The final restructuring is to 
prune any remaining trees with more than 255 nodes backward from the 
terminals (by collapsing previous splits) to reach the 255 limit. 

A segmentation sequence for the overall a-scenario takes the form of 
Eq. 2.6 with the actual number of third-stage patterns depending on the 

£„{#250?|#250*|#max 63500*|*250$} (2.6) 

capacity for concurrent splitting and number of splitting cycles conducted. 
The algorithmic implementation allows splitting to be continued across 
several computing sessions. 

The ordered overtone images in Figs. 2.1 and 2.2 were generated by this 
a-scenario. The segmentation sequence for Fig. 2.1 is: 

£„{#250?|#250*|#1898*|*250t} (2.7) 

and the segmentation sequence for Fig. 2.3 is: 

£a{#250?|#250*|#1248*|*250$} (2.8) 

Mirkin (2005) advocates capability for data recovery as a means of 
evaluating a method of clustering. Recovery of information along with 
mapping the spatial distribution of relative residuals for the a-scenario is 
considered later. 

The a-scenario of polypattem processing is highly heuristic and was 
developed adaptively during the course of several years for different pro
ject purposes using a variety of image data sources, as well as being used 
extensively for instructional purposes in image analysis. The inception of 
that scenario was influenced by the early work of Kelly & White (1993). 
It has been consistently very robust in these various contexts. Recent 
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work, however, has revealed several opportunities for enhancement, exten
sion, and formalization that are elaborated here in terms of a D-scenario. 

2.8 p-Scenario Starting Stages 

As an initial concern, the first stage of the a-scenario treats all primitive 
patterns equally whether they occur in only one pixel or thousands of pix
els. The earlier formalization of pattern potentials is intended to address 
this aspect in a comprehensive manner while providing substantial scope 
for investigation. Using the generalized formulation of potential, this par
ticular concern can be handled straightforwardly by changing the first 
stage of the segmentation sequence from the simple distance displacement 
process based on intrinsic potentials to a competitive assimilation process 
with the aggregation parameters for potentials set to a i=l and a 2=0.5 with 
a mass function in terms of partial prominence. 

Therefore, let potential be specified as in Eq. 2.9, 

pPp(/:) = [1 + M^ik) + 0.5Mp(nO] D\(k,nd (2.9) 

where 
MpO = partial prominence as fraction of pixels in current partial image; 
k = kth pattern; 
HI, = nearest neighbor of k in signal space by using distance function D,,; 
D„ = (optionally weighted) Euclidean distance. 

Then a first-stage process for potential patterns (conditional on order of 
pixels in an image) operates as follows. Begin by obtaining the first 250 
non-duplicate pixels from the file, using any duplication as frequency 
counts for mass functions. If there are no duplicates in this initial part of 
the image file, then the starting potentials are the same as for the a-
scenario. For each subsequent pixel in the encountered order there is a 
competition that results in assimilation of a potential pattern by a neighbor 
pattern. The potential for each of the 250 current patterns is determined 
along with the potential of the next pixel as an additional pattern relative to 
the other 250. The weakest (by potential) among these 251 patterns is as
similated by its stronger (greater mass) nearest neighbor (n^ in the potential 
function). Assimilation consists of absorbing the mass of n^ and then de
leting the weak pattern. The process repeats until all pixels in the data file 
have entered the competition. Ties can be broken in one of several reason
able ways. 

Compared to the a-version, this process tends to locate more of the po
tential patterns in the regions of signal space that have greater pixel occu-
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pancy. Also, the masses of the potential patterns are predictive of the cor
responding pixel patterns in the second stage which operates in the same 
manner as for the a-scenario. There is, however, a propensity to produce 
several patterns having low prominence in the second stage. 

It may be desirable to have a summary measure for comparison, as for 
example the a-scenario versus the P-scenario, that can also serve to ex
press overall strength of patterns extracted from an image. Since the com
petitive process in the first stage favors the (conditionally) stronger poten
tials, an obvious summary measure is total field potential of the patterns as 
given in Eq. 2.10, 

Pp.= EPpC t̂) or EpPC )̂ (2.10) 

according to whether pixel patterns or potential patterns are being consid
ered. An entropy-based information-theoretic summary measure (Mirkin, 
2005) for pattern prominence is the Shannon-Weiner index given in Eq. 
2.11, 

l>p. = - E(p.)ln(p*) (2.11) 

where p̂  is the prominence of the kth pattern in the lattice and In denotes 
natural logarithm. It is readily seen that a pattern having low prominence 
contributes little to the latter index. Experimentation with a two-pattern 
case will show that this index favors evenness of prominences. 

2.9 p-Scenario Splitting Stage 

The choice of poles for the third stage of the a-scenario bears closer ex
amination. The purpose of this third stage is to partition the sets of primi
tives from the second stage into subsets that are compact in signal space. 
Unless the high speed memory of a computer is massive, the major compu
tational constraints revolve around transferring image and pattern informa
tion to and from lower speed memory devices such as disks. Therefore, 
preference is given here to approaches that avoid additional passes through 
large data files. In the multivariate (multiband) case, this disqualifies the 
more common statistical choices such as sum of squared distances from 
centroids. 

The polar approach is expedient as long as all polar information can be 
obtained during a partitioning pass through the data. It seems intuitively 
reasonable that a good set of poles would be the pair of property points 
that are farthest apart in signal space (maximum diameter of the constella
tion). Unfortunately, however, this requires comparison of all possible 
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pairs, which is computationally impractical for present purposes. A more 
expedient approach is to consider only pairs of poles that span the constel
lation in some sense. 

The current sense of spanning is pairs of peripheral points according to 
the following concept. Let signal vectors (property points in signal space) 
Pia and Pib be taken as an initial polar pair, where Pia has minimum norm 
and Fib has maximum norm. Then replace either member of that polar 
pair by the most distant property point from its opposite pole (other than it
self) as a new polar pair. Let each of a succession of such replacements 
also give a polar pair. Then define the set of all possible members of such 
polar pairs as being the set of peripheral property points (signal vectors). 

The third stage of the a-scenario is based entirely on one such pair con
sisting of the points closest to and farthest from the origin of signal space 
('darkest' and 'brightest', respectively). This pair is readily determined in 
the course of a partitioning pass through the data. The darkest and bright
est elements are especially informative with respect to images, but they are 
not necessarily as effective with regard to obtaining compact constellations 
in signal space. It is quite possible that the dark-bright pole constitutes a 
relatively short diameter for a particular constellation. Likewise, the dark-
bright pole has somewhat constrained directional variation in signal space 
over a series of subsets from successive partitions. 

A modification can be made that makes the process of polar selection 
substantially self-correcting with respect to compact partitions, irrespective 
of the initial choice of polar pair. This modification retains the prior pole 
for each successive subset, and pairs it with the most distant point in the 
subset as its peripheral polar partner. Such polar pairs progressively pivot 
directionally through signal space in an unrestrained manner, thus provid
ing opportunity for and tendency toward realignment with larger diameters 
of the constellations and thereby leading to more compact constellations 
over a series of subdivisions. The P-scenario incorporates this modifica
tion. 

A possible further consideration for the third stage of the D-scenario is 
that of using the coordinates of the mid-pole position in signal space as a 
synthetic proxy for all the patterns in the nodal constellation. Despite the 
common practice of using averages for aggregations, it could be argued 
that an actual pattern should be preferred as a proxy over a synthetic one. 
A practical possibility in this regard is to use the actual pattern points that 
are closest to the prior quarter-pole positions. It may be noted that compu
tation of mid-pole positions can be readily done retrospectively for com
parative studies of the two methods. 
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The a-scenario has not had an overall measure for comparing complex
ity of constellations by which to track the trajectory of the third-stage split
ting process through the successive cycles. A composite of the polar po
tentials of the nodal constellations can be formulated for this purpose. The 
utility for comparative purposes among images is improved by normaliz
ing for both size of image and number of signal bands. Normalization for 
image size can be accomplished by using prominence of nodal patterns and 
normalization for signal bands can be done with number of bands as divi
sor. The composite complexity expression thus becomes Eq. 2.12, 

(E = ap,A,)/v • (2.12) 

where 
Pi is the prominence of the ^h third-stage pattern; 
Ak is axial (Euclidean) distance between poles; 
V is the number of signal band values. 
Since splitting reduces axial distance and increases compactness, the 

complexity coefficient must decline stochastically as splitting progresses. 
In general, greater complexity implies larger average errors in approximat
ing primitive patterns of the image by proxies of polypatterns. The discus
sion by Breiman et al. (1998) of nodal impurity measures for classification 
trees is relevant in this regard. It may also be noted that a single-pixel pat
tern would contribute nothing to this measure by virtue of having zero as 
the axial distance. 

2.10 Tree Topology and Level Loss 

Since the third-stage splitting process is influenced by both prominence 
and axial distance, it is may be of interest to examine the structural topolo
gies of the partitioning trees created in that stage. Relevant relations of 
nodal constellations to complexity and sub-structure can be indicated as a 
topological triplet in Eq. 2.13, 

constellations: complexity: connection (2.13) 

where constellations is the number of nodal constellations as terminals of 
the tree, complexity is the complexity coefficient as given above but with 
the summation limited to the particular tree, and connection is the maxi
mum number of intermediate nodes between the root and a terminal. 

The members of the topological triplet are informative both individually 
and in combination. A large number of constellations indicates substantial 
subdivision. The number of constellations in relation to connections indi-
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cates the degree of consistency in subdivision of subdivisions. A 'bushy' 
tree will have the number of constellations large in relation to the number 
of connections, or conversely for a 'spindly' tree that is tall and thin. The 
complexity in relation to number of constellations indicates propensity for 
further subdivision under additional splitting cycles. Comparing the com
plexity across trees is indicative of disparity in pattern complexity. 

Determining the variability of the B-level proxies about the A-level 
proxies is informative relative to level-loss of specificity associated with 
using the A-level independently of the B-level. A natural way of assessing 
this is by mean squared error of prediction incurred by using A-level prox
ies as estimates of B-level proxies. This is computed as the sum of 
squared distances between B-level proxies and A-level proxies divided by 
the total number of B-level patterns. It also provides an index regarding 
sensitivity of the landscape pattern to generalization. The evenness of this 
information loss can be assessed by computing mean squared error sepa
rately for each A-level pattern, and then computing mean, variance, and 
coefficient of variation for these error data. 

2.11 ^-Scenario for Parallel Processing 

The a and |3 scenarios of polypattem processes have been considered im
plicitly for sequential computing environments. The extraction of bi-level 
poly-patterns is an extended operation in such computing environments, 
with computation times that can run into hours for larger images on con
ventional desktop PC computers depending on the number of bands and B-
level splitting cycles. On the other hand, subsequent analyses of polypat-
tems proceed much more rapidly than for conventional image data since 
many computations can be done in the domain of pattern tables instead of 
spatial lattices. Therefore, production operations involving numerous 
large images would require that pattern extraction times be reduced by an 
order of magnitude through parallel computing and related intensive com
puting facilities. In the y-scenario, we consider prospects for pattern proc
esses that are amenable to parallel computing. 

The first stage of a and P scenarios presents barriers to parallel comput
ing by the sequential nature. Therefore, further generalization is neces
sary. This generalization can be envisioned as 'potential pattern pools'. A 
potential pattern pool is configured to accommodate some maximum num
ber Y of potential patterns which would be operationally dependent on the 
number of signal bands in a pattern, but should be several multiples of the 
250 in the a and P scenarios. Such a pool would reside in a processor and 
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would function in 'fill and filter' cycles in conjunction with similar pools 
in other processors. 

The 'fill' operation would ingest pixels from the next available position 
of the image data file until the pool is at capacity. The pool would then be 
'filtered' down to some designated fraction of its capacity by successively 
assimilating the pattern having weakest potential into its stronger neighbor. 
The space thus made available in the pool would then be refilled until the 
several processors had collectively exhausted the image data file. The 
processors would then proceed to collaborate in pooling their partial pools 
until a single pool having the desired number of potential patterns was 
reached. 

Aside from parallel considerations, a modification of this nature is ef
fective in countering the tendency of the P-scenario to produce several pat
terns having low prominence. A pool containing excess patterns is carried 
to the end of the first stage, and the top 250 potential patterns in order of 
prominence are extracted for the second stage. A pool having an excess of 
10% has proven to be workable in this regard. 

In the second stage, the processors would all work with the final set of 
potential patterns, but would divide the image file into sections for compi
lation and then cross-compilation of (proxy) pixel patterns. In both the 
first and second stages, it would be possible to have the processors work 
either asynchronously or synchronously. 

In the third stage, a 'bifurcation brokerage' queue would reside some
where in the system, and the processors would operate individual 'bifurca
tion buffers'. The bifurcation brokerage queue would prioritize the nodal 
constellations for splitting. An individual processor would have its bifur
cation buffer filled from the front of the queue and proceed to split those 
particular patterns while purging them from the queue. Upon completing a 
set of bifurcations, the processor would adjust the common queue so that 
the subsets would take their respective places according to their eligibility 
in terms of the splitting criteria. 

The fourth stage would complete the segmentation scenario for parallel 
processing by allocating part of the lattice to each processor for the neces
sary nested numbering of patterns. As for the P-scenario, redistribution of 
prominence over A-level patterns would be an optional aspect. 

It might seem that greater computing power would also favor extension 
from bi-level polypattems to tri-level polypattems. However, adding addi
tional tiers causes eighth-power exponential growth in the number of trees 
of patterns with considerable computational overhead in cross-indexing the 
levels. A third level is marginally feasible, but using a two-byte second 
level would be more practical. Even so, the additional byte at the second 
level would tend to be unevenly exploited. 
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2.12 Regional Restoration 

Restoration is accomplished by placing the proxy signal vector for the B-
level of polypattems in each pixel. The result is a 'smoothed' or 'filtered' 
version of the multi-band data having somewhat less variability than the 
original, due to removal of the intra-pattem variability. This will usually 
have some beneficial effect of making the data less 'noisy'. 

Fig. 2.4 shows a restored version of band 2 for the September 1991 
Landsat MSS image appearing in Fig. 1.1. The quality of detail in such 
restorations relative to the resolution of the original provides support for 
our claim that B-level of polypattems can model image intensities suffi
ciently well to constitute an image compression for purposes of landscape 
analysis. Resolution of the image in Fig. 2.4 is constrained by the large 
size of pixels in the parent image that are 60 meters on a side. 

2.13 Relative Residuals 

Residuals from restoration are of interest not only for purposes of spatial 
statistics, but also for determining whether there are portions of the image 
area that have been restored with less fidelity than others. For the latter 
purpose, it is desirable to have an integrated measure of residual that in
corporates the effects of all signal bands. This can be accomplished by us
ing the Euclidean distance between the proxy signal vector for the B-level 
pattern and the actual signal vector for the particular pixel. Fig. 2.5 shows 
this kind of multiband residual image for the restoration in Fig. 2.4. 

The spatial pattern in the residuals is of particular interest. An 'ideal' 
pattern would be one of uniformity, indicating that the errors of approxi
mation were evenly distributed over the image area. The next most favor
able pattern would be a random 'speckle' distribution indicating that the 
errors of approximation constitute 'white' noise relative to environmental 
features and locations. Typically, however, there is some nonrandom spa
tial patterning of the residuals. Then it becomes necessary to refer to the 
image itself to determine what kinds of environmental features have the 
least fidelity in their representation. In the case of Fig. 2.5, the fringe areas 
of clouds are prominent with regard to residuals. Since clouds are typi
cally nuisance features in the image anyhow, this is not a matter of con
cern. The stronger discrepancies are due to the spectral and spatial com
plexity of cloud fringes. 



2.13 Relative Residuals 43 

Fig. 2.4 Restored band 2 (red) of September 1991 Landsat MSS image of central 
Pennsylvania. 
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Fig. 2.5 Multiband residual image for September 1991 Landsat MSS image of 
central Pennsylvania with darker tones indicating larger residuals. 
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It is also interesting to examine iiow the depth of pattern splitting from 
A-level to B-level varies across the image in relation to the relative differ
ences in residuals. Fig. 2.6 shows this aspect of the pattern-based image 
modeling, whereby lighter areas have more splitting. It can be seen that the 
darker areas indicating larger residuals in Fig. 2.5 correspond with the 
lighter areas indicating greater depth of splitting in Fig. 2.6. Therefore, 
continuation of splitting cycles would also tend to focus on these patterns 
that have higher internal variability. 

In his comparative work on clustering for data mining, Mirkin (2005) 
emphasizes recovery of original information from clusters as being the 
touchstone criterion for efficacy of clustering methodology. Our methods 
of pattern analysis fall generally under the statistical heading of clustering, 
although they involve non-conventional modalities and have some non-
conventional goals even among the many versions of clustering. 

Recovery is one of our goals, which we address in terms of restoration 
from compression as set forth above. We are in a position to conduct a 
thorough assessment of recovery in terms of residuals, with regard to both 
form of statistical distribution and spatial dispersion of residuals as dem
onstrated in this chapter. We are also in a position of advantage by having 
the capability to improve recovery through additional cycles of splitting if 
the residuals are deemed to be excessive. 

In perhaps a somewhat counter-intuitive manner, we derive benefits 
from an assurance of less than complete recovery. One such benefit arises 
from avoiding exact electronic duplication of image data that may carry 
concerns for their proprietary nature. Our methodology produces image 
intensity models. The B-level patterns constitute a discretely valued model 
of the original image, and the A-level patterns provide a more generalized 
(less specific) model. Together, these models support multi-scale land
scape analysis as well as selective enhancements for graphic emulations of 
pictorial images. 
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Fig. 2.6 Distribution of depth of splitting from A-Ievel to B-level pertaining to re
siduals in Fig. 2.5 with lighter tones showing greater splitting. 
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2.14 Pictorial Presentation and Grouped Versus Global 
Enhancement 

Direct display of A-level indexes as ordered overtones has been introduced 
earlier. Pictorial presentation of particular pattern properties involves tri
ple indirection whereby look-up tables of pattern properties are used to 
prepare look-up tables of relative intensities that are used to prepare look
up tables that specify coloration for patterns. Since all of three of these ta
bles are subject to change, there is a great deal of flexibility in the manner 
that patterns are portrayed. This makes possible enhancements of presen
tation graphics that cannot be obtained through conventional image analy
sis. 

Enhancement is an image analysis term for operations that are applied to 
pixel properties in order to obtain pictorial presentations wherein certain 
aspects have more evident expression. In conventional image analysis, 
enhancement operations are applied globally to all pixels. Pattern presen
tations permit greater specificity whereby enhancement operations are ap
plied selectively to a particular pattern or groupings of patterns, thereby 
avoiding alterations of the entire image. This even extends to generalizing 
the perception of patterns by displaying similar patterns the same to give 
them identical appearance. This is a considerable convenience for initial 
investigation of multi-scale characteristics of landscapes. 

Appendix A suggests software that can be procured publicly without 
purchase for pictorial presentation of patterns. Since patterns are at least in 
part a perceptual pursuit, preliminary perusal of presentation protocols is 
prudent. 

2.15 Practicalities of Pattern Packages 

A prototype package for pattern processing is introduced in Appendix B. 
This is a modular package developed in generic C language to promote 
portability among platforms for computing. Specifications are submitted 
by editing a standard text file, which is then read by the respective module. 
The text file also contains imbedded instructions for making the appropri
ate substitutions. A Windows-style 'front-end' is also available as an al
ternative mode of managing most modules under Microsoft supported sys
tems. The A-level of polypatterns is presented as byte-binary image 
information in a file having .BSQ extension, along with companion compi
lations of characteristics as textual tabulations in separate files. The B-
level of polypattem information resides in a byte-binary file having .BIL 
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extension, along with supporting tabulations that are also byte binary. 
Complete comprehension of the ensuing chapters may require reference to 
this software supplement, and even perhaps practice. 
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